
UKAEA-CCFE-PR(23)155

T. Gheorghiu, F. Militello, J. Juul Rasmussen

On the transport of tracer particles in
two-dimensional turbulent systems



Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/


On the transport of tracer particles
in two-dimensional turbulent

systems

T. Gheorghiu, F. Militello, J. Juul Rasmussen

This is a preprint of a paper submitted for publication in
Physics of Plasmas





On the transport of tracer particles in two-dimensional turbulent systems

T. Gheorghiu1,2,∗ F. Militello1, and J. Juul Rasmussen3
1United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy,

Culham Science Centre, Abingdon, OX14 3DB, UK
2York Plasma Institute, Department of Physics,

University of York, Heslington, York YO105DD, UK
3Physics Department, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

(Dated: August 3, 2023)

Shear flows in turbulent fluids have been known to act as transport barriers for some time. An
example of a shear flow generating mechanism is the E×B shear in plasma, which has a substantial
impact on the dynamics of magnetic confinement fusion devices. The influence of this may be
seen in the scrape-off layer (SOL) where blobs or filaments may be sheared and velocity impacted,
and in the edge and core of the plasma, where the formation of transport barriers and suppression
of turbulence is strongly associated with such shearing effects. A dynamical picture of transport
through these effects has been elusive - the development of a reduced model would be beneficial, so
we consider the application of an observational’ random walk to such transport. The ‘observational’
random walk is modification of the random walk approach, introducing an intrinsic time separating
observations, which reproduces the basic results of previous random walk models given a Gaussian
jump function. Using a test case of synthetic turbulence, we demonstrate that the jump function can
be inferred from the statistics of passive particles propagated by E×B drift on a synthetic turbulence
field, and that the transport equation found from the jump function matches the expected diffusive
transport very well. We then consider passive particles on simulations of the classic and modified
Hasagawa-Wakatani equations for a variety of adiabaticity values, and find normal transport in the
near-hydrodynamic limit. When zonal flows appear, we find jump functions with non-Gaussian
features, which result in transport equations with fractional differential terms in addition to, or in
place of, diffusion terms. We surmise that the non-local fractional terms are related to the zonal
flows acting as transport barriers.

I. INTRODUCTION

Macroscopic coherent vortices in turbulent fluids
have been understood to act as transport barriers
which can trap and transport Lagrangian tracer par-
ticles [1, 2], and other shear structures such as zonal
flows are well known to suppress turbulence in a va-
riety of fluid systems such as planetary atmospheres
and toroidal plasmas - these have been studied ex-
tensively [3, 4].
In toroidal plasmas, both inside the last closed flux

surface (LCFS) and beyond in the scrape-off layer
(SOL), poloidal shear in E×B drift flows have sub-
stantial impacts on transport and dynamics, playing
a dominant role in suppressing turbulence, forming
transport barriers [3], and influencing radial propa-
gation of plasma in the SOL.
The formation of the H-mode is likely to be signif-

icant to the construction of fusion reactors of a rea-
sonable size, due to the increase in the energy con-
finement time in comparison to the L-mode - this is
attributed to the presence of edge transport barriers
which have been observed to hinder particle and en-
ergy flow; internal transport barriers have also been
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observed to result in improved confinement times -
in both cases, there is evidence that E × B gener-
ated shear flow suppresses turbulence and so reduces
radial transport [5]; in experiments with biased elec-
trodes the L-H transition can be induced by enhanc-
ing the radial electric field, and therefore enhancing
the E×B flow [6–8].

Plasma from the core is transported into the
scrape-off layer (SOL) and then towards material
surfaces, and it has been observed that turbulence
in this region is characterised by the ejection of co-
herent structures known as filaments or blobs [9, 10].
Understanding the balance of radial (or cross-field)
and parallel transport in the SOL is critical for un-
derstanding the transport of heat to the divertor tar-
get, as well as understanding the expected loads on
plasma facing materials - we refer to Ref. [11] for
a comprehensive discussion of these issues. Cross
field transport in this region cannot be characterised
as purely advective or diffusive [12] and simulations
indicate that the transport is non-Fickian [13–15].
Theoretical considerations of filament structures in-
dicate that shear flow can impact the dynamics of fil-
aments, suggesting that filaments can be torn apart
or trapped by shear flows of sufficient magnitude
[16–19]. Experimental work on NSTX finds a cor-
relation between reductions of edge turbulence and
poloidal flows [20, 21], suggesting strongly the role
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of poloidal flows in suppressing turbulence.
Given the importance of E × B shear and sup-

pression, we wish to understand the impact it has
on radial transport and flux - A simple model of
this would be very useful. We know the inadequacy
of the advective-diffusive approach in understand-
ing aspects of transport, and so we look for an al-
ternative that we may justify as being physical and
relevant. Statistical concepts based on the random
walk concept have been considered [2, 22–24] for ap-
plication in MCF devices, due to the natural ap-
pearance of “strange kinetics” - in which the dif-
fusion is no longer Brownian in nature [25] (this is
called anomalous diffusion in statistical physics, but
we avoid this term due to its other connotations in
fusion) - in these models, and so they may be partic-
ularly well suited to understanding the kind of shear
phenomena we wish to characterise. If we are able
to demonstrate that MCF plasmas feature strange
kinetics, this could justify the use of fractional ‘dif-
fusion’ to describe transport and therefore justify
models based on this approach such as in [26]. If
this statistical approach is successful in character-
ising transport, it will help with the development
of a reduced model which could capture the essen-
tial features of radial transport influenced by E×B
shear. The statistical approach here describes only
the E×B flow field - a model describing the trans-
port of density and energy would combine this with
a model describing the correlations between ther-
modynamic variables and the E×B drifts - but this
may nonetheless allow us to understand the dynam-
ics present.
We consider the continuous time random walk

(CTRW) and classical random walk (CRW) and
their application for use in the analysis of turbulent
plasma systems.
Montroll and Weiss [27], in their work “Random

Walks on Lattices II” derived what was later referred
to as the continuous time random walk [28], start-
ing from a toroidal lattice and then considering the
statistical properties of discrete particles moving be-
tween points on this lattice. Time is initially discre-
tised, effectively being a counter of the number of
steps taken by a particular particle. The analysis is
extended to continuous time by assuming that:

jumps are made at random time
t1, t2, t3... where the random variables
T1 = t1, T2 = t2 − t1, ... have a common
[probability] density “ψ(t)”

...then relating this to the nth step taken. The re-
cursion relation in between system state probability
distributions used initially as a way to explore these
statistics is the discrete form of Bachelier [29] and
later Einstein’s [30] recursion relation:

f(x, t+ τ) =

∫ ∞

−∞
f(x+∆, t)q(∆)d∆ (1)

Which is a statement that the distribution of par-
ticles at t + τ can be written in terms of the previ-
ous distribution at t, where the system contains n
particles, and f(x, t) is the number of particles per
unit volume; and that in a time interval, τ , the x-
coordinate of each particle increases by a ∆, where
the probability distribution of any ∆ occurring is
given by q(∆), named a jump function for brevity.
This was used by Einstein [30] to show that the
random motion of microscopic particles caused by
thermo-molecular motions can give rise to a diffu-
sive process like those observed in nature. The time
interval used in this analysis was assumed arbitrar-
ily small - in that paper, there were no explicit links
to the number of steps a particle would make, only
consideration of two states separated by this time
interval.

The work of Montroll and Weiss [27] was ini-
tially applied in the realm of solid-state physics and
semiconductors, which was of interest to the au-
thors: later the concepts developed were applied to
transport and diffusion in fluid systems [31]. While
the CTRW is appropriate to apply in highly struc-
tured scenarios such as solid-state, condensed mat-
ter, semiconductor physics and many other fields
[28, 31] which concern behaviour on a highly or-
dered grid or analogous - e.g. a crystal, it does not
appear entirely appropriate for the case of unstruc-
tured fluid.

Vlahos et al [2] consider random walks to be of
two kinds, broadly - classical random walk models
(CRW), wherein time is a dummy variable acting
as no more than a counter for the number of par-
ticle steps, and the continuous time random walk
(CTRW) where the waiting time of a particle at a
particular lattice point before jumping varies contin-
uously.

There has been substantial work attempting to
apply the CTRW methodology to fluids and plas-
mas, perhaps starting with Balescu suggesting a
possible application of such a statistical concept in
the edge region of tokamak devices [22], after read-
ing Shlesinger, Zaslavsky, & Klafter’s review paper
“Strange Kinetics” [25]. Balescu [22] had recognised
that anomalous transport (in the MCF sense) in
magnetised plasmas is a particularly difficult prob-
lem, and acknowledges the difficulty in the appli-
cation of the kinetic and Langevin approach to the
issue of anomalous transport. This is followed by
later works attempting to apply the CTRW method
to magnetically confined plasmas [2, 23, 24].

Here we consider what we would term an “obser-
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vational random walk” (ORW) formulation which
differs from previous random walk formulation by
considering a physical time interval separating ob-
served states/frames for the purposes of the recur-
sion relation, so imposing a physical scale at the
most fundamental level - perhaps also providing a
connection between the continuous theories and the
discrete theories. It is based on a more “diagnos-
tic” approach, allowing only what can possibly be
observed to be considered. We consider some of the
properties of the ORW, whether it confirms previous
findings, and whether this can be used to capture the
dispersive behaviour of tracers in turbulent systems.
The remainder of the paper is organised as follows.

In section II we discuss the ORW and its predictions
in the case of Gaussian statistics. In section III we
apply the ORW to a simple synthetic field with fea-
tures at every observable scale, which is designed
to replicate the conditions of normal diffusion, and
then see if this is found with the ORW method. In
section IV the ORW is applied to the classical and
modified Hasegawa-Wakatani equations, simulated
over a range of adiabaticity, identify the conditions
in which we may observe normal diffusion, and then
consider the impact of zonal flows. In section V we
discuss the results and possible interpretations, be-
fore concluding in section VI.

II. THE OBSERVATIONAL RANDOM
WALK

The observation of test particles in a field, where
the observations occur at discrete intervals, can be
used to provide statistical information about the
behaviour of the field. As particles move in the
field, they can be considered to be individually un-
dergoing a kind of walk not dissimilar to the ran-
dom walk, with the interval between observations
of the test particle system introducing a timescale.
We then introduce an observational random walk
(ORW) model in order to formulate the dynamics
of the test particles as being random walkers, which
we will show can be used to infer the magnitude and
type of transport that is being demonstrated by the
test particle system.
While random walks have been extensively tack-

led in terms of the number of jumps an identifiable
random walker makes, we consider the random walk
to, generically, be the observed displacements in a
measured quantity.
When a time-varying system is observed via in-

strumentation, each separate datum of the same
kind at the same point is taken at a different time,
by definition - this way, each observation generates a
snapshot of the system, or part of a system. We take

FIG. 1. The current particle position, r, t, and two pos-
sible prior positions

a system of N identical particles undergoing some
kind of random motion in a box, being observed by
a device capable of measuring all the positions at
a particular, arbitrary, time interval - the observa-
tion interval. Over multiple snapshots separated by
our observation interval, we would observe changes
in position - or jumps. The observed series of jumps
for each individual particle is the random walk. The
number of random walk steps is then the number of
observations made.

An observational random walk has the timescale
fixed due to the consideration that the observation
interval is controlled by the observer - and so the
space of positions that a particle can be observed
at is limited by this. An infinitesimally small ob-
servation interval would result in particles existing
at an infinite set of positions - we suggest such an
observation is essentially unachievable, so we should
perhaps consider systems as being composed of ob-
servational snapshots separated by a measurable, fi-
nite observation time, as an acknowledgement that
we cannot observe systems evolve continuously.

We construct the recursion relation relating cur-
rent and past states, by considering a particle in an
infinite n-D space. At a previous observation time,
t− τ (where τ is the observation interval), the par-
ticle could have been at a set of positions, r⃗ −∆r⃗ -
two of these previous possible particle positions are
shown in Fig. 1.

We define a distribution function for our observed
jumps (or ‘jump function’), q∆r⃗,τ (∆r⃗, τ), assuming
it is a function of observation interval and displace-
ment. The jump function can be considered as the
probability of a particle having a measured spatial
∆r⃗, if the time between two observations is τ . Par-
ticle conservation is assured via equation 2, which
is effectively a statement that a particle will have
some jump, including a zero length jump, over an
observation interval.

1 =

∫ ∞

−∞
q∆r⃗,τ (∆r⃗, τ) d∆r⃗ (2)
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Considering the position of interest, r⃗, τ , the only
way a particle exists there at a current snapshot is
if a particle at a previous snapshot, r⃗−∆r⃗1, t− τ ,
was displaced by an ∆r⃗1. A jump of this length
has a probability q∆r⃗,τ (∆r⃗1, τ). So, the probability
density of a particle being found at a current point
of interest, P (r⃗c, tc), is then:

P (r⃗c, tc) = P (r⃗c −∆r⃗1, tc − τ)q∆r⃗,τ (∆r⃗1, τ)

+ P (r⃗c −∆r⃗2, tc − τ)q∆r⃗,τ (∆r⃗2, τ)

+ P (r⃗c −∆r⃗3, tc − τ)q∆r⃗,τ (∆r⃗3, τ)

+ ...

(3)

For the purposes of this paper, we consider τ to be
constant over any number of observation intervals,
such that there is no dependence of P on the obser-
vation interval. By permitting there to be an infinite
number of possible paths to the current position, we
find:

P (r⃗c, tc) =

∫ ∞

−∞
P (r⃗c−∆r⃗, tc−τ)q∆r⃗,τ (∆r⃗, τ) d∆r⃗

(4)

Which is similar to equation 1 except we have an
explicit dependence of the jump function on the ob-
servation interval. As we consider only the constant
τ case, we then essentially consider only a selected
slice of the jump function - this can be done simply
with a convolution with the delta function. For the
one-dimensional case with constant interval jump
function, this simplifies as:

P (xc, tc) =

∫ ∞

−∞
P (xc −∆x, tc − τ)q∆x,τ (∆x) d∆x

(5)

It can be shown that in the spatially one-
dimensional case, using two-dimensional (space and
time) Taylor expansion and making the assumption
that the first moment of the jump function is zero,
and the second moment is σ2, we recover the equa-
tion governing the evolution of P (xc, tc):

∂P (xc, tc)

∂tc
=
σ2

2τ

∂2P (xc, tc)

∂x2c
− σ2

2

∂3P (xc, tc)

∂x2c∂tc
(6)

This reduces to the classical diffusion equation
when equation 7 is satisfied, which suggests that
the smaller the time between observations, the more
time variation of P is permitted before the rightmost
term in equation 6 begins to be significant.

1

τ
≫ 1

P (xc, tc)

∂P (xc, tc)

∂tc
(7)

Note that if we consider the limit of locality as
being the ‘hardest’ case, then given that the jump
function is the distribution of jumps possible, then
it becomes obvious that for a given lab observation
interval τ , the maximum possible distance that can
be moved by a non-interacting particle is |∆r⃗| = cτ ,
where c is the speed of light in the medium. As such,
the probability of a particle being observed to make
a jump greater than this magnitude must be zero.
It is then possible to see that in the very small limit
τ −→ 0, the jump function will tend toward a delta
distribution. This is simple recognition of the fact
that as observation interval tends to zero, the par-
ticle will be increasingly likely to appear closer and
closer to the location of the previous observation,
which can be represented in the zeroth moment of
the jump function as:

1 =

∫ τc

−τc

q∆r⃗,τ (∆r⃗, τ) d∆r⃗ (8)

which imposes a strong condition on the shape of
the jump function in the limit of small τ , and demon-
strates the impact on shape overall. In real particle
systems, locality may not be the primary limit on the
distribution of particle jumps - it is suggested that
interactions with other particles will provide more
dominant limits. For example, collisions will limit
the distance a particle can travel in a time, and so
may impact the jump function, though perhaps in a
less rigid way than locality.

The 1-D case in equation 5 is a convolution, with a
spatially transformed Fourier representation (where
xc −→ k) as:

P̂ (k, tc) = P̂ (k, tc − τ)q̂k,τ (k) (9)

To find the equation for P all that has to be done
is the two dimensional Taylor series expansion of 9,
followed by an inversion to find the xc space repre-
sentation - the two dimensional expansion captures
the cross terms, and results in the appearance of
the time derivative. For example, in the case of
a Gaussian-like jump function with characteristic
function (the Fourier transform of the jump func-
tion) as in equation 10, we can recover equation 11,
which is then the full solution of the recursion re-
lation relation for the case that observations are at
a constant interval, with Gaussian character and no
net drift.
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q̂k,τ (k) = e−Z|k|ζ , ζ = 2 (10)

∞∑
j=1

(−1)j+1 τ
j

j!

∂P (xc, tc)

∂tjc
=

∞∑
j=0

τ j

j!

∂

∂tjc

{ ∞∑
n=1

Zn

n!

∂2nP (xc, tc)

∂x2nc

}
(11)

It can be shown that by neglecting terms of
O(x4c), O(τ2) or greater, we return an equation of
the form of equation 6, with the same conditions on
tending to the Fickian diffusion equation.

Equation 11 represents an infinite series, in which,
for the normally diffusive case, only certain terms
are relevant, based on the magnitude of the coeffi-
cients and differential order. For the general func-
tion f(x, t), we can define a general differential equa-
tion composed of all possible combinations of the
partial integer order derivatives in both directions,
as in equation 12.

0 = c0,0f + c1,0
∂f

∂x
+ c0,1

∂f

∂t
+ c1,1

∂2f

∂x∂t
+

c2,0
∂2f

∂x2
+ c0,2

∂2f

∂t2
+ ...+ ci,i

∂2if

∂ti∂xi

(12)

We introduce the differential coefficient symbol,
ca,b, for simplicity of reference. In this case, the first
subscript indicates the coefficient belonging to the
spatial derivative, with the value of the coefficient in-
dicating derivative order, and the second is the same
but for the time derivative. Some of these terms fea-
ture in equations describing phenomena across var-
ious disciplines in the sciences, so we call ‘c0,0’ the
damping term, ‘c0,1’ the Fickian term, ‘c0,2’ the tele-
graphers term, ‘c1,0’ the advection term, and ‘c2,0’
the diffusion term. Odd spatial derivatives tend to
have an advection-like character, while even deriva-
tives tend to have a diffusion-like character. This no-
tation is easily extended to derivatives of fractional
order.

While we have called ‘c2,0’ the diffusion term, as
the Fickian diffusion equation,

∂f

∂t
= d

∂2f

∂x2
(13)

the classical diffusion term is then easily expressed
in terms of the coefficients,

d = −c2,0
c0,1

(14)

s-order 0th t-order 1st t-order 2nd t-order

0 c0,0 = A−1
2π c0,1 = −Aτ

2π c0,2 = Aτ2

2! 2π

1 c1,0 = B
2π c1,1 = −Bτ

2π c1,2 = Bτ2

2! 2π

2 c2,0 = Aα
2π c2,1 = −Aατ

2π c2,2 = Aατ2

2! 2π

3 c3,0 = Bβ
2π c3,1 = −Bβτ

2π c3,2 = Bβτ2

2! 2π

4 c4,0 = Aα2

2! 2π c4,1 = −Aα2τ
2! 2π c4,2 = Aα2τ2

2!2! 2π

TABLE I. Table of coefficients, ca,b, for the first three
temporal and first five spatial derivative orders, in the
case that the jump function is Gaussian

Based on the assumption of a Gaussian jump func-
tion with drift - a jump function of Gaussian charac-
ter, but a non-zero mean - we can find the coefficients
of each differential term. In the one dimensional case
drift is easily imposed using the Fourier shift iden-
tity.

FT {q∆x−µs,τ (∆x− µs)} −→ e−ikµs q̂k,τ (k) (15)

Equation 10 is easily modified to incorporate par-
ticle drift. It is then possible to express the char-
acteristic function of the jump function as the sum
of a real and imaginary part, which for the shifted-
Gaussian jump function can be shown to have the
form:

q̂k,τ (k) = Ae−αk2

+ ikBe−βk2

(16)

The imaginary component originates entirely from
the drift in the jump function. Some of the coef-
ficients of the general differential equation for the
jump function with characteristic function of form
16 are presented in table I. This is clearly a sim-
ple case, but nonetheless instructive given that the



6

assumption of a Gaussian jump function appears to
be appropriate in some cases, since this gives normal
diffusion.
By acquiring some jump function of any form, it

is possible to find an evolution equation. For a jump
function well described by:

q∆x,τ (∆x) = Γe−γ∆x2

(17)

this is trivially transformed to equation:

q̂k,τ (k) = Γ

√
π

γ
e−

k2

4γ (18)

Via substitution we may find the damping, Fick-
ian, and diffusion terms using table I and equation
16, and so find the classical diffusion coefficient.
Due to the zero-value of the imaginary terms in
this case, by inspection of table I it is clear that all
the highest order odd derivatives are equal to zero -
hence the previous reference to odd derivatives being
advection-like, and even ones being diffusion-like.

c0,0 =

(
Γ

√
π

γ
− 1

)
1

2π
(19)

c0,1 = − τΓ√
4πγ

(20)

c2,0 =
Γγ−

3
2

8
√
π

(21)

d =
1

4γτ
(22)

Enforcing the zeroth moment condition of equa-
tion 2, and introducing the standard deviation (σ),
we then have:

Γ =
1

σ
√
2π
, γ =

1

2σ2
(23)

Which can then be used to recover the classical
result d = σ2

2τ , and that c0,0 = 0, in addition to the
fact that higher orders are much less significant. The
forms of the differential coefficients become more
cumbersome with less ideal jump functions, but the
Fourier method allows any form provided the jump
function is well characterised. In principle then, if we
can identify a jump function between system states
then we can find a differential equation governing the
evolution of the system. It is important to note that
the jump function can be extended to vary in space

and time. Here we limit ourselves to applying the
ORW to steady state systems with no boundaries.

III. TRACERS IN ISOTROPIC
TURBULENCE

We examine the properties of the jump function
in a well defined simple case, in order to validate the
methods to be used on more complicated systems.
We will do this by considering the jump function
of Lagrangian tracer particles propagated on a syn-
thetic field.

We consider 105 Lagrangian tracers in an isotropic
2D ‘turbulent’ system at steady state. A synthetic
field, ϕ, is generated on a grid of nx, nz cells in
each dimension, and nout output steps. The field
is initialized such that features exist at every scale,
and given by:

ϕ =

nx∑
n=1

nz∑
m=1

cos(xkx + ξx) cos(zkz + ξz) (24)

where:

kx =
2πn

nx
, kz =

2πm

nz
(25)

and:

ξx = axn,m,nout
π, ξz = azm,n,nout

π (26)

This is somewhat similar to synthetic fields used pre-
viously in the literature for a similar purpose, e.g.,
Pettini et al [32]. For pure white noise, the values
of the a for all output steps are unrelated, and se-
lected from a normal distribution with zero mean
and standard deviation equal to unity. Brownian
noise is implemented by selecting the nout = 0 as for
white noise for both a, then generating the subse-
quent nout values for a based on the previous values
but adding a value selected from a Gaussian distri-
bution with zero mean, and standard deviation be-
ing a proportion of the standard deviation used to
generate the initial values, typically 0.1. The Brow-
nian generation of a leads to a system which evolves
with a finite correlation, such that randomly gen-
erated structures on various scales can be observed
propagating across the system in a manner similar
to the characteristic behaviour of turbulence. The
effects of this are visible in Fig. 2 and 3, which show
snapshots of white noise evolved ϕ-field and Brown-
ian noise evolved ϕ field respectively.
Once the synthetic ϕ-field is generated, we prop-

agate tracers on top. Massless particles are prop-
agated by the ExB drift velocity as in equation 27.
A third-order Adams-Bashforth integrator was used.
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FIG. 2. Evolution of the White noise-evolved synthetic field between two frames on a 50x50 grid. Frames appear to
share no similar features

FIG. 3. Evolution of the Brownian-evolved synthetic field between two frames on a 50x50 grid. Similar features can
be seen in both frames

We consider the ExB drift as this is particularly rel-
evant in MCF plasmas. It arises due to gradients
in the electric potential, which occur spontaneously.
Other drifts can also be considered, but the ExB ve-
locity is reasonable for the case of ideal massless par-
ticles with zero inertia, which is standard for track-
ing such passive particles in plasmas [33].

xi+1 = xi +

∫ ti+1

ti

v⃗ExB(x, t) · x̂ dt (27)

where:

Vx = −E · ẑ
B0

, Vz =
E · x̂
B0

(28)

and:

E = −∇ϕ (29)

Where E for each particle is the grid value, and this
is calculated using a second order central difference
method. Due to a focus on plasma systems, it is
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convenient to specify some parameters largely used
for (Bohm) normalisation: B0 = 0.5 T , T = 40 eV ,

δt = 1 × 10−9 s, Ωi = eB0

mi
, cs =

√
eT
mi

, ρs = cs
Ωi

.

The size of cells is determined by dx = Lx

nx
, dz = Lz

nz
,

where Lx, Lz are set in units of ρs. The statistical
properties of the ExB drift velocity in both x and z
can be seen in Fig. 4, showing the frame averaged
Eulerian velocities normalised by the standard devi-
ation - in the context of the edge of a plasma device,
x would be the radial direction in which equilibrium
gradients occur, the direction perpendicular to the
plane (y) would be the direction of the magnetic
field, and z is the binormal direction. The white
noise evolved case has uncorrelated velocity and a
time average of zero, as expected, with the mean
velocity for each timestep having Vx

σx
<< 1. The

Brownian noise evolved case clearly contains some
correlation in the velocity fields, and again has a
time average of zero. There is a small net ExB field
in each frame similar in magnitude to the white noise
case,

We can consider the Eulerian single-point velocity
correlation as in equation 32, which in this case is
the spatially averaged auto-covariance of the veloc-
ities at the grid points - a measure of how the field
varies with itself. In the homogeneous, Gaussian,
and stationary turbulence case we expect the syn-
thetic field to have the auto-covariance of form as in
equation 33 [34]. This is indicative of pattern persis-
tence in the system. Rt is the correlation time, the
measure of how long a system retains correlation -
a system observed at intervals much longer than its
correlation time will appear to have little similarity.

Throughout this paper we define the fluctuation
part of f , f̃ , as:

f̃ = f− < f >a (30)

where the average is as:

< f >a=
1

La

∫
fda (31)

and La is a normalising length in the a-direction.

Ev(t) =< ṽ(t1)ṽ(t1 + t) >t1 (32)

Ev(t) ∼ e−
t

Rc (33)

The Eulerian velocity correlations of the
Brownian-evolved synthetic field (averaged over the
grid) are displayed in Fig. 5. The fits suggest a
correlation time of Rc ∼ 10 timesteps. The same
graph for the white noise evolved synthetic field
is uninteresting, demonstrating a correlation time

Rc = 0, as expected for such a random field.

Propagated particles experience periodic bound-
ary conditions such that once they pass over any
boundary they reappear on the opposite boundary.
The primary output data from particle tracking are
absolute coordinates in z-x at every time step, the
absolute displacement in infinite space from the ini-
tial seeded location, and a record of whether the
particle crossed a boundary or boundaries during a
particular step. We generally use particle systems
of 105 particles. A particular particle path can be
seen in Fig. 6 on top of the 200x200 grid used for
the Brownian evolved isotropic case.

The PDF’s of the velocities experienced by the
particles (Lagrangian) and at the grid centres (Eu-
lerian) are shown in Fig. 7. We see they are nearly
identical, which suggests the tracer statistics are a
good proxy for the field statistics, as discussed by
Basu et al [33].

This setup is similar to thought experiments that
lead to the Brownian motion concept - particles be-
ing driven by random impulses. We have a sys-
tem which evolves - the particles on the synthetic ϕ
field which develops. Provided the statistical prop-
erties of the particle evolution remain approximately
the same over the system time, and that it remains
isotropic, then we can consider applying the ORW to
the system. We suggest that the jump function can
be represented by the probability density function
(PDF) of the absolute particle displacement between
any two times separated by an observation interval,
and as a result the jump function can be constructed
by examining the statistical properties of the propa-
gated particles - specifically, by fitting an expression
to the complementary function of the jump function.
The jump function PDF is generated via histogram.

A large variety of measurements have nonlinear
scaling such that:

< r2(t) > ∼ tη (34)

describes the mean square displacement (MSD)
[35]. The mean square displacement is calculated
from particle positions as:

< r2(t) >=
1

N

N∑
i=1

|ri(t)− ri(0)|2 (35)

and η ̸= 1. Other patterns of nonlinear MSD
have been observed [36], but this particular fit-
ting has proved of interest since it can be inferred
from stochastic theoretical models [35]. Values of η
greater than 1 are referred to as ‘superdiffusive’ and
values less than 1 named ‘subdiffusive’ [37], while
η = 1 is the normally diffusive case. The diffusion
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FIG. 4. Spatial average statistics for each timestep on a 200x200 grid. Left: Brownian noise evolved synthetic field,
Right: White-noise evolved synthetic field

FIG. 5. Normalised Eulerian velocity correlation over
timesteps, Brownian evolved synthetic field on 200x200
grid.

coefficient is here defined as:

d =
< r2(t) >

2t
(36)

Where this is in principle the same d as described in
section II. The diffusion coefficient is also found as
half the time derivative of the MSD. For both the
isotropic white noise and Brownian noise evolved
cases, we expect η = 1 such that normal diffusion
is observed. We expect normal diffusion in the iso-
topic white noise case due to the central limit theo-
rem. The Mean Square Displacements for the white
noise evolved and Brownian noise evolved cases are
as shown in Fig. 8. The behaviour in both cases
tends to a constant diffusion coefficient, approxi-
mately 13.7 m2s−1 for the white noise evolved case
and approximately 37.3 m2s−1 for the Brownian

noise evolved case, calculated from the gradient of
the Mean Square Displacement.

The mean squared displacement tends to linear,
indicating a constant diffusion coefficient which is
consistent with η = 1 and so is representative of a
normally diffusive process occurring. This synthetic
field is then ideal for testing our numerical tools.
We expect for the isotropic normally diffusive case,
that the jump function be spatially separable - we
assume the jump functions are statistically indepen-
dent - and have a Gaussian shape, since this is a core
assumption that leads to normal diffusion in section
II. We find that this is essentially the case, both for
particles evolved on the Brownian noise evolved ϕ
field, and for particles on the white noise evolved ϕ
case, and that the jump function is well described as
being spatially separable.

Jump functions formed with observation intervals
closer to 1 tend to be less well fit to a Gaussian, being
visually obvious for timesteps/observation intervals
less than 10, for both the Brownian and white noise
cases. This can be seen in Fig. 9, which confirms
that there is a trend of an increasingly less Gaussian
fit for smaller observation interval/timestep. This
strongly suggests that the information acquired via
fitting to Jump functions with observation intervals
≤ 10 should not be considered as being particularly
accurate.

Fitting to the characteristic function over a variety
of timesteps suggests that the imaginary component
is essentially zero except for a small amount of noise.
From table I we expect that for small α, increasing
even spatial orders will get smaller quickly. Ideally
A = 1, as this is essentially a measure of conserva-
tion of the transported quantity - A ∼ 0.90 at the
first timestep, but by timestep 17 it exceeds 0.99
and then reaches an approximately constant value.
This would seem to correspond with the fitting er-
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FIG. 6. Particle undergoes ExB motion on a 200x200 synthetic field evolved with Brownian noise. The step interval
is 10−9 s. The particle motion starts at the full cyan cross, and ends at the empty cyan point, with the displayed
frame being the end frame.

FIG. 7. PDF’s of the Lagrangian and Eulerian velocities
in the x-direction

ror. α typically takes a value on the order of 10−4

to 10−5, so higher spatial orders are negligible. Our
timestep is equal to 1 × 10−9 s, and since we have
run for 100 timesteps, the maximum time we may
observe a particle over is 1 × 10−7 s. We find the

diffusion coefficient via equation 14 and a fit to the
jump function in the Brownian noise evolved case to
be dx ∼ dz = 37.7 m2s−1, and in the white noise
evolved case to be dx ∼ dz = 14.3 m2s−1 which in
both cases are within 5% of the value found with
the mean squared displacements. For these cases,
the coefficients are independent of the observation
interval for observation intervals larger than the cor-
relation time.

This fitting to the complementary function of the
Jump function then delivers transport coefficients
similar to those provided by previous methods in this
simple case. The relative scalings indicate that other
forms of transport are essentially negligible in com-
parison with diffusion, which also confirms the as-
sumption of normal diffusion in these isotropic cases.

IV. HASEGAWA-WAKATANI
TURBULENCE

In this section we examine the behaviour of tracers
propagated on a background created by evolving the
Hasegawa-Wakatani equations (HWE), which pro-
vides ‘real’ turbulent features and structures. The
modified (mHWE) and classical Hasegawa-Wakatani
equations (cHWE) are used contemporaneously to
study aspects of turbulence ([33, 38], etc), and is
specifically used to examine certain dynamics of
the edge in magnetic confinement fusion devices.
These systems are some of the simplest that feature
nonlinear interactions. We will apply the observa-
tional random walk methodology to these variants
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FIG. 8. Mean Square Displacements for Brownian evolved (Left) and White noise evolved (Right) synthetic fields

FIG. 9. Gaussian fitting error to the Jump Function for
each timestep for the Brownian evolved case

of the Hasegawa-Wakatani system, in a similar man-
ner as before, and see whether this yields an equa-
tion which captures the dispersive behaviour of the
tracer particles - previous study indicates that the
use of Lagrangian tracers to examine the statistics
of the HWE system is reasonable; further details on
the connection between tracer particles and plasma
density transport can be found in Basu et al [39].
The cHWE and mHWE systems are both solved us-
ing the BOUT++ code [40], on a double periodic
(or toroidal) space, with a cyclic Fourier solution
method used to solve the Laplacian.

The classical Hasegawa-Wakatani equations are:

∂n

∂t
+ {ϕ, n} = C(ϕ− n)− κ

∂ϕ

∂z
−Dn∇4n (37)

∂ζ

∂t
+ {ϕ, ζ} = C(ϕ− n)−Dζ∇4ζ (38)

where D are dissipation coefficients, C is a mea-
sure of conductivity/adiabaticity, and κ is a the den-
sity gradient drive/coefficient. Note we use hyper-
viscous dissipation terms. The vorticity is as:

ζ = ∇2ϕ (39)

The Poisson bracket is defined as:

{a, b} =
∂a

∂x

∂b

∂z
− ∂a

∂z

∂b

∂x
(40)

In the limit C → ∞ such that the system becomes
adiabatic and ϕ ∼ n, it can be shown that the sys-
tem of equations tends to the Hasegawa-Mima sys-
tem, also known in geostrophic fluid dynamics, and
so occasionally called the Charney-Hasegawa-Mima
system. In the limit C → 0, the two equations
become decoupled, resulting in the hydrodynamic
regime, characterised by long-lived coherent vortices
[38, 41, 42].

The modified HW equations are:

∂n

∂t
+ {ϕ, n} = C(ϕ̃− ñ)− κ

∂ϕ

∂z
− dn∇4n (41)

∂ζ

∂t
+ {ϕ, ζ} = C(ϕ̃− ñ)− dζ∇4ζ (42)

The modification is in contrast to the classical HW
equations, which do not feature the zonal averaging
operation - this is the same as the operation in equa-
tions 30, where the average is taken in the binormal
direction. This modification was introduced for the
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reasons discussed in section 5 of Hammett et al [43],
and causes stronger zonal flows in the z-direction -
as in Numata et al [44], who then consider the be-
haviour of the mHWE extensively, over a range of
κ and C values. They find that there are typically
two saturated states: a near isotropic turbulent state
and a zonal flow dominated state with suppressed
turbulence. They find that the drift wave instabil-
ity is strongly driven by increasing κ, the isotropic
turbulent state is likely to be reached, and large val-
ues of C typically results in zonal flows. Kadoch
et al [38] note that the choice of viscous dissipation
term does not appear to impact the system dynam-
ics when comparing their results to previous works.
In the case of small C, the mHWE case tends to the
hydrodynamic case.

A. Classical and modified Hasegawa-Wakatani
simulations

We use the Bohm normalization as stated previ-
ously, with similar normalisation parameters: B0 =
0.5 T , T = 40 eV , δt = 1 × 10−8 s, Ωi = eB0

mi
,

cs =
√

eT
mi

, ρs = cs
Ωi

. The size of cells is determined

by dx = Lx

nx
, dz = Lz

nz
. Our mHWE and cHWE sim-

ulations are conducted on a grid of nx = 512 by
nz = 256, with Lx = 32π and Lz = 16π, and use
a Dζ = Dn = 10−4 and κ = 0.2. We vary the
adiabaticity from C = 0.01 ∼ 4, as this accesses a
range of flow regimes [38], for both the mHWE and
cHWE systems, giving us a total of 8 simulations,
four each of mHWE and cHWE. As in the synthetic
field section, we examine the behaviour of 105 par-
ticles initially dispersed uniformly over the space.
We examine the Lagrangian and Eulerian velocity

probability density functions (PDFs) at the end of
each simulation, with the velocity normalised to the
data-set standard deviations, in order to ensure the
particle statistics can be considered as being repre-
sentative of the system statistics and to gain a basic
understanding of the system behaviour. These are
seen in Fig. 11 (corresponding to the mHWE sys-
tem) and 10 (corresponding to the cHWE system).
Aside from some variation in the tails, where we have
substantial noise, the Lagrangian and Eulerian dis-
tributions correspond very well with each other in
both the mHWE and cHWE cases. This indicates
that the tracer particles accurately reproduce the
velocity dynamics, throughout the simulations.
The cHWE case PDFs demonstrate substantial

self-similarity over values of C, retaining approxi-
mately Gaussian shape. There is vanishing asymme-
try, and the velocity variation is similar in both di-
rections and so demonstrating vanishing anisotropy.

We then expect these to have normal diffusion.

In the mHWE case, the x-velocity distribution
tends to be symmetric, while the z-velocity is less
symmetric for larger C. The asymmetric cases
demonstrate skewness, as they retain a near-zero
mean. The x- and z- velocity distributions in the
C = 0.01 case are close to Gaussian with similar
velocity variation, indicating isotropic normal dif-
fusion. The C = 1 to C = 4 cases display clear
anisotropy - from inspection, the C = 0.1 case ap-
pears approximately Gaussian, but does display a
heavier tail than in the C = 0.01 case. Generally
the mHWE x-velocity PDFs demonstrate heavier-
tailed behaviour, as well as a distinct spike in the
centre in the C = 1 and C = 4 cases, both of which
are indicative of non-Gaussian behaviour.

Comparing Fig. 10 and 11, we see that the C=0.01
cases have similar profile and variation, which is to
be expected when both the cHWE and mHWE tend
to the hydrodynamic case for small C.

A snapshot of each simulation is presented in Fig.
12, with the path of a single particle selected at ran-
dom displayed for illustrative purposes. The distinct
bands due to the zonal flows in the mHWE system
are visible in (a)-(d) in contrast to the more isotropic
turbulence in the cHWE system (e)-(h). The par-
ticle paths occur over 500 timesteps for all simula-
tions.

In the mHWE cases, the zonal motion of the par-
ticles is distinct and clear in comparison with the
cHWE cases in which the traced particle appears to
express more isotropic motion. We note also that
(a) lacks distinct bands and is visibly more isotropic
than (b)-(d), which then seems to justify the near
Gaussian velocity PDF in the C = 0.01 case.

The non-Gaussian velocity PDFs seem to corre-
spond to the cases in which we observe the presence
of zonal flows, especially the C = 1 and C = 4 cases.
If zonal flows are indicative of non-Gaussian velocity
PDFs, then this indicates that the C = 0.1 should
also be non-Gaussian, but this is less obviously the
case than in the C = 1 and C = 4 cases.

We examine the mean square displacements
(MSDs) for the different simulations, in Fig. 13 and
14, the cHWE and mHWE respectively. Note the
comparative dotted lines (black) which are ∝ t2 and
∝ t, corresponding to ballistic and normal diffusion
respectively.

The cHWE simulations have MSDs which are bal-
listic for small time, and reasonably ∝ t for long
time in the cases C = 0.01-1, in both x- and z- di-
rections. These cases therefore demonstrate the at-
tributes of normal diffusion. Particles experience a
similar displacement in both directions over a similar
time, apparently relatively isotropic for the C = 0.01
case - there is a small but persistent anisotropy for
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FIG. 10. Normalised velocity probability density for the classical HWE system

FIG. 11. Normalised velocity probability density for the modified HWE system

the C = 0.1 case. For the C = 1 case, particles
appear to travel approximately one order of magni-
tude further in the z-direction than the x-direction,
and along with C = 4 appears to be anisotropic.
The C = 4 case features a decline in the MSD be-
yond t = 0.5 × 10−4 s. Interpreted using equation
36, this implies a negative diffusion coefficient. Note
that a similar phenomenon is observed for the case
of passive tracers seeded in a 2 dimensional turbu-
lence dominated by coherent structures in a study

by Elhmaidi et al [1], though this behaviour is not
discussed in detail. Given that the cHWE tends to
the Hasegawa-Mima (HM) system for large C, it is
perhaps the case that wave-like behaviour will be
observed - If there is an element of periodicity, this
does suggest that these simulations cannot be com-
pletely considered as being examples of steady state
turbulence over the time. In the Mima limit of the
cHWE equations, there is no inherent instability -
towards the limit, the growth rate is therefore de-
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FIG. 12. Particle tracks over first 500 timesteps. (a)-(d) are the mHWE cases, and (e)-(h) the cHWE cases. The
particle motion starts at the full cyan cross, and ends at the empty cyan point, with the displayed frame being the
end frame.
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FIG. 13. Mean Square Displacements for the classical HWE simulations, with x MSD (left) and z MSD (right), with
reference.

FIG. 14. Mean Square Displacements for the modified HWE simulations, with x MSD (left) and z MSD (right), with
reference.
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creasing towards zero.
The mHWE simulations demonstrate clear

anisotropy in their MSDs. Bulk displacement of par-
ticles in the z-direction is universally greater than
in the x-direction by at least an order of magni-
tude. Comparison to the reference indicates that
the x-direction MSD has the initial ballistic phase,
followed by a decline to more ∝ t behaviour. The
z-direction MSD seems to remain ballistic for all
cases except in the C = 0.01 case which seems to
become more normally diffusive for long time, but is
still superdiffusive for the considered time. Given
the presence of the zonal flows in the C = 0.1,
C = 1, & C = 4 cases, superdiffusive MSDs in the
z-direction may be expected. The x-MSDs overall
demonstrate marked decline in transport with in-
creasing C, which is far more pronounced than any
similar decline for the x-MSDs in the cHWE cases.
The C = 0.01 case seems to demonstrate similar dis-
persive behaviour for both cHWE and mHWE cases;
in the x-MSDs, < r2 >∼ 10−4 at t = 10−6, as well as
having a final x-displacement on the order of 10−6.
The z-MSDs for the C = 0.01 case suggest that the
mHWE case does have greater transport in the z-
direction than for the cHWE case, with a fitted line
having a gradient 4 times greater than in the cHWE
case in long time, suggesting anisotropic behaviour
despite the lack of distinctive zonal flow bands and
Gaussian velocity PDFs.

B. Jump statistics for cHWE and mHWE
cases

It is clear that transport in the cHWE and mHWE
cases is less straightforward than in our synthetic
turbulence case, but there is still some basis for com-
parison. Diffusion coefficients can be inferred from
the mean square displacements in the C = 0.01, 0.1
cHWE cases, as we appear to be having normal dif-
fusion in those cases over relevant timescales. We
may also infer normal diffusion coefficients in the x-
direction the C = 0.01 case of the mHWE. We will
then be using these coefficients, found from fits, to
compare to the MSD’s and so confirm that the fit-
ting method is working in this case.
We first examine whether the jump functions are

stationary or not, which is done by examining 10
jump functions at 10 different start points covering
the simulation time, each with τ = 100 timesteps.
Each jump function will then contain the statistical
information about the displacement of particles for
10% of the simulation - smaller variation will there-
fore not be captured. By way of example, we provide
the C = 0.1 case for cHWE and for mHWE in Fig.
15, in both x- and z- directions. The C = 0.1 case

is used as it is the first case in the mHWE where
the zonal structures are distinct, so the key differ-
ences between the cHWE and mHWE jump func-
tions should be evident.

Examining Fig. 15, we note that barring statis-
tical noise, the jump functions seem to have very
stationary behaviour. This is common to all the
data sets barring cHWE C = 1 and C = 4, sug-
gesting that considering the systems to be in a sta-
tistical steady-state is reasonable, and so our current
ORW model is applicable. The cHWE C = 0.1 case
demonstrates slightly anisotropic behaviour, with
very similar jump functions in both the x- and z- di-
rections, as well as both being highly Gaussian. The
mHWE C = 0.1 case is obviously anisotropic, and
the z jump function demonstrates approximately an
order of magnitude greater transport than in the x
direction. This feature is common in all the mHWE
simulations with the exception of the C = 0.01 case,
which is relatively isotropic. This is consistent with
superdiffusive behaviour in the z direction of the
mHWE cases, as suggested in the MSDs. The z-
jump function demonstrates a variety of features,
indicating a variety of particle behaviours, and this
is again a feature of all the mHWE cases with dis-
tinct zonal bands. Given that the zonal bands can
be described as anisotropic in the x-direction, and
that the jump functions are acquired from the ag-
gregate particle behaviour regardless of location, the
z-jump functions are then incorporating all these be-
haviours into a single jump function. While this is
then an accurate descriptor of the z displacements
in the mHWE cases on average, we suggest that this
could indicate spatial non-uniformity in the jump
function which would become evident if we examined
it in subsets of the x dimension. We will consider the
spatially non-uniform case in future work.

As discussed in section II, we must have a Fourier-
space representation of the jump function in an an-
alytical form in order to be able to find a transport
equation for the relevant quantity. We are partic-
ularly interested in the impact of the zonal struc-
tures on x transport, so we will consider fits to the
x-jump functions in the mHWE cases. The x-jump
functions do not appear to demonstrate a wide vari-
ety of behaviour at similar scales, suggesting that a
fit composed of a small number of functions will be
appropriate. Given that the system is statistically
stationary, we take the ensemble average of the 10
jump functions for each case as being representa-
tive of the jump function overall, a measure taken
to reduce statistical noise. A wide variety of fits were
considered, and it was found that a particularly good
fit was achieved in general for the C = 0.1, C = 1,
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FIG. 15. mHWE (left column) and cHWE (right column) jump functions for the C = 0.1 case, with progressing start
timesteps, covering the simulation time

and C = 4 cases with an equation of the form:

q∆x,τ (∆x) = r1e
− |∆x−r2|r4

r3 + r5e
− (∆x−r7)2

r26 (43)

which is the linear combination of a symmetric Levy
distribution and a normal distribution.

These fits are displayed in Fig. 16. The C = 0.01
case is well described with a simple Gaussian distri-
bution down to nearly two orders of magnitude from
its peak. The C = 0.1 case is very well described by
a pure symmetric Levy distribution at almost every
scale, and both C = 1 and C = 4 cases are well
described by equation 43 down two orders of magni-
tude from the peak at least. Note that the symmet-
ric Levy distributions in every case have very small
values of r2 in every case, and that r4, the exponent,
invariably has a non-integer value.

Unfortunately there is no closed form expression
of the Fourier transform of the Levy distribution.
While we could expand and perform a transform in

the case r4 ≤ −1, for which there is a defined trans-
form, there are concerns about convergence and the
fact that not all the exponents lie in that range. It
is more straightforward and reliable to find a fit for
the transformed ensemble jump function, in Fourier
space. The fits in Fourier space typically also have
the form in equation 43, and are given in table III.
We estimated the error of fit parameters by exam-
ining the covariance matrix of the fit and taking the
square root of the diagonal values, and then prop-
agating those quantities through the analysis. The
errors for the coefficients cHWE cases were typically
≃ 0.2%. The errors for the l1, l3 (see equation 50
for definition of li) coefficients were typically ≃ 2%,
but the l2 coefficients had much larger errors, on the
order of 10%. To acquire better statistics, we could
reduce uncertainty in the ensemble average by tak-
ing a larger number of samples, and also increase the
number of particles.

When these fits over the frequency space are trans-
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FIG. 16. Fits to the ensemble averaged x jump functions for the mHWE case, semilog plot

formed to the x-space, there is a truncation as a re-
sult of the finite frequency range - this consequently
provides a better fit than displayed in fig 16 for the
C = 1 and C = 4 cases. Due to the high symmetry,
the imaginary component is negligible.

The symmetric Levy distribution can be expanded
using Taylors method as:

e−
|k|ζ
b =

∞∑
j=0

[
−|k|ζ

b

]j
1

j!
= 1−|k|ζ

b
+
|k|2ζ

2b2
−... (44)

The handling of |k|jζ terms with non-integer ζ is
non-trivial, and requires discussion of the fractional
calculus - there is a useful identity for the inverse
transform of a non-integer power in Fourier space,
given in equation 48, as in [2] and other places.
The Reisz fractional derivative is typically given as
the combination of the Riemann-Liouville left- and

right- fractional derivative as:

l1D
ε
zf(z) ≡

1

Γ(p− ε)

dp

dzp

∫ z

l1

f(z′)

(z − z′)ε−p+1
dz′

(45)
and:

zD
ε
l2f(z) ≡

(−1)p

Γ(p− ε)

dp

dzp

∫ l1

z

f(z′)

(z′ − z)ε−p+1
dz′

(46)
respectively, where p − 1 ≤ ε < p and Γ is the well
known Gamma function.

Combining the left- and right- single sided deriva-
tives creates the symmetric Reisz fractional deriva-
tive:

Dε
|z|f(z) ≡ − 1

2cos( επ2 )
(−∞D

ε
z +z D

ε
∞)f(z) (47)
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s-order 0th t-order 1st t-order 2nd t-order

0 c0,0 = A+l1−1
2π c0,1 = − (A+l1)τ

2π c0,2 = (A+l1)τ
2

2! 2π

l3 cl3,0 = l1
2πl2

cl3,1 = − l1τ
2πl2

cl3,2 = l1τ
2

2! 2πl2

2l3 c2l3,0 = − l1
2!2πl22

c2l3,1 = l1τ
2!2πl22

c2l3,2 = − l1τ
2

2!2! 2πl22

3l3 c3l3,0 = l1
3!2πl32

c3l3,1 = − l1τ
3!2πl32

c3l3,2 = l1τ
2

2!3! 2πl32

TABLE II. Table of coefficients, ca,b, for the first three temporal and first four spatial fractional derivative orders,
for a symmetric Levy distribution 50

And finally, it can be shown given the above defi-
nitions, that the Fourier transform of the Reisz frac-
tional derivative is:

FT
{
Dε

|z|f(z)
}
−→ −|k|εf̂(k) (48)

As such, the fits in Fourier space indicate that in
the mHWE C = 0.1, C = 1 and C = 4 cases in
concert with the equation 48, the x-Jump functions
result in an evolution equation with fractional order
terms. The fractional derivative is also referred to as
a “diffintegral”, and is typically indicative of long-
range interactions and non-locality - this property
can be inferred from equation 45, 46, where inte-
gration over the space is required to calculate the
fractional derivative. In the case of a jump function
in Fourier space comprised of the linear combination
of a Gaussian and a symmetric Levy distribution, as
we have found, our general differential equation will
have the form as:

0 = c0,0f + c1,0
∂f

∂x
+ cε,0D

ε
|x|f

+c0,1
∂f

∂t
+ cε,1D

ε
|x|
∂f

∂t
+ c1,1

∂2f

∂x∂t

+c2,0
∂2f

∂x2
+ c2ε,0D

2ε
|x|f + c0,2

∂2f

∂t2
+

...+ ciε,iD
iε
|x|
∂if

∂ti
+ ci,i

∂2if

∂ti∂xi

(49)

And in the dual symmetric Levy fit case, there
would be no nonzero integer-order spatial deriva-
tives. The zeroth-order spatial derivatives are al-
ways present given the Taylor expansions, and so the
Levy distributions contribute to the c0,i coefficients.
The symmetric Levy terms with noninteger powers
do not contribute to the nonzero integer order spa-
tial derivatives, so table I is accurate in relation to

the Gaussian component. As such, we can present
table IIwhich contains c0,i coefficients and the non-
integer spatial derivatives, given a symmetric Levy
distribution of the form:

q̂k,τ (k) = l1e
− |k|l3

l2 (50)

This allows us to present evolution equations for
the cases in table III. As before, we note that the fits
are not perfect, as such they typically do not have
an area equal to unity - but since the number of test
particles is conserved, we can guarantee that this is
the case; as such the damping term is zero in every
case.

For the mHWE C=0.01 case:

∂f

∂t
= dx

∂2f

∂x2
, dx = 36.1± 0.108 m2s−1 (51)

As indicated in equation 36, the half-gradient of
the MSD should give us the diffusion coefficient.
The half gradient in the mHWE C = 0.01 case is
35.23 m2s−1, which is very close to dx in this case.

For the mHWE C=0.1 case:

∂f

∂t
= dx

∂2f

∂x2
+ (7.59± 1.52)D1.57

|x| f

dx = 1.4± 0.042 m2s−1

(52)

Where the fractional coefficient is found via
− cl3,0

c0,1
. The next largest term, − c2l3,0

c0,1
is O(10−5),

which is very small in comparison and suggests that
these terms have negligible impact on the nature of
the transport.

For the mHWE C = 1 case:

∂f

∂t
= dx

∂2f

∂x2
+ (2900± 249)D0.47

|x| f

dx = 0.011± 0.0003 m2s−1

(53)
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Here, the first order truncated symmetric Levy
distribution in addition to a Gaussian distribution
was an excellent fit at all scales in Fourier space,
and this is equivalent to having the higher order frac-
tional order coefficients set to zero.
For the mHWE C = 4 case:

∂f

∂t
= (8± 2.94)D1.097

|x| f + (17± 2.17)D1.399
|x| f (54)

Where again the next largest term is O(10−4).
For the cHWE C = 0.01 case, we find dx =

42.6± 0.2 m2s−1 and dz = 40.0± 0.15 m2s−1. The
half-gradient of the x and z MSDs in the cHWE
C = 0.01 case are 42.64 m2s−1 and 45.27 m2s−1

respectively which closely match the diffusion coef-
ficients found using a Gaussian fit to the jump func-
tion, strongly supporting the assumption of isotropic
normal diffusion in this case.
For the cHWE C = 0.1 case, we find dx = 26.6±

0.09 m2s−1 and dz = 25.6±0.07 m2s−1 respectively.
The half-gradients in this case are 18.65 m2s−1 in
the x MSD and 29.20 m2s−1 in the z MSD. While
reasonably close in the z direction, there is disagree-
ment in the x-direction, suggesting that the assump-
tion of a Gaussian distribution does not fully capture
the tracer transport in the x-direction: however, the
diffusion magnitude does agree closely with the mag-
nitude from the MSD.
The fits to the complementary function of the

Jump functions typically return the classic Fick-
ian diffusion equation when expected, which occurs
when the Jump function is well fit by a Gaussian dis-
tribution. This is very clear in the C = 0.01 cases of
both mHWE and cHWE systems, which are closer to
the hydrodynamic regime. Particularly interesting,
however, is that when the distinct zonal flow bands
appear in the mHWE simulations with C ≥ 0.1, we
see a marked difference in the transport. Superdif-
fusive behavior is observed in the z-direction, and
the x-direction begins to be marked by non-Gaussian
heavy-tailed behaviour in the jump function, which
typically requires symmetric Levy-type distributions
or similar in addition to a Gaussian distribution to
achieve a reasonable fit - analysis of which recovers
transport equations with significant fractional trans-
port, often in addition to a classic Fickian transport
term.

V. DISCUSSION

Transport in the edge and scrape-off layer (SOL)
of magnetic confinement fusion devices has been
challenging to analyse with the classic dynamic
methods. Statistical concepts have been considered
for application in this region, including the use of

methods based on the continuous time random walk
(CTRW), which has seen success in other fields.
We have proposed an observational random walk
(ORW) model with an intrinsic observation time, τ ,
separating system observations, which we have de-
veloped to apply to steady-state isotropic systems.
This identified the jump function - a probability den-
sity function of the lengths of paths taken by random
walkers during the observation interval - which dic-
tates system diffusivity. Imposing a Gaussian jump
function results in Fickian diffusion. A Gaussian
jump function with non-zero mean is demonstrated
to result in imaginary terms, which in turn generate
advection type terms in the transport equation. It
should be stressed that the current method is limited
to steady-state systems.

It is possible for the jump function to be extended
to have both time and spatial dependencies: we
could justify the introduction of a spatial variation
of the jump function in the x direction, especially
in the modified HWE case, which we suggest would
capture the properties of the zonal flows - addressing
this in detail is beyond the scope of this paper and
will be addressed in future work. The jump func-
tion can also be extended in terms of time depen-
dency, but this is non-trivial. A jump function with
a time dependence demonstrates a system which is
non-stationary, and so beyond the treatment here.

If the jump function could be characterised in a
system, by inference or measurement, this can be
used to identify a system evolution equation. First,
we seek to demonstrate that the jump function is
measurable, and so we consider the movement of
tracer particles undergoing ExB drift on synthetic
fields. We consider two synthetic fields, identical
apart from the evolution mechanism - one is evolved
with white noise, and so has Eulerian autocorrela-
tion of zero, and one evolved with Brownian noise,
which then demonstrates exponentially decaying au-
tocorrelation. In the case of passive particle trac-
ers, the jump function is identified with the proba-
bility density function of the particle displacements
over an observation interval, τ . This assumption al-
lows us to find a diffusion coefficient within 5% of
that predicted by examining the Mean Squared Dis-
placement (MSD), for both cases, provided that we
achieve a good fit of the jump function.

Satisfied for a simple system, we then apply
the ORW to double-periodic 2D simulations gen-
erated by the classic Hasegawa-Wakatani equations
(cHWE) and the modified HWE (mHWE), where
the modified HWE is such that the zonal flow dom-
inated state forms readily. These systems are fre-
quently used to model aspects of dynamics in the
edge, and so are an appropriate test for our method.
We run our systems to steady-state, for a range of
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System Fourier Space Fit Coefficient values

mHWE, C=0.01 q̂k,τ (k) = g1e
−g2k

2
g1 = 0.998 ± 0.00144, g2 = (3.61 ±
0.0121)× 10−5

mHWE, C=0.1 q̂k,τ (k) = l1e
− |k|l3

l2 + g1e
−g2k

2

l1 = 0.46 ± 0.0117, l2 = (6 ± 1.16) ×
104, l3 = 1.57 ± 0.0245, g1 = 0.54 ±
0.0109, g2 = (2.58± 0.0258)× 10−6

mHWE, C=1 q̂k,τ (k) = l1

[
1− |k|l3

l2

]
+ g1e

−g2k
2

l1 = 0.742 ± 0.00718, l2 = 250 ±
21.2, l3 = 0.470±0.00722, g1 = 0.266±
0.0053, g2 = (4.05± 0.0571)× 10−8

mHWE, C=4 q̂k,τ (k) = l1e
− |k|l3

l2 + l4e
− |k|l6

l5

l1 = 0.283 ± 0.00853, l2 = (3 ±
1.07)) × 104, l3 = 1.09 ± 0.0296, l4 =
0.737±0.00961, l5 = (4.229±0.529)×
104, l6 = 1.40± 0.0166

cHWE, C=0.01 q̂k,τ (k) = g1e
−g2k

2
g1 = 0.995 ± 0.002, g2 = (4.26 ±
0.0196)× 10−5

cHWE, C=0.1 q̂k,τ (k) = g1e
−g2k

2
g1 = 0.998 ± 0.0015, g2 = (2.657 ±
0.00904)× 10−5

TABLE III. Table of Fourier fits and fit coefficient values for the ergodic x-Jump functions

adiabaticity, C = 0.01, C = 0.1, C = 1, C = 4. In
the case that C −→ 0 both sets of equations tend
to the hydrodynamic regime, and in the case that
C −→ ∞ tends towards the Hasegawa-Mima sys-
tem given certain assumptions. The Eulerian and
Lagrangian velocity distributions are a very close
match, where the Lagrangian distributions are found
from the properties of the tracer particles. This indi-
cates that the tracer particles reliably represent the
system statistics, and the particles are distributed
homogenously.

We observed that zonal flows do indeed form in
the mHWE cases for C ≥ 0.1, and not in the cHWE
cases for the current parameters. For C > 0.1 in the
cHWE simulations, it seemed that the field varia-
tion is wave-like, and so difficult to describe as con-
taining steady-state turbulence, except over a much
longer timeframe due to the quasi-periodic nature
of the variations. We considered the ensemble of
jump functions with observation interval τ = 100
timesteps for all cases except cHWE C = 1 and
C = 4, and the variation in these seemed to indicate
that the simulations were statistically stationary.

In the C = 0.01 cases, the cHWE and mHWE
cases are similar, both demonstrating near-Gaussian
jump functions in x- and z- directions and are rea-
sonably isotropic. The diffusion coefficients derived

from these jump Functions closely matched those
found from the MSDs.

The cases where the mHWE developed zonal
flows were marked by distinct anisotropy manifest-
ing in superdiffusive transport in the z-direction, and
demonstrating substantially lower transport in the
x-direction, broadly declining in step with increasing
C. This is attributed to the presence of zonal flows,
as such a reduction does not occur in the cHWE case
for corresponding values of adiabaticity. While the
C = 0.01 mHWE x-jump function was well fitted
with a Gaussian distribution, this was not the case
for the other values of C. These have distinctively
non-Gaussian distributions, which are typically well
fit in Fourier space with the linear combination of
a Gaussian distribution and a symmetric Levy type
distribution. We are able to show that this resulted
in transport equations with both a fractional trans-
port term and a Fickian-type transport term, except
in the C = 4 case, which featured two fractional
transport terms. The fractional transport term is a
non-local term, occasionally called a ‘diffintegral’.

Given the appearance of these terms alongside the
appearance of the zonal flows, we infer that the zonal
flows are in large part causing this fractional trans-
port. If the zonal flows act as transport barriers,
which nonetheless permit a subset of the particles
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to pass - a semipermeable transport barrier - then
we will have several populations of particles at any
given time. Consideration of the jump function al-
lows us to separate the populations. We will have
a population of particles, sufficiently far away to re-
main largely unaffected by the transport barrier, ex-
perience close to normal diffusion in the x-direction
- over the observation time, only a statistically in-
significant number of particles will interact with the
zonal flows. Particles close enough to the zonal flows
will have a reasonable chance of interacting, which
grows higher the closer they are. These particles will
either pass or not pass the transport barrier. Par-
ticles experiencing a strong effect of the the zonal
flow in comparison to background variation may be
far more likely to move a longer distance than aver-
age away from it, or a much smaller distance than
average closer to the center of the zonal flow - ap-
plicable to both sides of the zonal flow. Particles
which pass would then experience much the same
effect on the other side. It is reasonable to think
that this population may demonstrate a jump func-
tion with very heavy tails and a sharp peak, char-
acteristic of the symmetric Levy distribution. This
would also provide an intuitive explanation for the
non-local behaviour - particles throughout the sys-
tem have a chance of being effected by the (possibly)
distant zonal flow.

If indeed it is the particle population being vari-
ably impacted by the zonal flows causing this trans-
port behaviour, then it seems likely that the density
of zonal flows, their magnitude, and other character-
istics in relation to the system that they are present
in primarily determine the fractional transport type.
Establishing a link, if any, will be a focus of future
work. If the likelihood of being affected by a zonal
flow depends primarily on distance, then there is
also a strong reason to consider extending the jump
function to vary spatially (which will result in a spa-
tially varying transport equation) which will also be
considered in future work. More generally, zonal
flows are only one type of transport barrier. We can
conceive of a variety of localised phenomena which
would enhance or impede transport, many of which
can be defined in terms of their impact on the jump
function - and therefore turned into a transport type
equation, given due care and careful consideration of
ensemble particle behaviour.

This work supports the use of fractional transport
in modelling behaviour in the presence of coherent
structures such as zonal flows. If we can apply this
approach to simulations of transport in the scrape-
off layer of magnetic confinement fusion devices di-
rectly, then we should be able to characterise trans-
port behaviour, and use the analysis developed to
try to predict cross-field transport. This will be a

focus of future work.

If we observe similar phenomena in the edge and
SOL, then we may expect similar non-local trans-
port, and so justify the use of fractional transport.

VI. CONCLUSION

We have developed a modified ‘observational’ ran-
dom walk model featuring an intrinsic observation
time which returns normal diffusion given the clas-
sical assumptions about the random walk behaviour
of particles in a fluid. This can predict the bulk
transport characteristics given that the jump func-
tion is known - it can be said that the jump func-
tion characterises the transport. We demonstrate
that the jump function is regular, directly measur-
able, and Gaussian in the case of synthetic turbu-
lence, predicting that diffusion is dominant and that
the diffusion coefficient is similar to that found from
equation 36, so characterising transport correctly in
this test case. The current limitations of the ORW
approach are that it has not yet been extended to
allow variation in both space and time, and hence is
limited in application to examining steady-state sys-
tems with no spatial limitations. We then apply the
approach to the modified and classical Hasegawa-
Wakatani equations for a variety of adiabaticity val-
ues. The Hasegawa-Wakatani equations includes the
interactions between drift waves and zonal flows, and
so are an ideal test case for understanding the im-
pact of E×B generated structures. We find that for
the cases where we do not observe zonal flows, we
observe normal diffusion and Gaussian jump func-
tions, but in the modified cases where zonal flows
have formed, the x-jump function is distinctly non-
Gaussian. By obtaining an appropriate fit to these
x-jump functions and finding a transport equation,
we are able to demonstrate that the zonal flow cases
typically feature a fractional transport term in ad-
dition to the Fickian diffusion term. Aside from the
presence of the zonal flows, there is no obvious rela-
tion between the systems and the fractional terms.
Due to the non-locality implied by the fractional
term, we conjecture that the geometric properties
of the zonal flows are linked to the fractional terms.
It will be a focus of future work to identify links be-
tween the fractional transport terms and the zonal
flows. If we can demonstrate a link between the geo-
metric properties of the coherent structures, we may
be able to characterise radial transport in the edge
and scrape-off layer of magnetically confined plas-
mas in a similar manner, and consequently develop
a reduced model of the transport in this region using
a fractional transport approach.
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I. Pastor, E. Ascaśıbar, E. Calderón, A. Cappa,
A. A. Chmyga, A. Fernández, B. Gonçalves, J. Her-
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entifiques de l’École Normale Supérieure 3e série,
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