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Abstract

The results of a recent gyrokinetic analysis of turbulent transport driven by the

electron temperature gradient (ETG) in the MAST pedestal are presented. During the

inter-ELM period, the buildup rate of the electron density gradients is faster than that

of the electron temperature gradients, possibly indicating the presence of an active elec-

tron thermal transport mechanism. Local nonlinear simulations from the gyrokinetic

code, GENE, show that heat flux produced by ETG turbulence is 10-30% of the total

applied heating power in the upper pedestal and pedestal top during both the pre-ELM

(80-99% inter-ELM period) and post-ELM (0-20%) periods. Increasing strongly with

the electron temperature gradient, the ETG transport appears to be stiff. Considering

radiation losses, ion thermal transport, and the strong sensitivity of the transport to

the electron temperature gradient, we propose that ETG transport is a plausible mech-

anism mediating the inter-ELM temperature profile on MAST. Cognizant of the fact

that the profiles may depart considerably from a linear approximation, we conducted

global nonlinear simulations; the results are in good agreement with local simulations

except near the pedestal top, where large streamers and high transport levels (far be-

yond experimental) develop in the local simulations. This study is a warning that

when the profiles have deep structures, local simulations must be augmented /checked

by global ones. We quantify and parameterize the discrepancy between local and global

simulations by calculating the ratio of the radial correlation length to a length scale

representative of the profile curvature. When this ratio is sufficiently small, local and

global simulations agree as expected.



1 Introduction

In tokamaks, including the Mega Ampere Spherical Tokamak (MAST), a narrow transport

barrier that improves the confinement of magnetized plasma is formed in the high confine-

ment mode (H mode) [2]. This barrier supports high density and temperature gradients

at the edge of the plasma, which leads to the development of a steep pressure pedestal. In

MAST, this pedestal undergoes a cyclical process of growth and collapse by an edge-localized

mode (ELM) [3]. During this process, the electron density pedestal builds up much faster

than the electron temperature pedestal, suggesting that an electron thermal transport mech-

anism may be active and constraining the inter-ELM pedestal evolution. This paper uses

the gyrokinetic code, GENE [4], to investigate the role of electron temperature gradient

(ETG) driven turbulent transport in the MAST pedestal.

Historically, it was believed that ETG turbulence would not significantly affect trans-

port due to low transport levels predicted by simple mixing length estimates. However, non-

linear gyrokinetic simulations have shown that the formation of radially-extended structures,

also known as streamers, in the nonlinear turbulent state can potentially lead to significant

ETG transport in both conventional tokamaks [4, 5, 6]. Recent work has determined that

ETG can produce substantial transport in the pedestal [1, 7, 8, 9, 10, 11, 12, 13]. Typically

the ETG transport in the pedestal does not rely on streamers. Rather, the fluctuations

remain relatively isotropic [8, 14] and achieve substantial heat fluxes due to the extreme

pedestal gradients.

This paper presents linear and nonlinear, local and global gyrokinetic analyses of ETG

in the MAST pedestal. Simulations produce ETG turbulence at experimentally-relevant

transport levels with transport increasing rapidly with η = Ln/LT (i.e., the transport is stiff),

where Ln,T are the electron density and temperature gradient scale lengths, respectively. This

is the case during both pre-ELM (80-99% inter-ELM period) and post-ELM (0-20%) periods

in the pedestal top and upper pedestal region. We conclude that ETG turbulence likely plays

a significant role in electron thermal transport in the MAST pedestal. This ETG transport
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likely acts together with microtearing modes (MTM), which have been studied previously

[15], to constrain the electron temperature pedestal, while pressure gradient is constrained

by KBM and the total pedestal pressure is limited by the ideal MHD peeling-ballooning

modes.[15, 16]. The combination of ETG and MTM has also been identified in standard

aspect ratio pedestals [9, 10, 17, 18, 19].

We also study various aspects of the fundamental nature of the turbulent energetics,

finding that energy is injected at low radial wavenumbers and high bi-normal wavenumbers

and then transferred via a direct cascade in the radial direction and an inverse cascade in

the bi-normal direction.

Since ETG fluctuates at such small scales, a local approximation is typically thought

to be adequate even for the exceptionally steep gradients in the pedestal. We test this as-

sumption explicitly by comparing local and global nonlinear simulations. This comparison

is particularly relevant for the MAST pedestal due to its comparatively weak magnetic field

(compared to comparable standard aspect ratio tokamaks), which results in weaker scale

separation between gyro-radius scales and equilibrium scales. We find close agreement at

most locations, but substantial deviation in the region where the density profile transitions

from the pedestal to the core (i.e. where profile curvature is large). In this region, local

simulations produce anomalously large transport levels. In contrast, global simulations pro-

duce realistic transport levels in line with the other radial positions. These findings provide

insight into the mechanisms behind the formation of the pedestal. Ultimately the goal is to

enable improved confinement in spherical tokamaks.

The presentation of the results is organized as follows. In Sec. 2, ETG turbulence is

shown to be active according to local linear and nonlinear pre-ELM simulations, sensitivity

tests for linear and nonlinear gyrokinetic simulations are conducted by varying the density

and temperature gradients, global nonlinear gyrokinetic simulations are compared to local

simulations at different radial locations, and it is shown that ETG turbulence can be affected

by global properties. Local post-ELM simulations are presented and compared to pre-ELM
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Figure 1: The electron density and temperature versus the normalized toroidal flux surface
label ρtor during pre-ELM stage.

ρtor q0 ŝ ωn ωT η β Bref Tref nref ρ∗

0.92 5.41 4.16 0.126 4.86 38.6 0.0136 0.483 0.200 3.93 0.00499
0.94 5.92 4.14 2.16 8.13 3.79 0.0118 0.483 0.177 3.86 0.00469
0.96 6.46 4.20 9.71 16.7 1.72 0.0084 0.483 0.140 3.48 0.00416

Table 1: The common physical input parameters at ρtor = 0.92, 0.94, 0.96, respectively. η
and β decrease as ρtor increases. Magnetic shear does not vary a lot around the pedestal top.

simulations in Sec. 3. Energy triplet diagnostics and energy across the scale are studied to

understand how ETG turbulence saturates in MAST at different stages in Appendix A for

futher readings. The simulation setups for the nonlinear simulations will be presented in

Appendix B.

2 Local Pre-ELM Simulations

In order to check whether ETG turbulence is important in the pedestal, we begin by looking

at the region around the pedestal top where η = Ln/LT, the ratio of density scale length
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Figure 2: Growth rate spectrum γ versus kyρs during pre-ELM stage with cs and ρs calculated
at ρtor = 0.92. Growth rate spectrum peaks at a smaller scale for the outer radial location
for similar kx, implying the heat flux can be smaller for larger ρtor based on simple mixing
length estimates.

and temperature scale length, is large.

As shown in Fig. 1, three radial locations at ρtor = 0.92, 0.94, 0.96 are picked to cover

the pedestal top for the test during the pre-ELM stage. We focus particularly on this upper

pedestal region since transport is found to be low from ETG at ρtor = 0.96 already as shown

later, the steep gradient region with even smaller η and Tref is therefore not a region of

interest.

The radial coordinate, ρtor, is the square root of normalized toroidal flux. Table 1

shows the physical input parameters for the simulations where normalized density gradient

ωne = ωni = ωn = a/Ln, normalized temperature gradient ωTe = ωTi = ωT = a/LT,

the normalized plasma pressure β = 8πne0Tref/B
2
ref , the safety factor q0, the normalized

magnetic shear ŝ = r
q
dq
dr
, reference magnetic field in Tesla Bref , reference temperature in keV

Tref , reference density in 1019m−1, and the ratio ion gyroradius and minor radius ρ∗. Also
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Figure 3: Heat fluxes calculated at ρtor = 0.92, 0.94, and 0.96 are 14.48, 0.38, and 0.08MW,
respectively. With regard to the 3.2MW NBI power of MAST, the local nonlinear simulation
predicts inaccurate heat flux, global effects need to considered.

note that a and R are the minor and major radii, respectively, the effective ion charge Zeff is

set to 2, and the ion and electron temperatures and densities are set equal for all simulations.

Figure 2 shows the growth rate spectrum, growth rate γ versus binormal wavenumber

kyρs, calculated at different radial locations with linear gyrokinetic initial value runs centered

at the outboard mid-plane, where ρs is the ion gyroradius and cs is the ion sound speed.

Note that êx, êy, and êz are radial, binormal, and tangent unit vector in GENE convention,

respectively.

Table 2 shows some of the important characteristic values of the most unstable modes

(electron scales) at three radial locations used to categorize the instabilities. In this table,

ω is the real frequency, χ is the heat diffusivity, and D is the particle diffusivity. These

instabilities are highly electrostatic electron waves with low particle flux, which of course

can be identified as ETG modes [20]. One interesting observation from Fig. 2 is that the

peak of the growth rate spectrum moves to a smaller scales as the radial location moves
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ρtor kyρs γ(cs/a) ω(cs/a) χem/χes χi/χe De/χe

0.92 136 47.5 −137.1 −1.24× 10−3 1.27× 10−3 −0.161
0.94 168 60.4 −134.8 −1.06× 10−3 1.07× 10−2 −7.5× 10−3

0.96 252 105.9 −144.5 4.62× 10−4 2.36× 10−2 5.12× 10−3

Table 2: Charateristic values for the most unstable mode at three different radial locations.
Low χem/χes, low χi/χe, and small De/χe imply that these instabilities are electrostatic,
electron dominant, and have low particle flux,a respectively. Therefore, these instabilities
are ETG modes.

outward. A simple mixing length estimate (not shown), χ ∼ γ/k2
y, would predict that the

thermal diffusivity would decrease as the radial location increases (for example, note that

the peak ky approximately doubles as does the peak growth rate comparing ρtor = 0.92 and

ρtor = 0.96). This quick assessment is confirmed by the nonlinear simulations described

below with the numerical info included in Appendix B.

Figure 3 shows the heat fluxes derived from local nonlinear gyrokinetic simulations

at three different radial locations in megawatts. The simulations include E × B shear and

kyminρs is set as 6. The heat flux is calculated to be 14.48MW at ρtor = 0.92, which is

far higher than the heat fluxes 0.38MW and 0.08MW calculated at ρtor = 0.94 and 0.96,

respectively. This discharge is heated by NBI at a level of 3.2 MW. Although a detailed

analysis is not available, some fraction of the heating power is lost as radiation, some fraction

is also transported through the ion channel, and some of the energy is transported when the

pedestal collapses in ELMs. We will proceed by assuming that something on the order of 1

MW is a plausible expectation for electron thermal transport. Note that the pedestal profiles

are not in a fully steady state but are evolving between ELMs. Based on this assumption,

only the result at ρtor = 0.94 is in the proximity of experimental expectations. However,

we as will be shown below, all three radial positions plausibly produce reasonable transport

levels when global effects and/or parameter sensitivities are considered. More specifically,

global effects bring the transport at ρtor = 0.92 in line with experimental expectations, and

the transport at ρtor = 0.96 becomes experimentally relevant when density and temperature

gradients are slightly modified.
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Figure 4: Growth rate spectrum at ρtor = 0.94 during the pre-ELM stage. The spectrum is
moved upward about 20% when the temperature gradient 1/LT0 is increased by 20%, and
moved horizontally toward the larger scale when 1/Ln0 s decreased.

Due to the typical extreme sensitivity of turbulent transport to gradients, a thorough

investigation must probe experimental uncertainties in the profiles. The profiles used for the

simulations averaged over several ELM cycles. Although rigorous uncertainties are difficult

to quantify, the error bar of the gradients can exceed 20%. It is then reasonable to vary the

gradients within this range in order to check what is the highest heat flux the instabilities

can produce and how stiff the transport is.

Figure 4 shows how the growth rate spectrum changes when the density and temper-

ature gradients are varied at ρtor = 0.94 during the pre-ELM stage. When the temperature

gradient 1/LT0 is increased by 20%, the growth rates at all scales are also increased by ap-

proximately 20%, which is typical for ETG turbulence. On the other hand, when the density

gradient 1/Ln0 is decreased by 20%, the growth rate spectrum is not shifted upward, instead,

it is shifted toward the larger scales. The case with 20% increase in 1/LT0 and 20% decrease
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Figure 5: Heat fluxes calculated at ρtor = 0.94 for the pre-ELM stage shows the heat flux
increased significantly when there is a 20% increase in 1/LT0 and a 20% decrease in 1/Ln0.
The amount of heat flux increased is more profound than the result got from linear simula-
tions.

in 1/Ln0 has the spectrum moved toward the up-left corner with ∼ 40% of growth rates

increase in the larger scales, which are more important for transport. This result suggests

ETG turbulence does not depend solely on η = Ln/LT, its growth rate is more responsive to

the change of the temperature gradient. The heat fluxes obtained from nonlinear gyroki-

netic simulations in the pre-ELM stage at radial locations of ρtor = 0.94 is shown in Fig. 5.

The simulations reveal that the heat flux increases significantly when there is a 20% increase

in 1/LT0 and a 20% decrease in 1/Ln0. Specifically, the pre-ELM case shows a 110% increase

in heat flux. We note that this increase is much higher than the corresponding increase in

the maximum growth rates, which exhibit an increase of only ∼ 40%. The results suggest

that ETG turbulence is highly sensitive to the gradients, and even a slight increase in the

pedestal temperature can lead to significant heat flux changes. These results also highlight

9



0.91 0.92 0.93 0.94 0.95 0.96 0.97

ρtor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
H

e
a
t

fl
u

x
[M

W
]

Pre-ELM

Figure 6: The heat fluxes calculated at ρtor = 0.94 and 0.96 agree with the result derived
from global simulation with minor differences while those at ρtor = 0.92 and 0.93 are way
off, implying that the global effects can be crucial.

the importance of investigating how ETG turbulence in the pedestal top for STs saturates,

and suggests that deeper investigation into the nonlinear effects is needed.

2.1 Nonlocal Effects

We return now to the exceptionally high heat flux predicted at ρtor = 0.92 (see Fig. 3),

which far exceeds the total heating power for this discharge. The growth rates at the lower

ky wavenumbers, shown in Fig. 2, significantly surpass those at ρtor = 0.94 and 0.96. Even

so, the unrealistically large heat flux is not expected from simple mixing length estimates

derived from the growth rate spectrum. We investigate the possibility that nonlocal effects

are necessary to recover reasonable transport levels.

Figure 6 displays the calculated global heat flux versus the local results with an extra
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Figure 7: A time slice of the electrostatic potential for the nonlinear local simulation at
ρtor = 0.92. The extended structure suggests that the dominant instabilities at ρtor = 0.92
could be affected by the radial structure and properties in nonlinear global simulations.

local simulation at ρ = 0.93. While the heat fluxes at ρtor = 0.94 and 0.96 agree with the

result obtained from the global simulation, with minor differences, those at ρtor = 0.92 and

0.93, with Qes = 14.48 and 6.62MW, respectively, are far off. The heat fluxes calculated from

global simulation at ρtor = 0.92 and 0.93 fall within the experimental expectation, indicating

that global effects significantly reduce the heat flux at these locations.

Global and local simulations differ in terms of whether they incorporate the radial vari-

ation of profiles and equilibrium. Additionally, it is important to highlight that the boundary

conditions employed in local and global simulations also vary. Local simulations utilize pe-

riodic boundary conditions, while global simulations utilize a combination of Dirichlet and

Neumann boundary conditions. To assess the impact of boundary conditions on heat flux

transport at the top of the pedestal, the convergence check involves modifying the box size,

effectively ruling out the influence of boundary conditions. In order to assess the impor-

tance of global effects from the radial variation of the profiles, it is necessary to examine the

radial structure of turbulence in the local simulation. Here, we present the results of local
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Figure 8: The cross-correlations C(∆x, 0) of Φ−Φ and Φ−n derived from the nonlinear local
simulation at ρtor = 0.92. The half-width for both is around 1.5ρs or 0.0075ρtor. C(∆x, 0)
drops to 0.25 when ∆x reaches 2ρs or 0.01ρtor. The size of the relevant region is large enough
to include strongly varying η regions in global simulations.

nonlinear simulations during the saturated state, where the box size Lx is set to 27ρs. Note

that to saturate the turbulence, Lx = 13.5ρs is shown to be sufficient in the convergence

test. Since ρ∗ref = ρs/a = 0.00499, the equivalent box size as a fraction of the minor radius

a is 0.136, which is substantially larger than the entire pedestal (recall Figure 1). Figure 7

shows the time slice of the Φ contour plot in real space. The extended structure seen in the

figure, combined with the fact that the simulation is located at ρtor = 0.92, suggests that

the dominant instabilities in the local simulation could potentially be affected by the global

properties across the whole pedestal top and upper pedestal region—e.g. the structures are

broad enough that they would extend to the regions (ρtor > 0.93) of much smaller local heat

flux. To further investigate the radial structure of turbulence centered at ρtor = 0.92, we

examine the cross-correlations C(∆x, 0) of Φ − Φ and Φ − n as shown in Figure 8. The

half-width of C(∆x, 0) is about 1.5ρs or 0.0075ρtor. It first reaches 0 when ∆x becomes 4ρs
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Figure 9: The cross-correlations C(∆x, 0) of Φ − Φ derived from the nonlinear local simu-
lations for ρtor = 0.92, 0.93, 0.94, and 0.96. The half-widths of C(∆x, 0) are several times
smaller for ρtor = 0.94 and 0.96 compared to 0.92 and 0.93.

or 0.02ρtor, suggesting that the most relevant range for the turbulence would be 0 ∼ .90 to

∼ 0.94.

Figs. 9 and 10 show the cross-correlations at several radial positions. At ρtor = 0.94

and 0.96 the correlation lengths are much smaller compared to those at 0.92 and 0.93, which

is consistent to the result that the local approximation is more accurate compared to the

global result at these two locations.

Considering the impact of these observations on the turbulent properties, we refer

to Fig. 1 and Tab. 1. The results show that the temperature and density profiles (and η)

decrease significantly as ρtor is pushed outward within the range of 0.90 to 0.94. This decrease

will inevitably weaken the ETG turbulence. On the other hand, other parameters such as

the safety factor q and magnetic shear ŝ vary weakly within this range and are therefore

unlikely to explain the discrepancy between the global and local simulations.
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Figure 10: The cross-correlations C(∆x, 0) of Φ−n derived from the nonlinear local simula-
tions for ρtor = 0.92, 0.94, and 0.96. Similar to the Φ− Φ case, the half-widths of C(∆x, 0)
are several times smaller for ρtor = 0.94 and 0.96 compared to 0.92 and 0.93.

2.2 The effect of E ×B shear

Another possible relevant mechanism is E×B shear suppression. Often flow shear is assumed

to have little effect on ETG turbulence due to its small scales in time and space. However,

the large radial structures observed in the pedestal top simulations may make them more

susceptible to shear suppression. We note that all simulations described above include E×B

shear. However, there is substantial uncertainty in the shear rate and so we conduct scans

to probe sensitivities. The E × B shearing rate γE×B exhibits significant variability across

the pedestal region, as illustrated in Fig. 11, where the γE×B has been estimated from a

neoclassical formula [21] by setting the parallel flow V∥ to zero, which is the same procedure

adopted in [13]. At ρtor = 0.92, the shearing rate is only 0.058, but increases by a factor of

∼ 5 at ρtor = 0.93 and by a factor of ∼ 10 at ρtor = 0.94. While these values may appear

small for electron-scale turbulence, they are more comparable to the growth rates of ion-
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scale turbulence, which has the potential to reduce heat flux. To investigate this, nonlinear

simulations were conducted for ρtor = 0.92, and Fig. 12 shows the corresponding γE×B scans.

The results reveal that the heat flux decreases significantly as γE×B increases, with an 85%

reduction observed when γE×B increases by a factor of 10. As γE×B is increased further, the

heat flux can be suppressed even more, potentially reaching a value of 0.54MW when γE×B

is equal to 2.5. It is worth noting that these values for γE×B were chosen as approximations

of the shearing rate at ρtor = 0.94 (the boundary of the highly correlated region) and 0.96

(the simulated boundary), in order to investigate the possible maximum effect of shearing

on turbulence.

2.3 Parameterizing the Breakdown of the Local Flux Tube Ap-
proximation

The above analysis shows the ETG turbulence in the pedestal top for MAST can be affected

by the global properties, which is also shown for some systems with ETG turbulence [22].

The background magnetic fields of spherical tokamaks are mostly less than 1T with ∼ 0.5T

in our case for MAST, which is much weaker than most cases for conventional tokamaks.

The weaker magnetic field results in larger normalize gyroradius ρ∗ = ρs/a and therefore

leads comparatively larger fluctuation scales. Combined with the fact that the pedestal is

intrinsically narrow, the size of the pedestal top transition region then becomes only ∼ 5ρs.

Therefore, the fluctuations with extended radial structure in the local simulations in this

region are not going to be as prominent in global simulations because the simulated region

covers a large variety of gradients and γE×B.

The aforementioned analysis provides a qualitative explanation, but it is imperative

to conduct quantitative assessments to ascertain the validity of the local approximation.

The local flux tube approximation firstly assumes the density gradient scale length, denoted

as Ln = n
dn/dx

, and the temperature gradient length scale, denoted as LT = T
dT/dx

, can be

approximated as constants across the simulated region, and then secondly employs periodic

boundary conditions. We define the correlation length in the radial direction, ∆x, as the
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Figure 11: The E×B shearing rate γE×B is nearly zero in the pedestal top and becomes sig-
nificantly larger at the upper and mid pedestal region. Instabilities with extended structure
in radial direction emerged in local simulations in the pedestal top can be affected by the
shear.

width of C(∆x, 0) that first crosses zero, as illustrated in Fig. 9. To evaluate its significance

in relation to other length scales, the density profile is initially investigated to verify the

fulfillment of various relevant conditions.

Expanding ∇n
n
(x) to the first order, ∇n0

n0
+xn0∇2n0−(∇n0)2

n2
0

, it becomes apparent that the

correlation length in the radial direction, ∆x, must satisfy the first condition ∆x ≪ |∇n0

n0
|

/|n0∇2n0−(∇n0)2

n2
0

| when approximating ∇n
n
(x) with ∇n0

n0
. Conversely, ∆x should also be smaller

than Ln and LT to ensure the validity of the periodic boundary condition, specifically |∆x/Ln|

and |∆x/LT | ≪ 1 as the second condition. The local approximation breaks down if any of

the aforementioned conditions is violated. The outcome of the first condition is depicted in

Figure 13 , where it is evident that the condition is violated at ρtor = 0.92 and 0.93, while

being satisfied at ρtor = 0.94 and 0.96. Although this does not provide insights into how

turbulence is affected by higher-order terms, it directly indicates the breakdown of the local
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Figure 12: Heat flux versus the E× B shearing rate γE×B. Heat flux decreases significantly
as γE×B increases, with a 85% decrease when γE×B becomes 10 times larger. The heat flux
can eventually reach a physical value of 0.54MW when γE×B is equal to 2.5.

approximation at these radial locations due to profile curvature. The second condition and

a similar analysis for T exhibit satisfactory fulfillment at these radial positions but is not

presented here.

We note that this analysis points to the significant role played by the curvature of

the density profile, denoted as ∇2n, in determining the validity of the local approximation.

In the absence of the curvature term, the first and second conditions are mathematically

equivalent, and their fulfillment is observed across all cases examined in this study. This

finding suggests that the curvature of the profiles can significantly influence the turbulent

transport, in particular by stabilizing the ETG modes in this case. An interesting analysis

would be to explore the second order curvature effects described Refs. [26, 27]. However,

the precise manner in which the curvature of the profiles impacts different micro-instabilities
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Figure 13: The condition ∆x ≪ |∇n0

n0
|/|n0∇2n0−(∇n0)2

n2
0

| is violated at ρtor = 0.92 and 0.93

while being satisfied at ρtor = 0.94 and 0.96. The local approximation is therefore invalid at
ρtor = 0.92 and 0.93.

remains an unresolved question, warranting future investigation. Based on the analysis

conducted in this chapter, it is concluded that nonlocal effects are critical in the transition

from the steep gradient region to the pedestal top.

3 Local Post-ELM Simulations

While the pre-ELM stage may be the most important due to its direct reflection of the

pedestal structure (and its connection to confinement), we are also interested in the post-

ELM stage, which reflects the recovery process of the pedestal. Again as Fig. 14 shows,

three radial locations ρtor = 0.966, 0.976, 0.986 that cover the upper pedestal to mid pedestal

region are selected to study the ETG turbulence during post-ELM stage. Table 3 shows the

physical input parameters for the simulations. All parameters except ωn and ωT are smaller

than the pre-ELM analysis presented previously.
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Figure 14: The electron density and temperature versus the normalized toroidal flux surface
label ρtor during post-ELM stage.

ρtor q0 ŝ ωn ωT η β Bref Tref nref

0.966 6.72 4.71 4.98 12.5 2.51 0.0058 0.495 0.140 2.54
0.976 7.05 4.67 12.2 23.4 1.92 0.0045 0.495 0.117 2.34
0.986 7.41 4.98 27.0 41.2 1.53 0.0027 0.495 0.085 1.94

Table 3: The common physical input parameters at ρtor = 0.92, 0.94, 0.96, respectively. η
and β decrease as ρtor increases. Magnetic shear does not vary a lot around the pedestal top.

Figure 15 shows the growth rate spectrum at three different radial locations. The peak

of the growth rate spectrum moves toward smaller scales as ρtor increases while the growth

rate spectrum is similar at large scales. By utilizing simple mixing length estimates on the

growth rate spectrum with similar kx, we can naively expect ETG turbulence to be stronger

at ρtor = 0.976 than 0.986 since the growth rates for the former at large scales are a bit larger

along with the fact that Tref is also larger at this radial location. As for ρtor = 0.966, it is

not enough to predict whether ETG turbulence is more prominent here compare to 0.976

and 0.986 just by using simple mixing length estimates because the spectrum remains to be
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Figure 15: The growth rate spectrum for three radial locations ρtor = 0.966, 0.976, 0.986
during the post-ELM stage with cs and ρs calculated at ρtor = 0.966. .

slightly below those from the two at large scales with larger Tref .

Figure 16 shows the heat fluxes calculated at these radial locations. It is not surprising,

that the electron heat flux is small at ρtor = 0.986 due to the low temperature and η. On

the other hand, the ETG turbulence at ρtor = 0.976 is produces 0.31MW of heat flux which

is similar to the pre-ELM case at the pedestal top region ρtor = 0.94, suggesting the ETG

turbulence is pushed toward the core during the inter-ELM period. By comparing the profiles

from Fig. 1 and Fig. 14, one can see that the temperature profiles are basically the same with

the turning point or, the part with larger temperature profile curvature, straightened and

moved from ∼ 0.965 to ∼ 0.94. On the contrary, the density profile keeps building up with

the density on the pedestal top increases from ∼ 2.75× 1019m−3 to ∼ 3.9× 1019m−3during

the period, while the turning point is pushed from ∼ 0.97 to 0.94. This indicates that peak

η around the pedestal top is pushed inward during the inter-ELM period. While it is known

that the heat flux produced by ETG turbulence depends on η and Tref , it should also be
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Figure 16: The growth rate spectrum for three radial locations ρtor = 0.966, 0.976, 0.986
during the post-ELM stage.

pushed inward with its magnitude increased, which agrees with the result presented here.

The same thing is true for the post-ELM case as shown in Fig. 17. The only difference

is that the instabilities are more sensitive to the gradients, with the growth rates at the larger

scale doubled when there are 20% increase in 1/LT0 and 20% decrease in 1/Ln0, implying that

the heat flux produced by the ETG turbulence at this stage can reach a higher saturation

level within the measurement error.

The heat fluxes obtained from nonlinear gyrokinetics simulations considering the post-

ELM stage at radial locations of ρtor = 0.976 is shown in Fig. 18. The simulations also

show that the heat flux increases significantly when there is a 20% increase in 1/LT0 and a

20% decrease in 1/Ln0. To be more precise, the post-ELM case shows a ∼ 300% increase

in heat flux, which is more dramatic than the case saw at ρtor = 0.94 during the pre-ELM

stage. Again, this value is much higher than expected from linear simulations, which shows
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Figure 17: Growth rate spectrum at ρtor = 0.976 during the post-ELM stage. The spectrum
is moved upward about 60% when the temperature gradient 1/LT0 is increased by 40%, and
moved horizontally toward the larger scale when 1/Ln0 is decreased.

a growth rate increase of only ∼ 100%.

With regard to the fact that ETG is also shown to be active during pre-ELM stage

around the upper pedestal to the pedestal top region, ETG can be regarded as excited during

the inter-ELM period. Also, since both Fig. 5 and 18 show substantial heat flux increase

when η is adjusted within the error bar, ETG turbulence is very likely to be playing an

important role in pedestal formation in MAST.

4 Conclusion

This paper presents local and global gyrokinetic analysis of ETG turbulence and transport in

the MAST pedestal. Our results suggest that ETG turbulence likely plays a significant role in

transport in spherical tokamaks in the upper pedestal and pedestal top regions. This is true

both in a pre-ELM phase prior to an ELM as well as a post-ELM phase when the pedestal
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Figure 18: Heat fluxes calculated at ρtor = 0.976 for the post-ELM stage shows the heat flux
increased significantly when there is a 20% increase in 1/LT0 and a 20% decrease in 1/Ln0.
The amount of heat flux increased is more profound than the pre-ELM stage.

is recovering and the temperature profile is rebuilding. Simulations produce transport levels

on the order of 1 MW (compared to 4 MW total heating power). The heat flux strongly

increases with the temperature gradient, indicating stiff transport.

One major result of this paper is that the flux tube approximation breaks down at the

pedestal top, where we observe that local simulations produce unrealistically high transport

levels while global simulations recover reasonable transport levels similar to nearby points in

the upper pedestal. We attribute the breakdown of the local approximation to large radial

structures that emerge in the nonlinear simulations. Large-scale structures sample the entire

structure of the equilibrium profile not just its local gradients. The pedestal top is precisely

the location where the curvature of the profile may be a strong determinant of stability. The

difference between the local and global stability of an eigenvalue problem is a well-known
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phenomenon. An extreme case is when the system is locally unstable everywhere but is

globally stable [28]. The breakdown of the flux tube approximation can be parameterized by

the ratio of the radial correlation length to a length scale representative of profile curvature;

the local and global simulations agree when this ratio is sufficiently smaller than unity.

Whether the global effect is linear or nonlinear will be left for future research.

Overall, this study provides insight into the mechanisms behind the formation of the

MAST pedestal and may inform strategies for optimizing the edge plasma of spherical toka-

maks, thus enhancing confinement. Note that the study of the saturation mechanisms of the

turbulence is left in Appendix A for further reading.
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Appendix A ETG Saturation Mechanism

In addition to determining the presence of ETG turbulence in the pedestal, it is important to

investigate the mechanisms by which ETG turbulence reaches saturation within the pedestal.

One can begin with the gyrokinetic equation for the perturbed distribution function gj,k

(sometimes called the generalized distribution function) for species j (see Ref. [23] for details

and normalizations). Its evolution is governed by the gyrokinetic Vlasov equation ∂gj,k/∂t

= L[gj,k] +N [gj,k], where L and N represent the linear and nonlinear operators, with

L[gj,k] = −ω∗Fj0ikyχj,k +
βTj0

qjB2
0

v2∥ωpΓy,j,k −
vTj

JB0

v∥Γz,j,k

−
Tj0

(
2v2∥ + µB0

)

qjB0

(KyΓy,j,k +KxΓx,j,k) +
vTj

2JB0

µ∂zB0
∂fj,k
∂v∥

+ ⟨Cj,k(f)⟩ , (1)

and

N [gj,k] =
∑

k′

(
k′
xky − kxk

′
y

)
χj,k′gj,k′′ , (2)
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where k′′ = k − k′ = (kx − k′
x, ky − k′

y), ω∗ = ωn,j,k +
(
v2∥ + µB0 − 3/2

)
ωT,j,k, while fj,k =

gj,k − 2qj
mjvTj

Ā∥,kFj0 is the total perturbed distribution function, χj,k = Φ̄k − vTjv∥Ā∥,k is the

modified potential, vTj is the species-dependent thermal velocity, Φ̄k is the gyroaveraged

electric potential, Ā∥,k is the gyroaveraged parallel magnetic potential, v∥ is the parallel

velocity, nj0 is the background density, Tj0 is the background temperature, qj is the charge,

Fj0 is the background Maxwellian, v = (v∥, µ) is the velocity vector, ωp = a/Lp is the

normalized pressure gradient, Kx,y are the curvature terms, Γx,y = ikx,yg+
qj
Tj0

Fj0ikx,yχ, and

Γz = ∂zg +
qj
Tj0

Fj0∂zχ+
vTjqj
Tj0

v∥µFj0Ā∥,k∂zB0.

Note that L[gj,k] consists of the terms of gradient drive, pressure, parallel dynamics,

curvature, trapping, and collisions in order. With the above definitions, one can define the

energy exchange rate through nonlinearities dE/dt|nl, the energy injection rate from the

drive dE/dt|drive, and collisional energy dissipation rate dE/dt|col, and the numerical energy

dissipation rate dE/dt|diss in the total time derivative of the energy dEtot,k/dt at wavenumber

k as

dEk

dt

∣∣∣
nl
= 2Re

{∑

k′,j

∫
nj0Tj0

Fj0

[
gj,k +

qjFj0

Tj0

χj,k

]∗ (
k′
xky − kxk

′
y

)
χj,k′gj,k′′dzdv

}

dEk

dt

∣∣∣
drive

= −2Re

{∑

j

∫
πnj0Tj0ikyν∗g

∗
j,kχj,kdzdv

}

dEk

dt

∣∣∣
{diss,col}

= −2Re

{∑

j

∫
πnj0Tj0Γ

∗
j,kC{diss,col}j,k(f)dzdv

}
, (3)

where Γj,k = fj,k +
qjFj0

Tj0
ϕ̄, and the non-conservative rate of change of energy dE/dt|nc

is the sum of dE/dt|diss, dE/dt|drive, and dE/dt|col [24, 25]. In this section of the appendix,

we focus on the saturated state at ρtor = 0.94 for the pre-ELM stage and ρtor = 0.976 for the

post-ELM stage by doing similar triplet diagnostics and energy transfer analysis presented

in [25].

The contour plots depicted in Fig. 19 offer valuable insights into the time-averaged

energy flow in k-space during the saturation of ETG turbulence at ρtor = 0.94 in the pre-ELM
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Figure 19: The energy and dE/dt contour plots at ρtor = 0.94 during the pre-ELM stage.
The E|tot contour plot shows the streamers are excited, with dE/dt|drive contour plot show-
ing them injecting energy into the system. The energy is distributed across all scales via
nonlinear processes and removed by collisions at all scales according to the dE/dt|nl and
dE/dt|col contour plots. dE/dt|nc contour plot shows forward and backward energy cascades
are present.

stage. The contour plot for E|tot reveals strong excitation of low kx modes with ky ≲ 180,

which aligns with the expected behavior since energy injection predominantly occurs within

this range, as indicated by the dE/dt|drive contour plot. Subsequently, nonlinear processes

redistribute the energy across all scales, as observed in the dE/dt|nl contour plot.

One can also observe that a tilted E|tot contour plot in our simulation results. Analysis

revealed that this phenomenon is a result of the E × B shear. However, it is expected that

the magnitude of this effect was not sufficient to suppress the ETG turbulence, as the
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growth rates of the low kx modes are significantly larger (≳ 1) than the E×B shearing rate

γE×B = −0.311.

The primary mechanism for the dissipation of the energy is through collisions which

dominate over numerical dissipation. Analysis of the dE/dt|nc contour plot reveals substan-

tial energy removal at both small and large-scale ranges. From Fig. 2, one can find that the

growth rate in the large-scale range is non-zero, suggesting that large-scale stable modes are

also excited which leads to net energy removal in this range. Additionally, zonal modes are

observed removing energy actively, though not the dominant energy sink for the saturation

balance, through damping.

While it is commonly assumed that the primary mechanism for energy dissipation is

through the forward cascade, the data presented in Fig. 19 suggests that inverse cascade and

zonal mode damping also contribute to some level of energy removal. Note that the inverse

energy cascade for ETG turbulence is also observed in various cases [22, 25].

While zonal modes are actively dissipating energy, does zonal-flow catalyzed nonlinear

energy transfer plays an important role in saturating ETG turbulence? From the total

energy contour plot in figure 19, one can see that zonal modes are excited but not prominent

relative to the low kx modes, therefore, zonal flow-catalyzed energy transfer might not be

conspicuous. Figure 20 shows the nonlinear transfer rate Tnl,k contour plots for six different

wavenumbers where Tnl,k is defined as

Tnl,k = 2Re

{∑

j

∫
nj0Tj0

Fj0

[
gj,k +

qjFj0

Tj0

χj,k

]∗ (
k′
xky − kxk

′
y

)
χj,k′gj,k′′dzdv

}
. (4)

For the large-scale streamer at k = (0, 6), it mostly interacts with modes with similar

ky at low kx; energy is transferred to it from the highly excited unstable modes around

k = (4.3,−12) and k = (−4.3, 12). However, no sign shows the modes at k = (0, 6) strongly

interact with zonal modes. The backward cascade observed from the dE/dt|nc contour plot

in Fig. 19 is therefore majorly driven by the large scale unstable modes with non-zero kx.

For small-scale streamers at k = (0, 30) and (0, 102), the magnitude of the outgoing

energy transfer represented by blue regions in the contour plot of Tnl,k is broadly distributed
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Figure 20: Triplet diagnostics Tnl,k for various wavenumbers at ρtor = 0.94 during pre-ELM
satge. The k = (0, 0.6) contour plot shows backward energy cascade is driven by large-scale
kx ̸= 0 modes. Other contour plots show typical forward energy cascade is present.

at lower k′
y < ky denoting an inverse cascade. In terms of the radial scales it peaks at

k′
x ∼ ±4.2 with k′

y.

The Tnl,k contour plots for k = (8.51, 6), (8.51, 30), and (8.51, 102) show the sidebands

are strongly interacting with lower kx modes (i.e. the red regions are at lower k′
x) by carrying

away energy (i.e. the blue regions are at higher k′
x. This is a clear sign ofa forward energy

cascade in the radial direction. Again, the sidebands do not strongly interact with the zonal

modes, both the forward and backward energy cascade observed in dE/dt|nc contour plot

in Fig. 19 are mostly driven by non-zonal catalyzed interactions. The ETG turbulence at

ρtor = 0.94 is therefore still mostly saturated by forward cascade in the radial direction with

to small-scale stable regions as energy sinks, while there is inverse transfer to large-scale
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ρtor nx nky nz nw ky,minρs Lx

Local Pre-ELM

0.92 64 32 64 16 6 27.0
0.93 64 96 96 16 2 10.9
0.94 64 192 84 16 2 4.11
0.96 64 256 84 16 2 4.05

Global Pre-ELM

0.905-0.975 256 48 64 16 12.04 15
Local Post-ELM

0.966 128 48 256 16 12 3.98
0.976 128 64 280 24 12 4.39
0.986 128 48 512 32 12 4.4

Table 4: Resolutions used for different nonlinear runs. ky,min is set to 6 for pre-ELM simula-
tion at ρtor to avoid MTMs that keep the turbulence away from saturation. nw is set to 32,
which is exceptionally high for post-ELM simulation at ρtor = 0.986 to avoid positive energy
injection from collision raised from numerical issue.

stable modes and zonal modes in the binormal direction.

Appendix B Simulation Setup

Table 4 presents the resolutions utilized in various nonlinear simulations. The table includes

the following parameters: ρtor, which represents the radial location; n, denoting the number

of grids; and L, indicating the box size. The subscripts used for n and L are as follows: s for

specie, x for the radial direction, y for the bi-normal direction, z for the parallel direction, v

for the parallel velocity space, and w for the magnetic moment. Moreover, ky,minρs represents

the minimum wavenumber in the bi-normal direction.

For all simulations, certain values remain the same and are not explicitly displayed in

the table. These include ns = 2, nv = 36, Lv = 3, and Lw = 9. The Arakawa zv is on to

incorporate parallel and parallel velocity derivatives within a Poisson bracket structure and

is solved using an Arakawa scheme.

Note that simulations conducted at outer radial locations necessitate higher nz values,

especially during the post-ELM period. Additionally, for enhanced resolution at the outboard

mid-plane, the parameter edge opt is set to 8. It is important to mention that the calculated
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saturated heat fluxes for the pre-ELM cases, using ky,min = 6 and 12, exhibit an error within

10%. Simulations with ky,min = 2 are carried out to investigate the impact of close-ion-scale

ETG modes. In most simulations, the saturated heat flux remains relatively unaffected,

except for the case at ρtor = 0.92, where MTMs become dominant and do not exhibit

turbulence saturation. It is also important to note that the simulations were ran on various

machines, each with either 56 or 64 cores per node. Consequently, the choice of nz values is

based on selecting multiples of 7 or 8 to effectively utilize the computational power of these

supercomputers.

In the post-ELM (Edge Localized Mode) simulation at ρtor = 0.986, a high nw res-

olution is employed to mitigate positive energy input resulting from collisions caused by

numerical errors.

References

[1] W. Guttenfelder et al., Nucl. Fusion 62, 042023 (2022)

[2] F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982).

[3] J.W. Connor, Plasma Phys. Controlled Fusion 40, 531 (1998).

[4] F. Jenko, Comp. Phys. Commun. 125, 196 (2000).

[5] W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85,

5579 (2000).

[6] F. Jenko and W. Dorland, Phys. Rev. Lett. 89, 225001 (2002).

[7] F. Jenko, Phys. of Plasmas 16, 055901 (2009).

[8] D. R. Hatch, D. Told, F. Jenko, H. Doerk, M. G. Dunne, E. Wolfrum, E. Viezzer, and

M. J. Pueschel, Nucl. Fusion 55, 063028 (2015).

30



[9] D. Hatch, M. Kotschenreuther, S. Mahajan, P. Valanju, and X. Liu, Nucl. Fusion 57,

036020 (2017).

[10] D. Hatch, M. Kotschenreuther, S. Mahajan, G. Merlo, A. Field, C. Giroud, J.

Hillesheim, C. Maggi, C. P. von Thun, C. Roach, and S. S., Nucl. Fusion 59, 086056

(2019).

[11] D. R. Hatch, C. Michoski, D. Kuang, B. Chapman-Oplopoiou, M. Curie, M. Halfmoon,

E. Hassan, M. Kotschenreuther, S. M. Mahajan, G. Merlo, M. J. Pueschel, J. Walker,

and C. D. Stephens, Phys. of Plasmas 29, 062501 (2022).

[12] W. Guttenfelder, R. Groebner, J. Canik, B. Grierson, E. Belli, and J. Candy, Nucl.

Fusion 61, 056005 (2021).

[13] B. Chapman-Oplopoiou, D. R. Hatch, A. R. Field, L. Frassinetti, J. Hillesheim, L.

Horvath, C. F. Maggi, J. Parisi, C. M. Roach, S. Saarelma, and J. Walker, Nucl. Fusion

62, 086028 (2022).

[14] D. Told, Gyrokinetic microturbulence in transport barriers, Ph.D. thesis, Universität

Ulm (2012).

[15] D. Dickinson, C. M. Roach, S. Saarelma, R. Scannell, A. Kirk, and H. R. Wilson, Phys.

Rev. Lett. 108, 135002 (2012).

[16] D. Dickinson, C. M. Roach, S. Saarelma, R. Scannell, A. Kirk, and H. R. Wilson, Plasma

Phys. Control. Fusion 55, 074006 (2013).

[17] D. R. Hatch, M. Kotschenreuther, S. Mahajan, P. Valanju, F. Jenko, D. Told, T. Görler

and S. Saarelma, Nucl. Fusion 56 , 104003 (2016).

[18] M. J. Pueschel, D. R. Hatch, M. Kotschenreuther, A. Ishizawa, and G. Merlo, Nucl.

Fusion 60, 124005 (2020).

31



[19] Ehab Hassan, D. R. Hatch, M. R. Halfmoon, M. Curie, M. T. Kotchenreuther, S. M.

Mahajan, G. Merlo, R. J. Groebner, A. O. Nelson, and A. Diallo, Nucl. Fusion 62,

026008 (2022).

[20] M. Kotschenreuther et al, Nucl. Fusion 59, 096001 (2019).

[21] M. Landreman and D. R. Ernst, Plasma Phys. Control. Fusion 54, 115006 (2012).

[22] Z. Lin, L. Chen, F. Zonca, Phys. of Plasmas 12, 056125 (2005).

[23] M. J. Pueschel, F. Jenko, D. Told, and J. Büchner, Phys. Plasmas 18, 112102 (2011).
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