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We propose a resistivity-β driving mechanism aimed at explaining the appearance of free boundary
long wavelength global instabilities in high-β diverted tokamaks. These perturbations resemble very
closely the RWM (resistive wall mode) phenomenon. Performing a proper toroidal analysis, we show
that the magnetohydrodynamic stability is worsened by the interplay of plasma β and resistivity.
By modelling the separatrix through a careful positioning of the resonant surfaces, we find that in
an ideal plasma wall effects are effectively screened, so that the ideal β limit becomes independent of
the wall position/physics. A lower wall dependent critical β is found if plasma resistivity is allowed.
We find that global stability can be improved with a toroidal flow, small enough not to induce
equilibrium modification. The rotation stabilisation effectiveness depends upon the proximity of the
plasma equilibrium parameters to the resistive marginal boundary.

I. INTRODUCTION

One of the main goals of current tokamak research aims
at maximising β, the ratio of plasma pressure over mag-
netic pressure. Reaching higher β value allows a larger
fraction of bootstrap current and higher fusion power
yield, both of which are extremely valuable for an eco-
nomically viable reactor. However, global macroscopic
magnetohydrodynamics (MHD) instabilities often limit
the the maximum achievable β [1]. The accurate evalu-
ation of this critical β is thus of crucial importance for
the design of long and steady pulses.

Usually, the maximum β value is extracted from MHD
stability analyses performed with close fitting ideal wall
boundary conditions. This is typically the highest β
that can be reached. Indeed, the stability improvement
due to an ideal wall is a well known effect, and this is
particularly particularly evident on external kink (XK)
modes [2]. Nevertheless, experimental evidence often
shows the onset of long wavelength MHD activity when
β exceeds a threshold which is smaller than the one pre-
dicted by the aforementioned MHD analyses with ideal
wall boundary conditions [1]. This macroscopic pressure
driven instability exhibit external features and it is ob-
served to grow on time scales of the order of tens of mil-
liseconds [3] with a rotation frequency much smaller than
the one of the bulk plasma [1]. Furthermore, complete
stabilisation can occur with a sufficiently fast plasma ro-
tation [1, 4].

Because of the external features of this MHD instabil-
ity, the triggering mechanism is believed to be related to
the excitation of an external kink enhanced by β effects.
Since the experimental critical β is lower compared to
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the one obtained numerically with ideal wall boundary
conditions, it is believed that wall resistivity plays a role
in determining the instability onset by allowing magnetic
flux diffusion. This is known as the Resistive Wall Mode
(RWM) whose growth in present machines is of the or-
der of several milliseconds, compatible with the typical
resistive wall diffusion times, and much slower than the
no-wall XK [1].

This phenomenon has attracted much interest over the
years, and several theories have been proposed for its
physical interpretation [5–9], the majority of them de-
veloped in cylindrical geometry [7], and only few dealing
with proper toroidicity [8–11]. All these models, however,
address RWM stability in limited geometry.

In such a configuration, the XK component of the
RWM, i.e. the contribution to the available potential
energy from the vacuum region, plays a significant role
in determining the mode stability. It is well known [2]
that for an external kink to develop, the mode resonant
surface must occur in the plasma-vacuum gap. This is
not an issue in limited toroidal plasmas but the situation
is radically different for a diverted geometry in which the
safety factor profile q diverges at the separatrix [12]. This
divergence constrains any mode resonance m/n with m
and n the toroidal and poloidal mode numbers respec-
tively such that m/n > qmin to occur within the plasma.
This in turn imposes strict boundary conditions at the
resonance which are rather different to those normally
applied in limited plasmas.

Hence, in this work we propose an alternative model
aimed at explaining the appearance of these high-β
long wavelength instabilities properly accounting for a
diverted geometry. We employ the infernal frame-
work [13, 14] with a core region of large pressure gra-
dients and low magnetic shear, and a vacuum region be-
tween plasma and wall. In order to model the effect of
a magnetic separatrix, no modes are allowed to have a
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vacuum resonance. This framework naturally embod-
ies the toroidicity of the problem, and identifies plasma
pressure as the key drive. We find that wall effects, re-
gardless of the fact of whether is ideal or resistive, are
screened in an ideal plasma. On the other hand, the in-
clusion of plasma resistivity is shown to worsen the sta-
bility, effectively identifying a smaller critical β compared
to the one obtained in the ideal plasma approximation.
By allowing for plasma resistivity, we retrieve both the
external and internal kink-like features observed in the
experiments [15, 16]. The inclusion of favourable aver-
aged curvature effects, improves stability and permits to
tune the mode spatial structure from tearing to kink-like.
Furthermore, complete stabilisation can be achieved by
including a weak sheared toroidal flow even with modest
values depending on the proximity of the plasma param-
eters to the resistive plasma marginal boundaries

Hence, the paper is organised as follows: in section II
a description of the plasma physics model and the equi-
librium profiles is given. Sections III, IV and V are de-
voted to the derivation of the eigenmode equations in the
sheared, vacuum and core plasma regions respectively.
In VI the dispersion relation obtained by applying the
appropriate matching of the eigensolutions across the dif-
ferent interfaces. A thorough discussion of the physical
implications of the dispersion relation is given in Sec. VII.
Concluding remarks and future outlook are given in VIII.

II. PHYSICAL MODEL

The geometry of interest is the one of a large aspect
ratio tokamak with circular shifted magnetic surfaces
of major and minor radii R0 and a respectively with
ε = a/R0 � 1. We assume a vacuum region separating
the plasma from a metallic wall. We adopt the standard
low-β ordering, that is β = 2µ0p/B

2
0 ∼ ε2, where p is the

pressure and B0 is the on axis magnetic field strength.
The analysis is conveniently carried out in a right handed
straight field line coordinate system (r, ϑ, φ) where r is a
flux label with the dimensions of length, and ϑ (counter-
clockwise in the poloidal plane) and φ the poloidal-like
and toroidal angles respectively. The equilibrium mag-
netic field in the plasma is

B = F∇φ−∇ψ ×∇φ,

where ψ is the poloidal flux and F = F (r) measures the
toroidal magnetic field strength.

The plasma is modelled by the resistive MHD equa-
tions [17]

ρ (∂tv + v ·∇v) = −∇p+ J ×B,

∂tB = ∇× (v ×B)−∇× ηJ ,
∂tp+ v ·∇p+ Γp∇ · v = 0,

where v is the plasma MHD velocity, ρ and J = ∇×B
are the mass ans current densities (having normalised
µ0 = 1), η the resistivity, and Γ = 5/3 is the adiabatic

index. The absence of currents in the vacuum region
implies that

B = −∇χ, with ∇2χ = 0. (1)

Allowing for the presence of a resistive wall at radial po-
sition b > a, the effect of the wall physics are modelled
by means of the thin wall approximation [18]. The wall
position which can vary from b/a = 1 (wall directly in-
terfaced with the plasma) to b/a→∞ (wall at infinity).

The safety factor profile is constant with value q =
q0 = m/n − δq in the core region extending for 0 <
r < r0, whereas it increases parabolically for r > r0

with q = [m/n − δq](r/r0)2. We focus on m > n = 1
modes and let 0 < δq < 1. A brief discussion of cases
with δq < 0 will be given. In the cylindrical limit, the
associated toroidal current is constant for r < r0 and
vanishing for r0. The radial position r0, which is referred
to as the current channel, separates the low-shear region
where dq/dr = 0 from the sheared region characterised
by rdq/dr ∼ 1 extending from r0 to a.

In order to model the effect of a magnetic separatrix
which induces a logarithmic divergence of q near the
plasma edge, we impose that perturbations of helicity
m/n and (m+ 1)/n resonate within the plasma at radial

positions rm = r0

√
m/nq0 and rm+1 = r0

√
(m+ 1)/nq0

respectively with rm < rm+1 < a. One finds that the
maximum allowed width of the current channel is

r0

a
<

√
nq0

m+ 1
.

Knowledge of the fine structure of q near the edge is
not required as long as rm+1 is well localised inside the
plasma.

We allow for a sheared equilibrium toroidal MHD flow
u = Ω(r)∇φ which is assumed to be sufficiently weak so
that no centrifugal corrections to the equilibrium pres-
sure and mass density profiles [19] are induced. In order
to simplify the algebra, we parametrise both pressure and
rotation profiles with a Heaviside step-function H, that
is (cf. Fig. 1-(b))

p/p0 = H(rp − r), Ω/Ω0 = H(rΩ − r), (2)

with 0 < rp < r0 and r1 < rΩ < r2. Furthermore,
at equilibrium we consider a constant mass density pro-
file with value ρ, and assume a monotonically decreasing
temperature profile with Ti = Te = T .

These equilibrium profiles will be used in the next sec-
tions where the equations governing the plasma dynam-
ics in the various plasma regions will be thoroughly dis-
cussed.

III. SHEARED REGION

We start by analysing the high-shear region. Fixing
the toroidal mode number n = 1, let us assume that
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Figure 1. Model safety factor (a), and pressure and toroidal
rotation profiles (b). In panel (b), the units of the y-axis are
arbitrary.

the radial fluid perturbation ξ can be decomposed into a
dominant harmonic with mode numbers (m,n) and two
subdominant ones with (m± 1, n) such that

ξm±1 ∼ εξm. (3)

Note that the (m−1, n) harmonic does not resonate since
q > (m− 1)/n by hypothesis.

Thanks to the choice of a stepped pressure profile (see
(2)), harmonic coupling is prevented because of the ab-
sence of pressure gradients [14]. Hence, far from reso-
nances rm and rm+1, the fluid perturbation obeys equa-
tion (′ ≡ d/dr)

L`ξ` ≡ [r3(`µ− n)2ξ′`]
′ − r(`2 − 1)(`µ− n)2ξ` = 0, (4)

where ` = m,m± 1 and µ = 1/q.
It is worth noting that even in the presence of small

pressure gradients, but with a magnetic shear of the order
of unity, coupling between the m±1 and m harmonics is
small. This is because at leading order ξm obeys (4) for
r > rm. The fulfilment of the boundary condition ξm = 0
either at the ideal wall or at infinity forces ξm(r > rm) =
0. Therefore, in this region, ξm±1 is independent of ξm.

The general solution of (4) is formally written as

ξ` =
1

`µ− n

[
A±,`

(
r

r`

)`−1

+ C±,`

(
r

r`

)−`−1
]
, (5)

where A±` and C±` are some constants which depend on
the mode number `, and the sign ± stands for r ≷ r`.

A detailed knowledge of the behaviour of the eigenmode
solutions near the resonance is needed. As (5) approaches
its associated resonance located at x = (r−r`)/r` we have

ξ` ∝
1

x
+

1
2 (A±,` + C±,`) + `(A±,` − C±,`)

C±,` +A±,`
, (6)

which can be conveniently written as

ξ` ∝
1

x
−∆r,`, x > 0

ξ` ∝
1

x
+ ∆l,`, x < 0,

(7)

where ∆r,` and ∆l,` contain plasma inertia contributions,
i.e. the growth rate and resistive effects.

Thus, by comparing (6) and (7) we have

A−,`
C−,`

=
2`− 1 + 2∆l,`

2`+ 1− 2∆l,`
. (8)

The quantity ∆l,` is determined by matching with the so-
lution in the inertial-resistive layer, whereas ∆r,`, which
includes the wall physics, is obtained by joining smoothly
with the plasma and vacuum solutions. This is worked
out in the next subsection.

A. The vacuum-wall solution

In the vacuum, the cylindrical approximation proves
to be accurate enough, and the magnetic perturbation
obeys equation [2] (cf. Eq. (1))

[r(rB̃r` )′]′ − `2B̃r` = 0.

Using the thin wall approximation [18], the solution of
the equation above can be cast as

(
√
gB̃)r` ∝

(r
b

)`
+D

(r
b

)−`
, (9)

with

D = −1− 2`a2

γτwbd
,

where τw is a characteristic wall diffusion time and d the
wall thickness. A more rigorous approach would give B̃r

written in terms of Bessel functions [20].

Noting that the relation between ξr` and (
√
gB̃)r` in the

plasma can be written as

(
√
gB̃)r` = irB0(`/q − n)ξr` ,

we can introduce, for mathematical ease, a ficticious vac-
uum displacement ξ which relates to the magnetic fluc-
tuation through the relation above. Using this trick, the
vacuum perturbation can be written in a form similar to
(5) with a near-resonance asymptotic behaviour given by
(7). This means that the vacuum perturbation obeys
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equation (4). Combining (9) with (6) and (7) finally
yields

∆r,` = −1

2
− ` (r`/b)

2` −D
(r`/b)2` +D

. (10)

It is worth stressing that ∆r,` is a bounded quantity as
long as r` < b, and we can approximate ∆r,` = ` − 1/2
if (r`/b)

2` � 1, which usually holds for the innermost
resonating mode or if the wall is at very large distance
from the plasma boundary. We notice that the expression
of ∆r,` with b → ∞ coincides with the one obtained by
letting γ → 0 with τw finite. This means that the no-
wall marginal boundaries are the identical to the ones
obtained by including a resistive-wall.

Finally, we point out that, as long as the mode reso-
nance is sufficiently far from the boundary, one can inte-
grate (4) across a even if q diverges in the narrow edge
region. This is because 1/q → 0 in (4). Hence, this leads
us to infer that ξ` and ξ′` are continuous at the plasma-
vacuum interface, meaning that (10) should hold with a
separatrix as well.

IV. THE LAYER EIGENFUNCTION

Let us consider the harmonic with poloidal mode num-
ber `. Close to its associated resonant surface r`, i.e.
where `/q − n = 0, we allow for plasma inertia and
Glasser-Greene-Johnson (GGJ), namely curvature, ef-
fects, the latter denoted by the symbol ν. The quantity
ν is not specified as it is used as a free parameter to
tune the strength of the GGJ stabilisation, although it
is assumed to be β dependent. A non vanishing plasma
resistivity η is also taken into account. The layer anal-
ysis is more easily performed in Fourier k-space via the
transformation [21]

ξ†` =

∫ ∞
−∞

ξ`(x)e−ikxdx,

where x is the variable defined in (7). Assuming the pres-
sure to be weak enough not to induce coupling between
neighbouring harmonics, the associated eigenfunction for
the mode ` reads [21, 22]

d

dy

( y2

1 +Gy2

dξ†`
dy

)
− [ν(ν + 1) +K2y2]ξ†` = 0,

where y = k/`, G = `2η
a2γ , and K2 = γ2(1+2q2)q2

(sωA)2 which has

to be evaluated at `. with ωA = B0/(R0
√
ρ) the Alfvén

frequency and s the magnetic shear.

The equation above has been solved in previous
works [23, 24], and the far from resonance real space
asymptotic behaviour of the even (ξe` ) and odd (ξo` ) so-

lutions is [24, 25]

ξe` ∝ |x|−1−ν

(
1 +

π∆R,`|`x|1+2ν

2Γ2(1 + ν) sin2(π2 ν)

)
,

ξo` ∝ |x|−1−ν
(

1 +
π∆R,`|`x|1+2ν

2Γ2(1 + ν) cos2(π2 ν)

)
sgn(x),

(11)

where Γ is the Gamma function [26] and

∆R,` = (GM)−ν−
1
2

M + ν

M − ν − 1

Γ[ 1
2 + ν]

Γ[− 1
2 − ν]

×

×
Γ[ 1

4 (M + 3− 2ν + ν(ν + 1)/M)]

Γ[ 1
4 (M + 5 + 2ν + ν(ν + 1)/M)]

, (12)

with M = K/
√
G. It is immediate to recognise that in

the case of an ideal response, M →∞ and ν corrections
become negligible.

Thus, in order to match (11) with (7) we augment (4)
by a GGJ-like term ν � 1 yielding[

r3k2
||ξ
′
`

]′
−
[
r(`2 − 1)k2

|| + r`s
2ν
]
ξ` = 0, (13)

having defined k|| = `µ − n. Introducing the quantity
Y = rk||ξ`, equation (13) is solved via a WKB expansion
with small parameter 1/` [27] which at leading order gives

Y ∼ exp

[
±
∫ r 1

r

√
`2 +

r`s2ν

rk2
||
dr

]

∼ exp

[
±

(
` ln

r

r`
+

∫ r r`s
2ν

2rk2
||
dr

)]
,

where in the last passage we exploited the fact that ν is
small and we are not too close to r`. Hence, far from the
resonance, the term proportional to ν is dropped and one
can approximate

Y ∼ (r/r`)
±`.

When r` is approached, ν/k2
|| becomes larger, hence ex-

panding about the resonance while keeping ν small we
get

Y ∼ e±`x exp
[
∓ ν

2`x

]
∼ e±`x

(
1∓ ν

2`x

)
. (14)

Close to r` in the limit `2 � 1, we reduce (13) to

d

dx

(
x2 dξ`
dx

)
−
(
`2x2 + ν

)
ξ` = 0,

where here ξ` is to be intended as a function of x.
Perturbing in ν, ξ` can be formally expanded as ξ` =
ξ(0) + ξ(1) with ξ(1)/ξ(0) ∼ ν and solved to the first two
orders in ν. This gives at leading order in ν

ξ` =
A

x

[
e−`x − νe`xEi(∓2`|x|)

]
+
B

x

[
e`x − νe−`xEi(±2`|x|)

]
,
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where A and B are some constants, the upper/lower sign
is for x ≷ 0 and Ei is the exponential integral [26]. Since
ξ` ∼ Y/x to leading order, the asymptotic behaviour of
(14) is recovered by the expression above for large x. In
the opposite limit x → 0, by applying the transforma-
tion Ei(−x) = −E1(x) for x > 0 and carrying out the
appropriate expansions for ν � 1 one has

ξ` ∼ |x|−1−ν
(

1± B −A
B +A

|`x|1+2ν

)
,

which has the same asymptotic behaviour of (11). Thus,
by combining the equation above with (14) we can match
the layer solution with (6) in the limit `� 1. Therefore,
by letting ν � 1 one finally obtains

`π∆R,` = −(∆r,` + ∆l,`). (15)

The unknown of (15) is ∆l,` with ` = m,m + 1. While
∆r,` has already been evaluated and the result given by
(10), ∆R,` is computed from the solution of the layer
equations.

Assuming that the temperature decreases with the ra-
dius, we allow for an ideal response at the inertial layer
of the dominant mode m, whereas resistivity is allowed
at rm+1. This gives

∆R,m = − ωm
γ − iΩ0

ωm =
ωAsmn/m√
1 + 2m2/n2

, (16)

where ωA = B0/R0
√
ρ and sm the magnetic shear at rm.

For sufficiently small γ and Ω0, we let ∆R,m � ∆r,m, so
that from (15) one has

∆l,m ≈ −mπ∆R,m. (17)

Conversely, for the mode m + 1, if ν is small enough
we have [22, 23, 28]

∆R,m+1 =
Γ(3/4)

2Γ(5/4)

c
1/2
0 S3/4

m+ 1

(
γ

ωA

)5/4 [
1 +

πν

4M

]
, (18)

where c0 =
√

1 + 2(m+ 1)2/n2/(nsm+1) with sm+1 the
magnetic shear at rm+1, S = a2ωA/η the Lundquist num-
ber, and M = c0(γ/ωA)3/2S1/2. We point out that with
the choice of the safety factor above, as long as q0 > m/n
the tearing stability index of the mode m+1 is never pos-
itive, that is no classical tearing modes can develop when
ν → 0 [29] (the expression for the tearing stability index
will be given later). It then follows that

∆l,m+1 = −(∆r,m+1 + (m+ 1)π∆R,m+1), (19)

with ∆R,m+1 given by (18). Notice that ∆R,m+1 → ∞
in the ideal (S →∞) limit.

V. LOW-SHEAR REGION

In region 0 < r < r0, we allow for toroidicity driven
mode coupling between a main mode ξm and its satellite

harmonics ξm±1 [14, 30]. The standard infernal ordering
is adopted

ξm±1 ∼ εξm,

with higher order harmonics ignored. We assume that
the safety factor profile drops significantly below m/n
so that inertial contributions can be neglected. Never-
theless, we assume δq = m/n − q0 to remain sufficiently
small in order to consider it as a small parameter ordered
as (δq/q)2 ∼ εα. This is somehow similar to the analy-
sis of the m = 1 internal kink mode [31]. We point out
that dropping inertia is consistent within the framework
of slowly growing modes.

Hence, the model equations employed for the pertur-
bation analysis for r < r0 are[

r3Qξ′m
]′

+ r

[
(1−m2)Q− α2

2
+DM

]
ξm

+
α

2

∑
±

r∓m

1±m
(
r2±mξm±1

)′
= 0, (20)

[
r−1∓2m

(
r2±mξm±1

)′]′
=

1±m
2

[
αr∓mξm

]′
, (21)

where α = −(2R0p
′
0q

2)/B2
0 and

Q =

(
δq

q0

)2

, DM ≈
αr

R0

(
n2

m2
− 1

)
.

Note that we allowed δq to be small enough in approxi-
mating DM .

Equation (21) can be integrated once yielding

r−1∓2m
(
r2±mξm±1

)′
= L± +

1±m
2

αr∓mξm,

where L± are two constants of integration. The regular-
ity of the lower m− 1 mode on the magnetic axis implies
that L− = 0, so that ξm effectively couples with the
upper harmonic ξm+1 only. Therefore, we find that the
equation for ξm is [14]

[r3Qξ′m]′ + r[(1−m2)Q+DM ]ξm +
α

2

(
r1+mL+

1 +m

)
= 0,

(22)
Because of the weak flow assumption, modifications to
Q and DM due to toroidal rotation [19] are neglected.
Using the standard techniques [19, 30, 32], the constant
L+ is obtained by solving for ξm+1 in the region rp <
r < r0 and imposing smooth matching across r0. This
yields [14, 30]

L+

1 +m
=

1 +m

r2+2m
0

(
2 +m+ c

m− c

)∫ r0

0

r1+mαξmdr,

where c = r0ξ
′
m+1(r0)/ξm+1(r0). It is worth to point

out that from (21) a discontinuity of ξ′m+1 across r0 is
expected if pressure gradients are allowed at this point.
This is because of the sudden and sharp variation of the
main harmonic at r0 [31].
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VI. DISPERSION RELATION

The dispersion relation is obtained by integrating (22)
across rp giving

Q
rrξ′m
ξm

z

rp
− β∗

(
1− 1

q2
0

)
+

(1 +m)β2
∗

2ε2
p

×

×
(

2 +m+ c

m− c

)(
rp
r0

)2+2m

, (23)

where J·Kr = (·)r+δ − (·)r−δ with δ → 0, β∗ = 2p0q
2
0/B

2
0

and εp = rp/R0. The toroidal β obtained with the pro-
files given by (2) reads β = β∗(rp/a)2/q2

0 . Plasma inertia,
namely the growth rate, and wall effects are contained in
the first term on the left hand side of (23) and in the
coefficient c. These two contributions are worked out as
follows.

Exploiting the step-like behaviour of the pressure, we
can solve (22) for ξm on either side of rp giving

ξm =


(r/rp)

m−1, r < rp,

a0(r/r0)m−1 + b0(r/r0)−m−1

a0(rp/r0)m−1 + b0(rp/r0)−m−1
, r > rp,

(24)

where continuity at rp has been imposed. The ratio a0/b0
is determined through the smooth matching with the
sheared region solution, i.e. Eq. (5), at r0. This gives

a0

b0
= −1 + (r0/rm)2mAm/Cm(1 + nδq)

1− nδq + (r0/rm)2mAm/Cm
,

where for the sake of simplicity we write (A−,m, C−,m)→
(Am, Cm). The ratio Am/Cm is evaluated from (8) in
the limit ∆R,m � 1, i.e. small growth rate and toroidal
rotation (cf. Eq. (17)), yielding

Am/Cm ≈ −1 +
2

π∆R,m
. (25)

Using (24) one gets to the first two leading orders in
1/∆R,m

rrξ′m
ξm

z

rp
=

2md−
d+ − d−

[
1− c+d− − c−d+

d−(d+ − d−)

/
(mπ∆R,m)

]
,

(26)

where the coefficients c± and d± are given by

c± = (2m∓ 1)

(
rp
rm

)m(1±1)

×

×

[
1± nδq −

(
rm
r0

)±2m
1± 2m

1∓ 2m

]
,

d± = ∓2

(
rp
rm

)m(1±1)
[

1± nδq −
(
rm
r0

)±2m
]
,

By means of the formulae above, and expanding to lead-
ing order in δq, a little algebra shows that

2md−
d+ − d−

≈ − 2m(m− 1)

m− 1 + (rp/r0)2m(m+ 1)
,

(c+d− − c−d+) = −8mn2δq2(rp/rm)2m,

(d+ − d−) ≈ n2δq2

m

[
m− 1 + (rp/r0)2m(m+ 1)

]
,

where the last approximation holds for rp/r0 sufficiently
small and δq not too close to unity. It is interesting to
note that in case of no m/n surface with r0/b sufficiently
small and small growth rates, we must substitute (26)
with [33]

rrξ′m
ξm

z

rp
→ − 2m

1− (rp/rm+1)2m
.

This is briefly discussed in Appendix A. This shows that
with a flat core safety factor and no resonance field line
bending stabilisation is weaker, and hence allowing the
plasma to be more unstable [15]. The resulting structure
of eigenfunction of the main mode closely resembles the
one observed in experiments and numerical simulations,
when both the m/n resonance occurs in the plasma or in
the vacuum region [4, 15] (the shape of the upper side-
band will be discussed later).

Using (5) we can evaluate the constant c giving

c = m+ 2− 2(m+ 1)

1 + ( r0
rm+1

)2m+2Am+1

Cm+1

+
2nq0

m+ 1− nq0
,

where similarly to the notation introduced above, we let
(A−,m+1, C−,m+1) → (Am+1, Cm+1). By means of (8)
one finally obtains

2 +m+ c

m− c
=
Z − (2 +m− nq0)

1 + (m− nq0)Z

−2(m+ 1)Z(1 +m− nq0)2/[1 + (m− nq0)Z]2

∆l,m+1 + m+1/2−(3/2+m)(m−nq0)Z
1+(m−nq0)Z

,

where Z = (rm+1/r0)2m+2.
Thus collating these results together allows to recast

the dispersion relation Eq. (23) as
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Q
[
− 2m(m− 1)

m− 1 + (rp/r0)2m(m+ 1)
+

16m3(rp/rm)2m/(π∆R,m)

n2δq2 [m− 1 + (rp/r0)2m(m+ 1)]
2

]
− β∗

(
1− 1

q2
0

)
+

(1 +m)β2
∗

2ε2
p

(
rp
r0

)2+2m [Z − (2 + nδq)

1 + nδqZ
− 2(m+ 1)Z(1 + nδq)2/[1 + nδqZ]2

∆l,m+1 + m+1/2−(3/2+m)nδqZ
1+nδqZ

]
= 0.

We focus our attention on n = 1 modes, which are
the ones of most interest. The expression above can be
rearranged in a more compact form as follows

λH +
B

∆R,m
+

A

∆R,m+1 −∆′T
= 0, (27)

where the meaning of each term appearing in (27) is now
discussed: The magnitude of the ideal mode growth rate
is measured by

λH ≈
(1 +m)β2

∗
2ε2
p

Z − 2− δq
1 + δqZ

(
rp
r0

)2+2m

− β∗(1− 1/q2
0)− 2m(m− 1)Q

m− 1 + (m+ 1)(rp/r0)2m
,

where we point out that the first term on the right-hand-
side is always positive for 0 < δq < 1. Both A and B are
positive for m > 1 with A ∼ B ∼ O(1) and they read

A =
(m+ 1)β2

∗
πε2

p

(1 + δq)2Z(rp/r0)2+2m

[1 + δqZ]2
,

B ≈ 16m3(rp/rm)2m/(πq2
0)

[m− 1 + (m+ 1)(rp/r0)2m]2
,

having neglected the δq dependence q2
0B, which proves

to be accurate enough if rp/r0 is not too close to unity.
Finally,

∆′T =
[m+ 1/2− (m+ 3/2)δqZ

1 + δqZ
−∆r,m+1

]
/[π(m+ 1)],

measures the stability of the system against tearing-like
perturbations at the resonant surface of the m+ 1 mode.
Since ∆r,m+1 is bounded, the quantity above can be
taken to be of the order of unity. For δq sufficiently large
and the wall at infinity (b→∞) it reduces to

∆′T ∝ −2(m+ 1)

which is the classical free boundary tearing stability in-
dex of a perturbation with poloidal mode number m+ 1.
Note that the most tearing unstable case is obtained for
b→∞ (cf. (10)) and δq = 0, which gives ∆′T = 0.

A thorough analysis of the dispersion relation Eq. (27)
is carried out in the next section.

VII. ANALYSIS OF THE DISPERSION
RELATION

We identify two limiting cases: the ideal and resistive
plasma approximations. In the former case, the inertial
response at both resonances rm and rm+1 is assumed to
be ideal. Let us assume that the equilibrium toroidal
flow is small and that the analysis is carried out in a
neighbourhood of the marginal boundary (Re(γ) → 0).
In such a case ∆R,m+1 � ∆′T , so that (27) can be easily
recast as (

B

ωm
+

A

ωm+1

)
γ = i

BΩ0

ωm
+ λH , (28)

where ωm+1 is computed from (16) with the obvious sub-
stitutions. One sees that the stability boundary is identi-
fied by the relation λH = 0, and that the effect of rotation
is only to produce a frequency Doppler shift. Since wall
effect do not appear in (28) we can infer the following:
because of the ideal response at each resonance, wall ef-
fects are completely screened, regardless of whether the
wall is ideally conducting or resistive. This is a direct
consequence of the strict boundary conditions to be ap-
plied to the structure of the eigenfunction at the rm and
rm+1 resonances. This leads us to infer that in an ideal
plasma the stability properties, namely the critical β be-
yond which MHD activity is triggered, are completely
independent of the wall physics.

We shall now analyse resistive stability. In doing so,
we discriminate between cases with ν = 0 and no rota-
tion and cases for which ν 6= 0 with rotation. These are
discussed in the following subsections.

A. Vanishing GGJ effects

Let us assume that ν = 0 with resistivity only taken
into account at the rm+1 surface, and vanishing toroidal
rotation. In such a case, (18) yields the classical tearing
response ∆R,m+1 ∼ γ5/4. Inspecting (27), it is immediate
to see that in case of vanishing pressure, and thus A →
0, the dispersion relation reduces to the one for tearing
modes, that is

∆R,m+1 −∆′T = 0. (29)

This is because λH 6= 0 for β → 0 if q0 < m/n.
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T = − 0.1

Figure 2. Ideal and resistive stability boundaries (unstable
regions lying above each curve) for the dominant m = 2, n = 1
mode with r0/a = 0.6, rp/a = 0.3 and ε = 1/3.

Let us now assume that β 6= 0. The marginal bound-
aries are identified by ∆R,m+1 → 0 and ∆R,m+1 → ∞,
which plugged into (27) give

λH −
A

∆′T
= 0. (30)

This is the resistive marginal boundary. In order to ex-
tend the applicability of (27), the quantity ∆′T , negative
in our model, may be regarded as a free parameter which
can vary from −∞ to 0. Thus, it follows from (30) that
the marginal λH is negative with the stability increas-
ingly worsened as ∆′T becomes less negative. If ∆′T → 0,
one sees that λH/A→ −∞ which indicates that the sys-
tem is always unstable. An example of the critical β
as function of δq for different values of ∆′T is shown in
figure 2.

Contrarily to the ideal case, wall effects enter through
the quantity ∆r,m+1 contained in ∆′T . We note that in
the case of an ideal wall (τw → ∞), the closer rm+1 to
b the stronger the wall effects (see Fig. 3). This means
that if the resonance is sufficiently internal, wall physics
becomes irrelevant on mode stability.

Figure 3 also shows that moving the current channel
away from the pressure step improves stability as higher
values of β at constant rp are reached (this is particularly
evident in the b → ∞ case). The effect of the pressure
peaking on the marginal q on the axis is shown in figure 4.

Cases with ∆′T > 0 can be tackled by deploying a
slight modification of the dispersion relation. According
to Ref. [34], after performing a WKB expansion in the
high-shear region, we may substitute

2 +m+ c

m− c
→ s0

2

B0 −∆R,m+1

∆′T −∆R,m+1
,

where B0 < 0 and s0 is the magnetic shear at r0 + ε with
ε an infinitesimally small positive quantity. Using this

rm+1/a = 0.8 rm+1/a = 0.86

rm+1/a = 0.93

Figure 3. Critical β for the dominant m = 2, n = 1 mode as
function of the ideal wall distance for three different values of
the current channel extension r0/a. Here δq = 0.3, rp/a = 0.4
and ε = 1/3. The radial position of the resonance of the
m + 1 mode is indicated. ∆′T is computed consistently with
the equilibrium parameters.

result in (23) gives

Q
rrξ′m
ξm

z

rp
− β∗

(
1− 1

q2
0

)
+

(1 +m)s0β
2
∗

4ε2
p

(
rp
r0

)2+2m

×

×
(
B0 −∆R,m+1

∆′T −∆R,m+1

)
= 0.

The marginal boundary is then obtained by requiring
∆R,m = ∆R,m+1 = 0. In such a case, the first term in
the expression above is negative (cf. Eq. (26)) and so is
the last if ∆′T > 0 indicating that no marginal threshold
is present, i.e. the mode is always unstable.

B. GGJ & sheared rotation stabilisation

Let us now assume that ν 6= 0 in (cf. Eq. (18)). Fur-
thermore, we take λH < 0, that is we analyse an ideally
stable configuration, and assume that we are sufficiently
far from the ideal boundary. By means of (16), the dis-
persion relation Eq. (27) is then recast as

∆R,m+1 −∆′T =
A

|λH |+B(γ − iΩ0)/ωm
, (31)

having allowed for a sheared toroidal rotation of the form
given by (2). Since the rotation is vanishing at rm+1, this
suggests the presence of two branches, one with rotation
frequency Ω0 and another which is not rotating in the lab-
frame. We refer to the former as the fast-frequency root,
whereas the second branch is called the low-frequency
root.

For the fast-frequency root we write γ = iΩ0 +δ where
δ � Ω0 (for the sake of simplicity we take Ω0 > 0).
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(a) (b)

Figure 4. Critical δq for the dominant m = 2, n = 1 mode as function of the pressure peaking pax/ < p >= (a/rp)2 for three
fixed values of the β in an ideal (a) and resistive (b) plasma. Here r0/a = 0.6, b/a = 1.05 and ε = 1/3. With these parameters,
the wall position has a weak influence on the resistive boundaries. The region of instability lies below each curve. The angular
brackets indicate volume average, that is 〈·〉 =

∫
V

√
g(·)dV/

∫
V

√
gdV where dV is the volume element.

Plugging this form of the eigenvalue γ into (31) gives

Bδ/ωm = −|λH |+
A

∆R,m+1 −∆′T
.

From (18), we see that ∆R,m+1 ∼ S3/4γ5/4 where γ ∼
iΩ0. Thus, for sufficiently large S, the second term on
the right-hand-side of the equation above can be made
much smaller than |λH |, so that this root is stable.

For the low-frequency root, we approximate γ − iΩ ≈
−iΩ in ∆R,m [10]. With this approximation and far from
the ideal boundary (i.e. λH sufficiently negative) equa-
tion (27) becomes

∆R,m+1 = A
|λH |+ iBΩ0/ωm
|λH |2 +B2(Ω0/ωm)2

+ ∆′T .

By defining Ω̄ = BΩ0/ωm, this equation can be written

as

c
1/2
0 S3/4

(m+ 1)Ĉ0

(
γ

ωA

)5/4 [
1 +

πν

4M

]
=

A|λH |
|λH |2 + Ω̄2

+ ∆′T + i
AΩ̄

|λH |2 + Ω̄2

where Ĉ0 = 2Γ(5/4)/Γ(3/4). We assume that the sum of
the first two terms on the right-hand-side of the equation
above is non-vanishing and greatly exceeds the absolute
value of the third one, i.e. we assume that we are suf-
ficiently far away from the resistive marginal boundary.
Since M ∼ γ3/2, in the limit of ν/M small we write(

γ

ωA

)3/2 [
1 +

πν

4M

]6/5
≈
(
γ

ωA

)3/2 [
1 +

3πν

10M

]
,

and define a characteristic growth rate

γT
ωA

=

[
(m+ 1)Ĉ0

c
1/2
0 S3/4

(
A|λH |

|λH |2 + Ω̄2
+ ∆′T

)]4/5

. (32)

We notice that γT scales as S−3/5, and corresponds to
growth rates of the order of tens of milliseconds with ωA
of the order of megahertz and S ∼ 106 − 107. Hence,
within the above-mentioned assumptions we obtain

(
γ

ωA

)3/2

=

(
γT
ωA

)3/2
(

1 + i
6

5

AΩ̄

|λH |2 + Ω̄2

(m+ 1)Ĉ0

(γT /ωA)5/4c
1/2
0 S3/4

)
− 3πν

10c0S1/2
. (33)
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By assuming a sufficiently small rotation, far from the
resistive marginal boundary we can treat the second term
in the bracket as a small correction, so that we exploit
once more the smallness of the term proportional to ν
giving

Re

(
γ

ωA

)
=
γT
ωA

[
1− πν

5c0S1/2

(
γT
ωA

)−3/2
]
, (34)

Im

(
γ

ωA

)
=

4
5AΩ̄

|λH |2 + Ω̄2

(m+ 1)Ĉ0

(γT /ωA)1/4c
1/2
0 S3/4

. (35)

Thanks to finite GGJ effects, a threshold γT , or equiv-
alently |λH | for fixed Ω, is introduced [23, 28, 35], and
the limit Ω→ 0 is identified by the relation

A/|λH | − ν̄ + ∆′T = 0.

We call this marginal boundary the GGJ resistive bound-
ary, and is seen to approach the ideal (λH = 0) as ν is
increased (this can be achieved by e.g. an increase of
S). As discussed previously, we shall point out that (34)
should be used when |λH | is not too small, i.e. far from
the ideal boundary.

Noticing that the rotation frequency appears in the de-
nominator of (32), we can invert (34) to obtain a critical
marginal rotation which reads

Ω0

ωA
≈ sm√

2m2

|λH |
B

√
A/|λH |
ν̄ −∆′T

− 1 (36)

with ν̄ ≈ 0.41× ν5/6(sm+1S)1/3/(m+ 1)4/3 where sm+1

measures the magnetic shear at rm+1 (in our model

sm+1 = 2). Here we have approximated
√

1 + 2m2/n2 ≈√
2m with n = 1. Although sm = 2 with the current pro-

file of Sec. II, for modelling realistic smooth profiles one
may approximate sm ≈ δq/m if δq is sufficiently small.
Moreover, since ν is generally proportional to the pres-
sure gradient [36], we may approximate ν̄ ∼ Cβ5/6 where
C ∼ 10−100 for S ∼ 106−108 with m = 2 and sm+1 = 2.
A plot of the critical rotation values for a model equilib-
rium is shown in figure (5). We note that stabilisation
can be achieved for rather modest values of the rotation
frequency as long as the plasma state is close to the GGJ
resistive boundary.

Furthermore, one can expect from (31) that as ν in-
creases the local structure of the eigenfunction about
rm+1 transitions from tearing-like to kink-like, approach-
ing the one obtained for an the ideal plasma (S →∞) [4].
This is because in absence of toroidal flows, with |λH | →
0 implies ∆R,m+1 → ∞, thus giving an ideal response
at the sideband resonance. Finally, letting ∆T → 0 and
Ω̄� |λH |, we see from (32) and (33) that

Im(γ) ∼ γT
BΩ/ωm
|λH |

.

Because of the S−3/5 dependence of γT , it follows that
Im(γ)� Ω, i.e. the mode has a rotation frequency which
is much smaller compared to the one of the bulk plasma.

0.1 0.2 0.3 0.4 0.5
δq

0

0.5

1

1.5

β
 [

%]

Ideally unstable

Resistive
stable

A B

0
0.01
0.02
0.03
0.04
0.05
0.06

Ω
0/
ω
A

Figure 5. Critical rotation values for the resistive mode sta-
bilisation for dominant mode (m = 2, n = 1) with r0/a = 0.6,
rp/a = 0.4, ε = 1/3 and b → ∞. Here we let ∆′ to be a free
parameter and we set ∆′T = −0.1. The ideal and resistive (no
GGJ with Ω0 = 0) marginal boundaries are identified by the
solid and dashed curves respectively. Ideal instability occurs
in region A, whereas region B is made stable by GGJ effects
with C = 10. Equation (36) holds below the dot-dashed line
which identifies the A/|λH |+ ∆′T − ν̄ ≈ 1 level.

VIII. CONCLUSIONS

In this work the analysed the impact of plasma resis-
tivity on the marginal stability boundaries of long wave-
length global instabilities in free boundary toroidal geom-
etry. The effect of a magnetic separatrix has been taken
into account through a careful choice of the positioning
of the relevant resonances, which have been constrained
to occur within the plasma region not in the vacuum.

By adopting stepped profiles, which allow for a full
analytic treatment performed within the infernal mode
framework, it has been found that with an ideal plasma
wall effects are completely screened by the resonance
ideal responses. This implies that the threshold β above
which this global instability is triggered carries no infor-
mation on the wall physics. This rules out current driven
external kinks a possible trigger for the instability. How-
ever, if plasma resistivity is allowed at the outermost
resonance, a lower marginal β is found. This depends
upon the wall physics through a modification of the per-
turbation magnetic tail extending in the vacuum region.
It has been found that the closer the outer resonance
to the plasma boundary, the stronger the wall effects.
Favourable curvature effects improve stability, and can
tune the response of the outermost resonance making it
transition from tearing to kink-like. We found that the
structure of the associated eigenfunction resembles the
one observed both in experiments and numerical simula-
tions [4, 15].

By including a sheared toroidal flow, we identified a
slow-growing root with growth time-scales proportional
to S−3/5 (of the order of the order of several millisec-
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onds for experimental tokamak parameters) whose rota-
tion frequency is significantly smaller than the one of the
bulk plasma. This root is stabilised by the shearing of
the rotation, and the magnitude of the flow needed to
achieve stabilisation is found to be of few percent of the
Alfv́en speed depending on the proximity to the resistive
marginal boundary obtained with the inclusion of curva-
ture effects but no rotation.

Several features observed experimentally (such as criti-
cal β values, mode structure, growth time-scales, rotation
stabilisation) are retrieved. Further work is nevertheless
required to assess more thoroughly the perturbation bal-
looning nature exhibited near the edge, where the accu-
mulation of several resonances occur, and the dependence
of mode stability on more realistic (smooth) current and
pressure profiles.
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Appendix A: Ultra-flat profiles with a single outer
resonance

Let us assume that δq < 0, i.e. q0 > m/n with |δq| � 1
but large enough to make the inertia contribution in the
low-shear region to be negligible. We let the mode of
helicity m/n to be the dominant and allow for only one
resonance associated with the m+ 1 mode. The plasma
response at the resonance of the m+ 1 mode is supposed
to be ideal. In the sheared-region instead of (5) we have

ξm
Am(r/r0)m−1 + Cm(r/r0)−m−1

mµ− n
,

whereas in the low-shear region one has (24). By match-
ing the two solutions at r0 one has

a0

b0
= −1 +Am/Cm(1 +m− nq0)

1−m+ nq0 +Am/Cm
.

The ratio Am/Cm is obtained by matching the sheared-
region and vacuum solutions. We therefore write [37]

rξ′m
ξm

∣∣∣
a−ε

= 1 +m− 2m

1 + Am

Cm
(a/r0)2m

+
2n

mµa − n
,

rξ′m
ξm

∣∣∣
a+ε

=
2µa

µa − n/m
−
m+ 1 + E

E+2m (a/b)2m

1− E
E+2m (a/b)2m

,

where µa = 1/q(a) and E = γτwdb/a
2 with ε → 0. This

yields

Am
Cm

= − E

E + 2m

(r0

a

)2m

.

We then find that without rotation, the marginal bound-
aries γ → 0 are identified by the following relation (cf.
(23))

Q
rrξ′m
ξm

z

rp
− β∗

(
1− 1

q2
0

)
+

(1 +m)β2
∗

2ε2
p

(
rp
r0

)2+2m [Z − (2 + nδq)

1 + nδqZ

]
= 0.

where we let ∆R,m+1 →∞ with

rrξ′m
ξm

z

rp
= − 2m

1− (rp/r0)2m[1− nδq]− (nδq)2(rp/r0)2m

1+nδq−(r0/b)2m

,

when the wall is ideal (E →∞), or

rrξ′m
ξm

z

rp
= − 2m(1 + nδq)

1 + nδq − (rp/r0)2m
,

in case of a resistive wall (E → 0). Since wall effects
scale as (r0/b)

2m, we expect them to be significant only
for broad current channels and low-mmodes, mainlym =
1.
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