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ABSTRACT Wide-spread availability of low-cost digital sensors has made the acquisition of full-field 

experimental measurements less challenging, with modern measurement systems capable of obtaining three 

dimensional (3D) data fields. This presents difficulties when comparing computational and corresponding 

experimental data that often do not share the same orientation, scale, coordinate system or data pitch. This 

paper presents a method for performing quantitative comparisons of 3D data fields, irrespective of the source 

from which they are acquired. Two case-studies, each involving a pair of computational and experimental 

datasets, were used in this paper to demonstrate the capability of the method. The first case study represented 

the internal 3D strain fields in a reinforced-rubber matrix specimen under tensile load, measured using digital 

volume correlation, whilst the second study involved time-varying, surface displacements of an aerospace 

panel under resonance, which were measured using digital image correlation. The proposed orthogonal 

decomposition-based method works by representing 3D datasets as feature vectors, thereby allowing one-to-

one comparison of the datasets within the feature vector space regardless of whether the original datasets 

share the same coordinate system, scale or data pitch. 

INDEX TERMS image decomposition, digital images, volume measurement, pattern matching, finite 

element analysis, data correlation, model validation

I. INTRODUCTION 

The emergence of relatively low-cost digital sensors has 

revolutionized experimental measurements by allowing 

information-rich data fields to be acquired in real-time, in a 

wide range of environments with adjustable spatial and 

temporal resolutions. The relative ease of acquiring 

information-rich data from full-field measurement techniques 

has allowed researchers to make significant advances over the 

last two decades in the areas of data fusion in both non-

destructive evaluation [1] and finite element (FE) model 

updating [2]. Moreover, there has been a paradigm shift in the 

design and life cycle management processes for large-scale 

structures. Integrated digital environments are being 

developed to link computational data from multi-physics and 

multi-scale simulations to experimental data from full-field 

and point sensors to cut down operational and maintenance 

costs and reduce conservatism in traditional design standards, 

whilst maintaining the highest standards of safety and 

reliability. In this context, a major computational challenge 

which researchers have faced is the difficulty in comparing 

datasets from different experimental and computational 

sources containing thousands of point values that often do not 

share the same orientation, scale, coordinate system or data 

pitch.  

A predominant approach to comparison of full-field 

datasets in industry and academia still relies on visual 

similarity between datasets, which is qualitatively established 

by visualizing the datasets using colour maps [3], line profiles 
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[4] or scatter plots [5], [6]. For instance, Zauel et al. [5] 

established similarity between FE model predictions and 

digital volume correlation (DVC) measurements of internal 

three-dimensional (3D) deformation fields in human 

cancellous bone under load by applying linear regression to 

the scatter plot of FE and experiment data points and 

evaluating the coefficient of determination and slope of the 

best-fit line. More recently, Oliviero et al. [6] used an identical 

approach to validate FE predictions of deformation fields in 

mouse tibia bone under compression with DVC 

measurements. Germaneau et al. [3] used colour maps for 

qualitative comparison of FE-predicted displacements fields 

of a spherical plane bearing with DVC measurements, 

whereas Ksvayee et al. [4] utilized line plots to compare the 

strain distribution in a ductile iron microstructure predicted 

using FE with digital image correlation (DIC) measurements. 

In general, a more quantitative analysis of large datasets 

involves discovering the dominant patterns or features in the 

raw data by employing feature extraction methods [7]. Proper 

orthogonal decomposition, which is also referred to as 

principal component analysis (PCA) depending on the field of 

application, is one of the most common approaches to feature 

extraction used by researchers to analyze large amounts of 

experimental data [8], [9]. PCA is mainly based on the 

mathematical technique of matrix diagonalization, or more 

specifically, singular value decomposition. It linearly 

transforms or decomposes the original dataset into an optimal 

set of basis vectors thereby giving singular values or principal 

components which represent the most significant features of 

the original data. PCA is predominantly used in the fields of 

fluid mechanics and structural dynamics to study complex 

flow fields [10], [11] and the dynamic response of structures 

[12], [13], respectively. The use of PCA has also been 

explored in the optimization of manufacturing process 

parameters of automobile parts [14]. In the past decade, an 

image decomposition method based on discrete orthogonal 

polynomials [15], [16], [17] has gained popularity in the field 

of experimental solid mechanics. In this method, surface 

deformation fields of displacement, stress or strain, acquired 

from optical techniques such as DIC, electronic speckle 

pattern interferometry (ESPI) or thermoelastic stress analysis 

(TSA), are treated as digital images and subsequently 

decomposed using a set of pre-defined two-dimensional (2D) 

shape descriptors or kernels, which are formed from one-

dimensional (1D) discrete orthogonal polynomials. The 

coefficients of the fitted kernels are collated into a vector. This 

vector, which is referred to as a feature vector, provides a 

unique and accurate representation of the original data, but 

typically using less than a hundred coefficients instead of  >103 

data values. These feature vectors allow one-to-one 

comparison of the data fields within the feature vector space 

regardless of whether the original data fields share the same 

coordinate system, scale or data pitch. This one-to-one 

comparison is usually not possible with PCA since it 

essentially transforms the original dataset into an optimal set 

of basis vectors, which are not necessarily the same for the 

given datasets to be compared. The development of the image-

based orthogonal decomposition method has led to new 

approaches for finite element (FE) model updating [16] and 

quantitative validation of computational mechanics models 

[18], [19] using displacement or strain fields on the surface of 

structures. The Euclidean distance between feature vectors 

describing the strain fields has also been used to develop novel 

approaches for detecting and monitoring damage in both 

metallic [20] and composite [21] components. 

Alternate methods to orthogonal decomposition have also 

been proposed for quantitative comparison of full-field 

datasets from different sources [22], [23]. However, these 

methods are either suited to a specific source of dataset [22] or 

are encountered with similar issues to PCA where the basis 

vectors are not necessarily identical for the given datasets to 

allow one-to-one comparison in the feature space [23]. For 

instance, Lava et al. [22] proposed a framework for 

quantitative validation of FE data using DIC. In this method, 

TABLE 1 

Limitations and strengths of key existing methods for full-field data comparison (with exemplar references). 

Methods for full-field data 
comparison 

Limitations Strengths 

Visual comparison based on 
colour maps [3] 

 

• Limited primarily to 2D datasets 

• Does not provide any quantitative measure of 
the difference or agreement. 
 

• Easy-to-implement method for identifying obvious 
visual differences; often used as a first step in 
preliminary data comparison. 

Visual comparison based on 
scatter plot [5], [6] 

• Coefficient of determination and slope of the 
best-fit line are considered as partial measures 
of correlation between two datasets. 

• Does not provide information about localized 
differences in 2D and 3D data arrays. 
 

• Easy-to-implement; considered as a first step 
towards quantitative data comparison 

Comparison of DIC and FE data 
[22] 

• Specific to comparison between 2D datasets 
from DIC and FE models 

 

• Allows one-to-one quantitative comparison of 2D 
datasets in physical measurement space 

Quantitative comparison of 
two volumetric datasets [23] 

• Basis vectors for datasets not identical which 
does not allow strict one-to-one comparison 

• Allows quantitative comparison of 3D datasets in 
spectral space. 
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FE-predicted displacement fields are used to numerically 

deform the digital images of the speckle pattern, which was 

created on the specimen’s surface for DIC measurements. The 

sets of numerically-deformed and original images are then 

processed separately using the same DIC algorithm for strain 

measurements. The resulting FE-based and the experimental 

DIC-based strain fields, by default, shared the same grid size 

and data pitch for one-to-one comparison. Salloum et al. [23] 

proposed a method based on Alpert multi-wavelets capable of 

decomposing both 2D and 3D datasets into spectral space. 

However, their decomposition approach does not result in 

identical basis vectors for given datasets and thus slight 

inconsistencies in the basis vector directions do not allow for 

one-to-one comparison of the datasets in the feature space. The 

strengths and the limitations of the key existing methods for 

full-field data comparisons, discussed above, are summarized 

in Table 1. 

This paper extends the image-based orthogonal 

decomposition method to three dimensions. This allows any 

volumetric data array to be orthogonally decomposed and 

uniquely described as feature vectors using a predefined set of 

basis vectors, and hence, addresses the major limitations of the 

previously published methods listed in Table 1. Major sources 

of volumetric datasets include tomography [24], [25] and 

serial sectioning [26] techniques, which are used extensively 

for determining the internal 3D structure of components. The 

proposed volume decomposition algorithm is equally capable 

of decomposing temporally-varying 2D fields of data, which 

are typically acquired from techniques such as high-speed DIC 

[27] and infra-red thermography [28]. The proposed algorithm 

decomposes the volumetric data arrays into feature vectors in 

exactly the same manner as the image decomposition method 

does for the 2D data fields. It is, therefore, envisaged that the 

methodologies [19], [29] developed for quantitative 

comparison of 2D data fields in feature vector space are 

applicable to volumetric datasets as well. Hence, one of the 

objectives of this paper is to establish the applicability of these 

quantitative comparison methodologies to volumetric datasets 

by employing the proposed volume decomposition algorithm. 

This paper is structured in the following manner: the next 

section (Sect. II) describes the orthogonal decomposition 

algorithm for volumetric datasets. Two pairs of measured and 

predicted datasets were analyzed in this study, which are 

described in Sect. III. The process of decomposing a 

 
FIGURE 1. Schematic of the aerospace panel (top) and the volumetric arrays (bottom) constructed from measured (left) and predicted (right) out-
of-plane displacement data over the common region of interest. This figure is best interpreted in colour. 
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volumetric array into its feature vector is described in Sect. IV 

using experimentally measured data arrays. In Sect. V, FE 

model validation is performed by quantitatively comparing the 

FE-predicted volumetric arrays with the experimentally 

measured ones after transforming them into feature vectors. 

The results are discussed in Sect. VI with concluding remarks 

provided in Sect. VII. Data on which this study is based was 

analyzed using Matlab (version: R2020a) and can be accessed 

from Dryad Digital Repository at: 

http://datadryad.org/stash/share/TWpuPHB9jkp2aEIR84xxJ

RwszTdjt_MDUj-ID1xymCY   

II. Orthogonal volume decomposition algorithm 

3D kernel functions are required to decompose a 3D array of 

data. These kernels are formed from 1D Chebyshev 

polynomials, which are defined using the recursive formula 

[15]:  

𝑡𝑘(𝑎)  =
(2𝑘−1)𝑡1(𝑎)𝑡𝑘−1(𝑎)−(𝑘−1)(1−

(𝑘−1)2

𝐾2
)𝑡𝑘−2(𝑎)

𝑘
,             

𝑘 = 2, 3,⋯ , 𝐾 − 1                                                             (1) 
 

 𝑡0(𝑎) = 1                                                                          (2) 
 

𝑡1(𝑎) =
2𝑎+1−𝐾

𝐾
                                                                   (3) 

 where 𝑘, is the order of the polynomial, 𝐾, is the number of 

sampling points and 𝑎 is the sample location. These discrete 

 
 

FIGURE 2. Schematic of the reinforced-rubber matrix specimen (top) and the volumetric arrays of measured (left) and predicted (right) data. This 
figure is best interpreted in colour 
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polynomials can be combined to obtain three-dimensional 

orthogonal kernels, of dimensions 𝑀 × 𝑁 × 𝑂, using: 
 

𝒯𝑚,𝑛,𝑜(𝑥, 𝑦, 𝑧) = 𝑡𝑚(𝑥)𝑡𝑛(𝑦)𝑡𝑜(𝑧)                                    (4) 

 

where 𝑚, 𝑛 and 𝑜 are the order of the 1D polynomials. When 

combined, the order of the 3D kernel is calculated as: 
 

𝜔𝑚,𝑛,𝑜 = 𝑚 + 𝑛 + 𝑜                                                          (5) 

 

To use the orthogonal kernels for decomposition they must 

first be normalized by dividing each kernel by its associated 

norm. To obtain the norm with minimal computational errors 

it can be calculated analytically as: 
 

𝒫𝑚,𝑛,𝑜 = 𝜌𝑚𝜌𝑛𝜌𝑜                                                               (6) 

 
 

where [16]: 

 

𝜌𝑚 =
𝑀(1−

1

𝑀2
)(1−

22

𝑀2
)⋯(1−

𝑚2

𝑀2
)

2𝑚+1
                                             (7)  

 

The data array 𝐼 can then be decomposed into coefficients, 

𝑇𝑚,𝑛,𝑜, using: 
 

𝑇𝑚,𝑛,𝑜 = ∑ 𝐼(𝑥, 𝑦, 𝑧)
1

√𝑀𝑁𝑂

𝒯𝑚,𝑛,𝑜(𝑥,𝑦,𝑧)

√𝒫𝑚,𝑛,𝑜

𝑀,𝑁,𝑂
𝑥,𝑦,𝑧=0                       (8) 

 

The reconstruction of the data array is calculated as: 

  

𝐼(𝑥, 𝑦, 𝑧) = ∑ 𝑇𝑚,𝑛,𝑜√𝑀𝑁𝑂
𝒯𝑚,𝑛,𝑜(𝑥,𝑦,𝑧)

√𝒫𝑚,𝑛,𝑜

𝑀,𝑁,𝑂
𝑚,𝑛,𝑜=0                    (9) 

The coefficients are arranged as a 3D array, these can be 

permuted using the ordering system described by Bateman 

[30] which has been extended here to three dimensions. Using 

this system, the coefficient 𝑇𝑚,𝑛,𝑜 comes before 𝑇𝑝,𝑞,𝑟  in the 

feature vector if either of the following conditions are true: 

𝜔𝑚,𝑛,𝑜 < 𝜔𝑝,𝑞,𝑟                                                                    (10) 
 

(𝜔𝑚,𝑛,𝑜 = 𝜔𝑝,𝑞,𝑟) ∧ (𝑚 + 𝑛𝑁 + 𝑜𝑁𝑂 < 𝑝 + 𝑞𝑁 + 𝑟𝑁𝑂)   

                                                                                         (11) 

                    

where ∧, is the mathematical notation for “logical and”. This 

results in a feature vector 𝒇, ordered as follows: 

 

𝒇 =

{
 
 
 
 

 
 
 
 

𝑇0,0,0
𝑇1,0,0
𝑇0,1,0
𝑇0,0,1
𝑇2,0,0
𝑇1,1,0
⋮

𝑇𝑀−1,𝑁−1,𝑂−1}
 
 
 
 

 
 
 
 

                                                       (12)  

 

This permutation scheme ensures that the feature vector is 

ordered so that coefficients corresponding with the same order 

of 3D kernel appear together in the feature vector, with the 

order increasing when moving down the vector. The choice of 

 
FIGURE 3. Plot showing the decrease in representation error, defined as a ratio of the minimum measurement uncertainty, with the increasing 
number of coefficients in unprocessed feature vectors, stated as a ratio of the data array size, for the four measured data arrays shown in Fig. 1 
and 2. The array sizes for z-displacement in Dataset 1 (panel) and the three strain components in Dataset 2 (reinforced rubber matrix) are 1.18×105 
and 7.78×105, respectively. The shaded segment of the plot highlights those feature vectors with a representation error equal to or lower than 𝒖𝒄𝒂𝒍. 
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permutation scheme only affects where values appear within 

the vector, and any other scheme could be used resulting in no 

change to the findings of this study. The number of 

coefficients in the feature vector 𝒇, when using all the kernels 

up to a maximum order of 𝜔𝑚𝑎𝑥 is a tetrahedral number, and 

thus can be calculated as:  

 

𝛺 =
1

6
𝜔𝑚𝑎𝑥

3 + 𝜔𝑚𝑎𝑥
2 +

11

6
𝜔𝑚𝑎𝑥 + 1                                      (13) 

 

This equation has two imaginary roots and a single real root 

equal to the order of the polynomials required to populate a 

feature vector of any arbitrary length. For this study, the roots 

were found using the “roots” function built into Matlab, which 

works by calculating the eigenvalues of the companion matrix 

of equation (13).  

A. Representation error 

The representation error is the difference between the original 

data volume and its reconstruction. When reconstructing real-

valued data, a common technique for quantifying the 

representation error is to use the root mean squared error, 

calculated as: 

𝑢𝑟𝑚𝑠 = √
1

𝑀𝑁𝑂
∑ (𝐼(𝑥, 𝑦, 𝑧) − 𝐼(𝑥, 𝑦, 𝑧))2

𝑀,𝑁,𝑂

𝑥,𝑦,𝑧=0
            (14) 

This measure can also be used for assessing the 

reconstruction of binary volumes of data. However, in this 

situation, the mean absolute error is more effective as it 

calculates the proportion of incorrect voxels in the 

reconstruction. The mean absolute error is given as: 

 

𝑢𝑚𝑎𝑒 =
1

𝑀𝑁𝑂
∑ |𝐼(𝑥, 𝑦, 𝑧) − 𝐼𝑏𝑖𝑛(𝑥, 𝑦, 𝑧)|

𝑀,𝑁,𝑂

𝑥,𝑦,𝑧=0
             (15) 

 

The feature vectors can be processed to minimize the 

number of non-zero coefficients by truncating them at a 

particular length or setting all coefficients to zero that have an 

absolute value less than a pre-specified threshold, i.e. filtering. 

When filtering a feature vector, it is necessary to calculate the 

representation error to assess whether additional filtering can 

be undertaken to further reduce the number of non-zero 

elements in the vector while satisfying requirements for the 

quality of the representation. This requires repetitive 

calculations using equations (9) and (14), greatly increasing 

the computation time. The kernels used to represent the data 

volume are orthogonal and thus the representation error can be 

calculated without actually reconstructing the data using 

Parseval’s theorem as [30]: 

𝑢𝑟𝑚𝑠 = √
1

𝑀𝑁𝑂
∑ 𝐼(𝑥, 𝑦, 𝑧)2𝑀,𝑁,𝑂
𝑥,𝑦,𝑧=0 − ∑ 𝒇̌𝒊

2

𝑖                      (16) 

 

where 𝒇̌ denotes the filtered feature vector. Using this 

equation, it is possible to decompose a volume into a feature 

vector containing a high number of coefficients and then 

rapidly determine the minimum number of coefficients 

required to just achieve an arbitrary representation error. 

B. Decomposition using matrix operations 

Decomposition and reconstruction using equations (8) and (9) 

are computationally-intensive tasks as they require many 

iterations and substantial amounts of computer memory. The 

computation of the coefficients can be performed more 

efficiently using matrix operations, which can be calculated 

using concurrent computation. If the data is considered as a 3D 

array, the 𝑧𝑡ℎ slice through the array 𝐼𝑥,𝑦,𝑧 , can be denoted as: 

 

𝑺𝑥,𝑦 = 𝑰𝑥,𝑦,(𝑧)                                                                   (17) 

 

where the bracketed term specifies the index for the slice 

location. These slices are then decomposed along both 

dimensions and then combined to form a new 3D array 𝑬𝑚,𝑛,𝑧, 

by performing [31]:  

 

𝑬𝑚,𝑛,(𝑧) = 𝒕𝑥𝑺𝑥,𝑦𝒕𝑦
∗                                                        (18) 

 

where * indicates the matrix transpose and 𝒕𝑥 and 𝒕𝑦  are 

orthogonal matrices with rows equal to the 1D Chebyshev 

polynomials: 

 

𝒕𝑥 =

{
 
 

 
 

𝑡0(𝑥)

√𝜌0

𝑡1(𝑥)

√𝜌1

⋮
𝑡𝑀−1(𝑥)

√𝜌𝑀−1 }
 
 

 
 

, , 𝑥 = {0, 1, 2,… ,𝑀 − 1}                       (19) 

 

TABLE 2 

Number of significant coefficients in the refined feature vectors with urms ≈  ucal and the corresponding ratios of reduction in 

data size for the four measured arrays in the exemplar datasets. 

Exemplar 
Quantity of 

interest 
Original data size 

No. of significant 

coefficients in the refined 
feature vector with           

urms  ≈  ucal 

Ratio of data size 
reduction 

Panel dz 1.18 × 105 758 155 : 1 

Reinforced rubber 

matrix 

exx 7.78 × 105 2650 293 : 1 

eyy 7.78 × 105 6867 113 : 1 

ezz 7.78 × 105 6014 129 : 1 
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𝒕𝑦 =

{
 
 

 
 

𝑡0(𝑦)

√𝜌0

𝑡1(𝑦)

√𝜌1

⋮
𝑡𝑁−1(𝑦)

√𝜌𝑁−1 }
 
 

 
 

 , 𝑦 = {0, 1, 2, … , 𝑁 − 1}                        (20) 

 

The 3D array 𝑬𝑚,𝑛,𝑧 , is then decomposed in the z-direction by 

performing: 

 

𝑻𝑚,𝑛,(𝑜) =
1

√𝑀𝑁𝑂
(𝒕𝑧𝑬𝑚,(𝑛),𝑧

∗)
∗
                                 (21) 

 

where,  

 

𝒕𝑧 =

{
 
 

 
 

𝑡0(𝑧)

√𝜌0

𝑡1(𝑧)

√𝜌1

⋮
𝑡𝑂−1(𝑧)

√𝜌𝑂−1}
 
 

 
 

 , 𝑧 = {0, 1, 2, … , 𝑂 − 1}                         (22) 

 

3D array 𝑻 contains the same coefficients as obtained using 

equation (8) and can be permuted to a feature vector using the 

same conditions as described by equations (10) and (11). This 

results in a significant decrease in computation time. For 

example, when decomposing a cube of data of dimension 200 

pixels into a feature vector containing 200 coefficients the 

matrix-based algorithm was found to be 150 times faster than 

using equation (8) and gave the same result.  The number of 

rows in the matrices 𝒕𝑥,  𝒕𝑦 and 𝒕𝑧 can be reduced to calculate 

a smaller number of coefficients. This is useful for orthogonal 

decomposition of experimental mechanics data, as typically 

only polynomials up to a maximum order of twenty are 

required for an accurate reconstruction due to the inherent 

properties of data fields constrained by continuum mechanics. 

The data volume can be reconstructed in a similar manner but 

in reverse: 

 

𝑬𝑚,(𝑛),𝑧 = √𝑀𝑁𝑂𝑻𝑚,(𝑛),𝑜𝒕𝑧                                           (23) 

 

with the reconstructed volume given by: 

 

𝑰̂𝑥,𝑦,(𝑧) = 𝒕𝑥
∗𝑬𝑚,𝑛,(𝑧)𝒕𝑦

∗                                                       (24)  

III. Exemplar volumetric datasets 

Two types of volumetric datasets are briefly described here, 

which were used as exemplars to demonstrate the application 

of orthogonal decomposition in quantitative validation of 

computational mechanics models. 

A. DATASET 1: MODAL ANALYSIS OF AN 
AEROSPACE PANEL 

A schematic of the panel is shown in Fig. 1. The surface of the 

panel was sprayed with a random black and white speckle 

 
FIGURE 4. Bar charts showing the number of coefficients in the 
unprocessed feature vectors, defined as ratios of the data array 
size, with representation errors conforming to the CEN guide 
recommendation i.e. within the shaded segment of Fig. 3. The fill 
level in the bars, shaded in dark grey, indicates the proportion of 
significant coefficients retained in a feature vector after refinement.  
Dataset 1 is from the panel and Dataset 2 from the reinforced rubber 
matrix. 
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pattern and the panel was suspended using string from a rigid 

frame, which was affixed to an optical table. The panel was 

excited at its third resonant frequency of 59 Hz using an 

electromagnetic shaker (V100, DataPhysics, CA). During 

excitation, images of the painted surface were captured using 

a stereoscopic pulsed-laser DIC system [32], which was 

designed to acquire full-field periodic displacements of the 

panel by phase shifting the image acquisition with respect to 

the excitation signal. The optical setup comprised of two 

identical digital cameras (Stingray F-201B, AVT, Germany) 

with 1624 × 1234 pixel resolutions, mounted with an identical 

pair of 8 mm focal length lenses (Cinegon 1.4/8, Schneider, 

Germany). The two cameras were positioned at a working 

distance of about 1500 mm from the panel at a stereo angle of 

25°, providing an image magnification of approximately of 3.1 

pixels/mm. A 532 nm laser (Nano L-200-10, Litron, England) 

with a pulse duration of 4 ns was used to illuminate and 

consequently “freeze” the motion of the vibrating panel in 

order to acquire images of the panel’s surface. A total of 41 

pairs of images were acquired with the commercial DIC 

software, Istra4D (Dantec Dynamics, Germany) using an 

incremental phase shift of 9° to cover a complete (360°) 

loading cycle of the panel. The image correlation was 

performed with Istra4D using a subset size of 49 pixels and a 

pitch of 20 pixels. The out-of-plane displacement maps from 

Istra4D were stacked in the z-direction at fixed intervals of 9° 

to construct a 3D array comprising of 1.18 × 105 data points, 

shown in Fig 1. 

 
FIGURE 5. Measured (left) and reconstructed (right) data arrays from the refined featured vectors with 𝒖𝒓𝒎𝒔 ≈𝒖𝒄𝒂𝒍. The region encircled by the 
dashed-red line in the strain arrays highlights the presence of a highly localized feature in the strain distributions. This figure is best interpreted 
in colour.  The displacement data (top) is from the panel and the strain data from the reinforced rubber matrix.  

 



 

 
                                    

VOLUME XX, 2023  9   

A FE model was created using 170,000 first-order 

hexahederal elements using a commercial FE package (Altair, 

Optistruct, USA). An eigenvalue analysis was first performed 

to identify the resonant frequencies of the panel, followed by 

a modal frequency response analysis to acquire full-field out-

of-plane displacements at its third resonant frequency of 59 

Hz. Further information about the experimental setup and FE 

model can be found in the paper by Sebastian et al. [32]. The 

simulation data from the modal frequency response analysis 

was available in the form of 21 grey-scale images, 

representing the contour maps of the out-of-plane 

displacement of the panel at uniform phase intervals of 18°. 

The images were imported into Matlab and were subsequently 

cropped after identifying a rectangular region, corresponding 

to the region of interest from which the measured 

displacement data was acquired, using the Matlab image 

registration function. A 3D array comprising of 7.96 × 106 data 

points was constructed from the predicted data by stacking 

rectangular segments from each of the 21 grey scale images in 

the z-direction at regular phase intervals of 18°. The 

constructed volumes for both the measured and predicted data 

are shown in Fig. 1. Normalization was performed on both 

datasets to transform them such that their values ranged 

between -1 and 1. This was to enable comparisons between the 

predicted and experimental data.  

B. DATASET 2: REFINFORCED-RUBBER MATRIX 
SPECIMEN UNDER TENSILE LOAD 

A cuboid-shaped tensile test specimen was fabricated from 

silicone (RTV-664, Momentive, USA) with the dimensions of 

139.7 × 38.1 × 19.6 mm. The rubber matrix was reinforced 

using three layers of three-strand twist nylon cord with a 

nominal diameter of 2.3 mm. The cords in the bottom, middle 

and top layers were orientated at 90°, 45° and 90° from the 

longitudinal (y) axis of the specimen and were located at 

heights of 5.6, 9.9 and 13.3 mm from the bottom surface, 

respectively. During fabrication, glass micro-beads with a 

nominal diameter of 200 µm were added to the rubber mix. 

Upon curing, the combined distribution of matrix voids and 

glass beads provided a sufficiently high-contrast random 

pattern to perform DVC. The specimen was mounted in a 

custom-built loading frame, which was in turn mounted onto 

the rotation stage of an X-ray micro-computed tomography 

system (X-TEK HMX 160). CT scans were obtained prior to 

and after the application of a tensile load of 150 N along the 

longitudinal (y) direction. The cuboid scan region within the 

specimen was 4.7 mm ≤ x ≤ 34.9 mm, -20.5mm ≤ y ≤ 18.4 

mm and 1.96 mm ≤ z ≤ 15.16 mm, this region is marked in the 

specimen schematic in Fig 2. The acquired CT images with a 

voxel resolution of 57.7 µm were processed using a 

commercial DVC package, VIC-Volume (Correlated 

Solutions, USA). The displacements were computed using a 

cubic subset size of 13 voxels and a pitch of 7 voxels. Strains 

were evaluated using VIC-Volume by locally smoothing the 

displacements using a grid of 5×5×5 data points The evaluated 

displacement and strain data, exported from VIC-Volume, 

was in the form of 3D arrays with each array comprising of 

7.78 × 105 data points.  

A FE model of the rubber matrix specimen was developed 

using a custom modelling tool based on the Virtual Textile 

Morphology Suite (VTMS) and the B-spline Analysis Method 

(BSAM), which were developed by the Air Force Research 

Lab (AFRL). Further details about the specimen preparation, 

experimental setup and FE model can be found in the paper by 

Mollenhauer et al. [33]. The simulation data was made 

available by the AFRL in the form of a text file containing 

 
FIGURE 6. Plots showing the location of five clusters of adjacent 
data points, represented by spheres, comprising 0.3% of the total 
number of points in the array with the highest residual. The cluster 
residual is defined as a ratio of the average representation error, 𝒖𝒓𝒎𝒔 
for the reconstructed arrays shown in Fig. 5. For the strain arrays, 
the location of the cluster with the highest residual error 
corresponds with the location of the highly localized feature in the 
strain distribution, encircled by the dashed-red line in Fig. 5. The 
displacement data (top) is from the panel and the strain data from 
the reinforced rubber matrix. This figure is best interpreted in colour. 
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Cartesian coordinates for all 4.94 ×105 nodes of the FE model 

along with the corresponding predicted displacement and 

strain values at those nodes. The data was imported into a 

Matlab algorithm which constructed 3D arrays from the 

simulation data. The comparison between normalized 

measured and FE predicted arrays of strain components along 

three orthogonal directions is shown in Fig 2.  

IV. DECOMPOSING VOLUMETRIC ARRAYS INTO 
FEATURE VECTORS 

Two approaches to decomposing volumes of data using 

Chebyshev polynomials are introduced in Sect. II. Whilst both 

approaches yield the same coefficients when applied to a 

dataset, they differ substantially in terms of the computing 

time required. When decomposing the data for the reinforced 

rubber matrix on a PC with an Intel® CoreTM i5-8400 CPU and 

8GB of RAM, the approach based on equation (8) took 1004s 

whereas the matrix-based approach using equations (17) to 

(21) took less than 0.1s. This disparity stems from two factors. 

Firstly, equation (8) requires each kernel to be calculated 

separately for each coefficient, whereas the matrix-based 

approach does not. The second factor is that the matrix-based 

approach ensures that the large numbers of multiplications and 

additions necessary for decomposition can be performed using 

the computationally efficient vector processing instructions 

built into modern computer processors.    

When an array of acquired data, for example experimental 

measurements or simulation predictions, is orthogonally 

decomposed into a feature vector, it is important to determine 

whether the feature vector provides an acceptable 

representation of the original data. The CEN CWA-16799 

workshop agreement [29], which is essentially a guide for the 

validation of computational mechanics models, recommends 

two criteria to ensure that a feature vector accurately 

represents both the global and local features in an original data 

array. The first criterion states that a feature vector is 

considered to be an acceptable representation of the measured 

data array if the representation error, 𝑢𝑟𝑚𝑠 does not exceed the 

minimum measurement uncertainty, 𝑢𝑐𝑎𝑙  of the measurement 

system. The representation error can be evaluated by 

calculating the root-mean-square of the difference between the 

original and the reconstructed array from equation (14) or 

directly using the feature vector from equation (16). 

According to second criterion, there should be no clusters of 

data points in the reconstructed array where the difference or 

the residual is greater than three times the representation error. 

A cluster is defined in the CEN guide as a region of adjacent 

data points representing at least 0.3% of the total number of 

points in the array. To perform orthogonal decomposition 

based on the CEN guide recommendations, it was essential to 

first establish 𝑢𝑐𝑎𝑙  for the measured data arrays. For Dataset 1, 

𝑢𝑐𝑎𝑙  had been previously evaluated to be 4 µm or 1% of the 

measured data range based on the DIC calibration procedure 

proposed by Sebastian and Patterson [34]. A reliable estimate 

of 𝑢𝑐𝑎𝑙  was not available for the arrays measured using digital 

volume correlation in Dataset 2; therefore, it was assumed to 

be 1% of the median of the data ranges for the three measured 

strain arrays. The plots in Fig. 3 show the consistent trend of 

decreasing representation error with an increase in the number 

of coefficients in the feature vector for the four measured data 

arrays in Datasets 1 and 2. In these plots, the number of 

coefficients in a feature vector has been presented as a ratio of 

the measured data array size and the representation error, 𝑢𝑟𝑚𝑠 
has been stated as a ratio of the minimum measurement 

uncertainty, 𝑢𝑐𝑎𝑙 . The shaded region in Fig. 3 represents the 

segment of the plots with feature vectors conforming to the 

requirement in the CEN guide for 𝑢𝑟𝑚𝑠 to not exceed 𝑢𝑐𝑎𝑙. 
For 2D data fields, it has been a common practice [35] to 

perform decomposition using a large number of kernels such 

that 𝑢𝑟𝑚𝑠 is significantly lower than 𝑢𝑐𝑎𝑙 . A threshold level is 

then defined to set those coefficients in the feature vector to 

zero whose absolute magnitude is lower than the threshold. 

This results in a relatively small number of significant 

coefficients in the refined feature vector. In this approach, the 

threshold value needs to be identified such that 𝑢𝑟𝑚𝑠 of the 

reconstruction from the refined feature vector is equal to the 

measurement uncertainty (𝑢𝑐𝑎𝑙) to confirm with the CEN 

guide recommendation. This is done by choosing an initial 

value of the threshold to determine the resulting 𝑢𝑟𝑚𝑠 of the 

reconstruction from the refined feature vector, which is then 

adjusted in an iterative manner to make  𝑢𝑟𝑚𝑠 equal to 𝑢𝑐𝑎𝑙 .  
 An alternate approach, to identifying the smallest set of 

significant coefficients from an unprocessed feature vector, is 

used in this work which ensures that 𝑢𝑟𝑚𝑠 of the refined 

feature vector remains less than 𝑢𝑐𝑎𝑙 . In this approach, 

 

FIGURE 7. Graph of coefficients of the refined feature vectors 
representing the measured and predicted displacement arrays for 
the aerospace panel, shown in Fig. 1, plotted against one another. 
The dashed lines represent the total expanded uncertainty, 𝟐𝒖𝒆𝒙𝒑. 
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coefficients are selected one by one from the original 

(unprocessed) feature vector based on their absolute 

magnitudes, such that the coefficients with the highest 

absolute magnitude are selected first. After each selection, 

𝑢𝑟𝑚𝑠 is evaluated using equation (16) and compared with 𝑢𝑐𝑎𝑙 . 
The selection process is stopped when 𝑢𝑟𝑚𝑠 becomes less than 

𝑢𝑐𝑎𝑙 .  
The feature vectors for the four measured data arrays, with 

𝑢𝑟𝑚𝑠  less than or almost equal to 𝑢𝑐𝑎𝑙 , i.e., the ones belonging 

to the shaded region in Fig. 3, were processed using the 

proposed feature vector refinement approach. The shaded 

segment of the plots in Fig. 3 are replotted as bar charts in Fig. 

4 in which the height of the bar represents the number of 

coefficients in the unprocessed feature vector, defined as the  

ratio of the data array size. The fill level in the bars, 

highlighted in dark grey, represents the proportion of 

coefficients retained in a feature vector after the refinement 

process. It can be observed from the fill levels in these bar 

charts that retained coefficients converged to a constant 

number of significant coefficients. It is difficult to establish 

this convergence with the threshold-based approach [35] 

primarily because the threshold level at which 𝑢𝑟𝑚𝑠 ≈  𝑢𝑐𝑎𝑙   is 
a function of the number of coefficients in the unprocessed 

feature vector. The size of the converged set of most 

significant coefficients for the four measured datasets are 

reported in Table 2. The ratios of the size of these converged 

sets of coefficients to the original array size are also provided 

in Table 2, which provide a measure of the reduction in 

dimensionality offered by this volumetric decomposition 

process. The arrays reconstructed from the refined feature 

vectors are compared with the original arrays in Fig. 5. 

To inspect the cluster residuals in the reconstructed data 

arrays shown in Fig. 5, a spherical element was first defined 

such that the number of adjacent points lying within this 

spherical element are 0.3% of the total number of points in the 

array. The spherical element was moved to every location in 

the array grid and the cluster residual was evaluated by taking 

the root-mean-square of the difference between the original 

and the reconstructed array using the data points lying within 

the spherical element. Fig. 6 shows the locations of the five 

clusters with the highest residuals for the four reconstructed 

data arrays presented in Fig. 5. For the arrays of strain 

components, a single cluster of adjacent data points was 

identified where the residual slightly exceeded the CEN 

recommended maximum limit of 3𝑢𝑐𝑎𝑙 . This cluster was 

found to be located where a highly localized feature in the 

strain distributions was present, which is encircled by the 

dashed-red line in Fig. 5 and 6. As described in Sect II, the 

proposed decomposition algorithm is based on the discrete 

Chebyshev polynomials, which is more suited to representing 

the global features in the dataset. If there is a significant 

number of highly localized features with sharp edges in a 

dataset, such as the ones highlighted in Fig. 5, then there are 

other discrete polynomials in the literature e.g. Krawtchouk 

moments [27], which are more suited to defining such 

localized features. 

 
FIGURE 8. Plot showing the values of validation metric at feature vector length to data array size ratios within the shaded segment of Fig. 3 for the 
four pairs of measured and predicted data arrays shown in Figures 1 and 2. Dataset 1 is from the panel and Dataset 2 from the reinforced rubber 
matrix. 
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V. COMPARISON OF MEASURED AND PREDICTED 
VOLUMETRIC DATA 

The applicability of methodologies [19], [29], which were 

developed for quantitative comparison of 2D data fields 

utilizing orthogonal decomposition, are analyzed in this 

section for the volume data arrays. The CEN CWA-16799 

guide [29] has outlined a method for making a comparison 

between the measured and predicted 2D data fields for the 

purpose of validation of computational solid mechanics 

models. In this method, the measured and predicted data fields 

are first represented as feature vectors by performing 

orthogonal decomposition. The coefficients of the two feature 

vectors are then plotted against one another for a simple 

graphical comparison. The CEN guide recommends that the 

computational model is considered acceptable if all of the 

pairs of coefficients in the two feature vectors fall within the 

uncertainty zone defined by: 

 

𝑓𝑃𝑖 =  𝑓𝑆𝑖  ± 2𝑢𝑒𝑥𝑝, 𝑖 = 1,2, … , 𝑙                                    (25) 

 

where 𝑓𝑃𝑖  and 𝑓𝑆𝑖 are the 𝑖th coefficients in the feature vectors 

representing the predicted and the measured data fields, 

respectively, and 𝑙 is the total number of coefficients in the 

feature vector. 𝑢𝑒𝑥𝑝 is the total uncertainty which can be 

determined by: 

 

𝑢𝑒𝑥𝑝 =  √𝑢𝑐𝑎𝑙
2 + 𝑢𝑟𝑚𝑠

2                                                      (26) 

 

where 𝑢𝑐𝑎𝑙  is the minimum uncertainty in the measured data 

field and 𝑢𝑟𝑚𝑠 is the representation error in the reconstructed 

data field.  

To illustrate this method for volumetric datasets, the 

coefficients of the feature vectors representing the measured 

and FE predicted displacement arrays in Dataset 1 are plotted 

against one another in Fig. 7. It can be observed from the plot 

in Fig. 7 that some of the points are outside the uncertainty 

zone, defined by the two dashed lines, which, according to the 

CEN guide criterion, makes the predictions of the FE model 

unacceptable. This approach does not provide any information 

about the degree to which the prediction results represent the 

measured data or in this case, how bad is the FE model. To fill 

this gap, a probabilistic validation approach [19] has been 

developed which evaluates a validation metric, 𝑉𝑀 

representing the probability that the prediction results belong 

to the same population as the measured data. Four steps are 

involved in determining 𝑉𝑀, which are briefly described here. 

In the first step, the normalized relative error, 𝑒𝑖 for each pair 

of coefficients in the feature vectors representing the measured 

and predicted data are calculated using: 

 

𝑒𝑖 = |
𝑓𝑃𝑖

−𝑓𝑆𝑖

𝑚𝑎𝑥𝑗|𝑓𝑆𝑗|
|                                                                 (27) 

The weight, 𝑤𝑖  for each of the normalised error terms are then 

determined using:  

 
 
FIGURE 9.  Bar charts showing the validation metric, 𝑽𝑴 determined 
from unprocessed feature vector pairs, representing the measured 
and predicted data arrays, at feature vector length to array size ratios 
within the shaded segment of Fig. 3. The fill level in the bars, shaded 
in dark grey, indicates the values of 𝑽𝑴 determined after removing 
the insignificant coefficients from the feature vector pairs by 
employing the refinement approach described in the fourth section.  
Dataset 1 is from the panel and Dataset 2 from the reinforced rubber 
matrix.  

 



 

 
                                    

VOLUME XX, 2023  13   

 

 

𝑤𝑖 = 
𝑒𝑖

∑ 𝑒𝑖
𝑛
𝑖=1

× 100                                                           (28) 

 

In the third step, an error threshold, 𝑒𝑡ℎ𝑟𝑒𝑠ℎ is defined by 

dividing the expanded total uncertainty, 2𝑢𝑒𝑥𝑝 by the 

coefficient in the feature vector for the measured data with the 

maximum absolute magnitude,  

 

𝑒𝑡ℎ𝑟𝑒𝑠ℎ = 
2𝑢𝑒𝑥𝑝

𝑚𝑎𝑥j|𝑓𝑆𝑗|
                                                           (29) 

 

In the last step, 𝑉𝑀 is determined by summing the weights for 

all of the normalized errors terms that are found to be below 

the defined error threshold: 

 

𝑉𝑀 =  ∑ (𝑤𝑖 ∥ 𝑒𝑖 < 𝑒𝑡ℎ𝑟𝑒𝑠ℎ) 𝑖                                          (30) 

 

where ∥ is an indicator function which takes the value 1 when 

𝑒𝑖 < 𝑒𝑡ℎ𝑟𝑒𝑠ℎ and otherwise has a value zero. 

From experience with historical 2D data, acquired from 

full-field techniques such as DIC and TSA, it has been 

established that 2D displacement and strain fields can be 

decomposed into feature vectors with low representation 

errors using, typically, less than a hundred Chebyshev 

polynomials-based kernels. The feature vectors representing 

volumetric data arrays can have more than a thousand 

coefficients (see Table 2), which is consistent with the 

increased number of grid points in a volume with addition of 

the third dimension. In order to correctly apply the above-

described probabilistic validation approach to volumetric 

arrays, it is important to first analyze the sensitivity of 𝑉𝑀 to 

the number of coefficients in the feature vector pair of 

measured and predicted data.  

The four predicted data arrays shown in Fig. 1 and 2 were 

decomposed into feature vectors with the same of number of 

kernels as the ones for the measured data arrays plotted within 

the shaded segment of Fig. 3. 𝑉𝑀 was then evaluated for each 

corresponding feature vector pair representing the pair of 

measured and predicted data arrays. The plot in Fig. 8 shows 

the sensitivity of 𝑉𝑀 to the total number of coefficients in the 

feature vectors representing the measured and predicted data. 

The number of normalized error terms (𝑒𝑖) that are found to 

be below the error threshold (𝑒𝑡ℎ𝑟𝑒𝑠ℎ) increases with the 

inclusion of more coefficients in the unprocessed feature 

vector. This causes the accumulative weight of the error terms 

below the error threshold to increase as well, which is defined 

as the validation metric, 𝑉𝑀 according to equation (30). 

Hence, in order to acquire unbiased values for 𝑉𝑀, it is 

imperative to exclude those coefficients in the feature vector 

pairs representing the measured and predicted arrays, whose 

associated kernels do not make a significant contribution in 

defining the inherent distribution in the original arrays.  

It was established in the previous section that with the 

proposed approach for feature vector refinement, a smallest set 

of significant coefficients can be identified for an arbitrary 

representation error. With this set of significant coefficients, 

an unbiased, converged value for 𝑉𝑀 can be obtained. The 

values for 𝑉𝑀 obtained using the unprocessed pair of feature 

vectors are replotted in Fig. 9 as bars. The fill level of the bars, 

highlighted in dark grey colour, represents the values for 𝑉𝑀 

which were determined after excluding the insignificant 

coefficients from the feature vectors. It can be observed from 

the fill levels in bar charts of Fig. 4 and 9 that 𝑉𝑀 converges 

to a constant value as the retained coefficients in the refined 

feature vector converge to a constant set of significant 

coefficients. The converged values of 𝑉𝑀 are not dependent 

on the feature vector length and hence provide an unbiased 

quantitative measure of the confidence associated with the 

agreement between the predicted and measured results. The 

converged values of 𝑉𝑀 for the four predicted data arrays in 

Datasets 1 and 2 are provided in Table 3.  

VI. DISCUSSION 

The quantitative comparison of large datasets has been a 

challenging task for researchers primarily because datasets 

from different sources often do not share the same grid size, 

data pitch or coordinate system. A rudimentary approach for 

data comparison, which is still predominant in industry and 

academia, involves identifying critical locations in the 

measured datasets and qualitatively establishing the 

agreement between the predicted and measured data points at 

these critical locations. This paper reports the development of 

an algorithm which decomposes a volumetric array into a set 

of coefficients by fitting a predefined set of 3D kernels, which 

are formed from 1D discrete Chebyshev polynomials. The set 

of coefficients are collated into a column vector, referred to as 

the feature vector, based on the ordering system defined by 

Bateman [29], which has been extended to three dimensions 

in this work. Since this arrangement of coefficients in a feature 

vector is fixed, this allows one-to-one comparison of the 

volumetric arrays within the feature vector space, irrespective 

of whether they share the same grid size, data pitch or 

coordinate system. 

TABLE 3. 

Validation metric for the four predicted data arrays in exemplar 

datasets. 

Exemplar Data VM (%) 

Panel 
Out-of-plane displacement 

(dz) 
51.7 

Reinforced rubber 

matrix 

Strain along x-direction 

(exx) 
86.3 

Strain along y-direction 

(eyy) 
97.6 

Strain along z-direction 

(ezz) 
98.4 

 



 

 
                                    

VOLUME XX, 2023  14   

The number of coefficients required in a feature vector to 

accurately represent the original data array depends on the 

‘shape’ of the distribution in an array. In general, the 

distribution in a strain array, being derived from partial 

derivatives of displacements, tends to have a higher spatial 

variation compared to that in a displacement array. Hence, 

strain arrays are typically represented using a set of 

coefficients associated with relatively high order kernels. To 

illustrate this with an example, the order of the kernels 

associated with the five most significant coefficients in the 

refined feature vector representing the displacement array (𝑑𝑧) 

and the strain array (𝑒𝑦𝑦) are shown in Tables 4 and 5, 

respectively. The order of the kernel for the fifth most 

significant kernel was found to be 4 and 17 for the out-of-plane 

displacement(𝑑𝑧) and the in-plane strain (𝑒𝑦𝑦), respectively. 

The arrays in the second dataset, shown in Fig. 2, contain 

localized strains around the nylon cord reinforcements. In 

order to accurately represent these strain localizations, the 

strain arrays in Dataset 2 required up to nine times as many 

kernels as required by the displacement array in Dataset 1. 

The plots in Fig. 3 show that the representation error (𝑢𝑟𝑚𝑠) 
decreases in an exponential manner with the increase in the 

number of kernels used for decomposition.  It can be observed 

in Fig. 3 that these plots, particularly for 𝑑𝑧, exhibit a jagged 

profile. This jaggedness is caused by the inclusion of 

coefficients whose associated kernel makes a significant 

contribution to representing the inherent distribution in the 

original data array, thereby causing a significant drop in 𝑢𝑟𝑚𝑠 
when those coefficients are included. The refinement 

approach described in the section IV identifies the smallest set 

of significant coefficients that results in an arbitrary 𝑢𝑟𝑚𝑠, 
maximizing the reduction in the dimensionality of the data 

within the feature vector space. In this study, refinement of the 

unprocessed feature vector was performed so that 𝑢𝑟𝑚𝑠 was 

just less than the minimum measurement uncertainty (𝑢𝑐𝑎𝑙) of 

the measurement system, as per the recommendations of the 

CEN CWA-16799 guide [29], which states that 𝑢𝑟𝑚𝑠 should 

TABLE 4 

Visualization of the discrete Chebyshev-based 3D kernels belonging to the five most dominant coefficients in the refined feature vector 

representing the out-of-plane displacement array, 𝒅𝒛 in the aerospace panel. The absolute magnitudes of the coefficients listed in the table 

are normalized by the coefficient in the feature vector with the maximum absolute magnitude. This table is best interpreted in colour. 

Normalized absolute 

magnitude of coefficients 
Order of corresponding kernel ωm,n,o Shape of the corresponding kernel 

1 ω0,0,1 = 1 

 

0.880 ω0,0,3 = 3 

 

0.790 ω1,1,1  = 3 

 

0.690 ω1,1,3 = 5 

 

0.626 ω2,1,3 = 4 
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not exceed 𝑢𝑐𝑎𝑙. The reduction in the number of coefficients 

in the refined feature vector, after removal of the redundant 

coefficients, has been illustrated using the bar charts in Fig. 4.  

As mentioned earlier, one of the primary applications of the 

decomposition method lies in making meaningful 

comparisons of datasets. This has led to a recently-developed 

approach for quantitative validation of computational solid 

mechanics models [19]. In this approach, the measured and 

predicted data arrays are first represented by a pair of feature 

vectors obtained using orthogonal decomposition. The 

cumulative weight of the normalized differences between the 

individual coefficients of the two feature vectors, which are 

found to be below an error threshold based on the total 

measurement uncertainty, is then computed to obtain a 

validation metric, 𝑉𝑀. The magnitude of 𝑉𝑀 represents the 

probability that the predicted data belong to the same 

population as the measured data; and hence, provide a 

quantitative measure of the quality of the predicted data. In 

this study, the applicability of this validation approach to 

volumetric data arrays was assessed. The validation metric, 

𝑉𝑀 was found to be sensitive to the number of coefficients in 

the unprocessed feature vector, which can be seen in the plot 

in Fig. 8. It was demonstrated in Fig. 9 that a stable and 

unbiased value of the validation metric, 𝑉𝑀 can be acquired 

by using the set of most significant coefficients in a feature 

vector.  

The proposed orthogonal decomposition algorithm was 

developed with the aim of decomposing volumetric datasets 

which contain spatial variation in all three dimensions. Such 

datasets are typically produced by techniques such as 

automated serial-sectioning and X-ray computed tomography. 

However, the algorithm is equally applicable to 2D data fields 

which vary in the temporal domain and, for the purpose of 

orthogonal decomposition, can be treated as a volumetric 

array. In Dataset 1, a series of 41 2D out-of-plane surface 

displacement fields, acquired using DIC, of an aerospace 

panel excited at its third resonant frequency, were stacked in 

the z-direction to construct a volumetric data array shown in 

Fig. 1. The constructed array was orthogonally decomposed 

into a feature vector with 758 significant coefficients giving 

TABLE 5 

Visualization of the discrete Chebyshev-based 3D kernels belonging to the five most dominant coefficients in the refined feature 

vector representing the out-of-plane displacement array, 𝒅𝒛 in the aerospace panel the strain array, eyy in the reinforced rubber matrix. 

The absolute magnitudes of the coefficients listed in the table are normalized by the coefficient in the feature vector with the 

maximum absolute magnitude. This table is best interpreted in colour. 

Normalized absolute 
magnitude of coefficients 

Order of corresponding kernel ωm,n,o Shape of the corresponding kernel 

1 ω0,0,0 = 0 

 

0.880 ω1,0,0 = 1 

 

0.790 ω2,8,0  = 10 

 

0.690 ω7,10,2 = 19 

 

0.626 ω7,10,0 = 17 
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representation error (𝑢𝑟𝑚𝑠) of the reconstructed array 

equivalent to the minimum measurement (𝑢𝑐𝑎𝑙) of the DIC 

system. The potential advantage of employing 3D orthogonal 

decomposition over its 2D counterpart was explored by 

individually decomposing each of the 41 slices in the x-y plane 

of the data array in Fig. 1 into feature vectors, with  𝑢𝑟𝑚𝑠 ≈
0.25𝑢𝑐𝑎𝑙, using the image decomposition algorithm based on 

the same 1D discrete Chebyshev polynomials which were 

used in the development of the volume decomposition 

algorithm. The unprocessed feature vectors for each slice were 

refined using the method reported in the section IV to achieve 

𝑢𝑟𝑚𝑠 ≈ 𝑢𝑐𝑎𝑙. Each of the 41 refined feature vectors, 

representing the individual slices of the volume, contained on 

average 100 coefficients. Hence, the whole data array was 

represented by a total of 4100 coefficients in 41 feature 

vectors, which are five times more than the coefficients in a 

single feature vector resulting from volume decomposition. 

The 3D kernels in volume decomposition can represent 

distributions along all three dimensions of data array. This is 

primarily the reason why volume decomposition required a 

relatively small set of kernels to represent the data array 

compared to its 2D counterpart. 

The volume decomposition algorithm offers great potential 

for increasing efficiency in analyzing large volumes of 

experimental data, such as that produced by experiments 

conducted on the dynamic response of components. High-

speed cameras, which are capable of acquiring tens of 

thousands of images in a matter of seconds, are typically 

employed in such experiments. A set of deformation fields 

from images acquired over an arbitrary time interval can be 

constructed into volumetric segments, which can then be 

decomposed into feature vectors using orthogonal 

decomposition. This would not only allow significant data 

reduction but also reduce the time and effort required to 

interpret experimental data. 

VII. CONCLUSIONS 

This paper reports the development of an orthogonal 

decomposition algorithm based on discrete Chebyshev 

polynomials which can decompose volumetric data arrays into 

feature vectors. This allows for straightforward quantitative 

comparison of information-rich three-dimensional (3D) 

datasets within feature vector space, irrespective of whether 

they share the same grid size, data pitch or coordinate system. 

The quantitative data comparison capability of the 

decomposition algorithm was demonstrated using two pairs of 

exemplar measured and finite element (FE) predicted datasets. 

The experimental data in first pair of datasets comprised of 

time-varying out-of-plane surface displacement fields of a 

panel subjected to excitation at one of its resonant frequencies, 

which were acquired using digital image correlation. The 

experimental data in the second pair of datasets represented 

the internal 3D strain fields in a nylon cord reinforced-rubber 

matrix specimen subjected to a tensile load, which were 

measured using digital volume correlation technique. The 

decomposition algorithm was successfully employed to 

perform quantitative validation of FE predicted data using a 

validation metric, which was previously developed for two-

dimensional data fields. Future work will focus on the use of 

volume decomposition on X-ray micro-computed tomography 

data for characterizing damage in composite microstructures. 
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