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Abstract. The Grad—Shafranov equation for axisymmetric MHD equilibria is a nonlinear,
scalar PDE which in principle can have zero, one or more non-trivial solutions. The conditions
for the existence of multiple solutions has been little explored in the literature so far. We
develop a simple analytic model to calculate multiple solutions in the large aspect ratio limit.
We compare the results to the recently developed deflated continuation method to find multiple
solutions in a realistic geometry and right-hand side of the Grad—Shafranov equation using the
finite element method. The analytic model is surprisingly accurate in calculating multiple
solutions of the Grad—Shafranov equation for given boundary conditions and the two methods
agree well in limiting cases. We examine the effect of plasma shaping and aspect ratio on the
multiple solutions and show that shaping generally does not alter the number of solutions. We
discuss implications for predictive modelling, equilibrium reconstruction, plasma stability and
disruptions.

MHD, Grad—-Shafranov equation, nonlinear PDEs, multiple solutions

1. Introduction

The Grad—Shafranov equation (GSE) for axisymmetric MHD equilibria is a nonlinear, scalar
PDE which in principle can have no solution, one solution or multiple solutions. The topic
of solutions of the GSE has not been widely explored in the literature so far even though
calculating the correct equilibrium is vital to any stability or transport analysis that is carried
out. In particular, an improved understanding of the existence of multiple equilibria may give
insights into plasma stability and triggers for major disruptions, the avoidance of which is key
on the route to a fusion power plant. It may also have implications for predictive scenario
modelling or equilibrium reconstruction.

The topic has been discussed in Solano [1] at a conceptual level but no equilibria with
multiple solutions were shown in that paper. Indeed, that paper called for developments to
allow the calculation and understanding of multiple solutions of the GSE. This paper answers
that call. Solano [1] also raises the important question of what happens when a solution
branch disappears as transport in the plasma changes the profiles. We must assume that the
initial plasma equilibrium is lost on an Alfvénic timescale and the plasma will evolve to a new
state. It may transition to a different nontrivial equilibrium (albeit at a much lower plasma
pressure i.e. a major disruption), a periodic orbit, or a chaotic trajectory. A mathematically



Multiple solutions Grad—Shafranov 2

focussed treatment of the problem has also been given in Jeyakumar [2] but again without the
calculation of examples.

An analytic demonstration of multiple solutions of the Grad—Shafranov equation was
given in Schnack [3], in the case of a free boundary equilibrium surrounded by a perfectly
conducting wall. This problem was shown to have either two solutions, one deeply confined
and the other shallow, or no solution. However, the equilibrium is assumed to be a thin,
vertically extended plasma. This does not produce an equilibrium that it is easy to match with
a numerical model. Our analysis overcomes this limitation, and provides solutions that match
well with numerical simulations.

Our analytic model is still an idealisation and does not provide solutions to the complete
GSE. We must understand the solutions in realistic geometry to be sure of the relevance to
tokamak experiments. We therefore deploy a recently developed algorithm called deflated
continuation [4, 5] to find multiple solutions in a full geometry, discretising the GSE with the
finite element method using Firedrake [6].

This paper is organised as follows. We describe the GSE and give the weak form
in Section 2. We develop a new analytic model—assuming a large aspect ratio torus—
which produces an example of no (non-trivial) solution, moving to two solutions as a control
parameter is varied. In Section 3, we describe deflated continuation, a method for finding
multiple solutions of PDEs. We apply this technique to the test case that we developed
and solved analytically in Section 2 and find good agreement. In section 4, we use deflated
continuation to understand the effect of aspect ratio and plasma shaping on multiple solutions
of the GSE. In Section 5 we discuss possible implications for this work and finally we give
conclusions.

2. Grad-Shafranov equation

The GSE is very well known in magnetic confinement fusion. It is used ubiquitously, but
there appears to be little theory on the existence or uniqueness of solutions for it. It is therefore
important to understand the potential consequences of the multiple solutions (or non-existence
of non-trivial solutions) that may occur.

In a non-rotating plasma the GSE is derived from force balance, namely J x B = Vp,
where J is the plasma current density, B is the magnetic field and p is the isotropic plasma
pressure (see, for example Goedbloed [7] or Freidberg [8] for more details on the derivation).
Using cylindrical coordinates, see Figure 1, the GSE becomes

2y 290V _
VoV ROR
d (10 92
2 (1‘3%) + X~ F(y)F (v) - R () M

where W(R,Z) is the poloidal magnetic flux to be solved for, R is the coordinate in the major
radius direction, Z is the vertical coordinate, and F = RBy is the poloidal current stream
function, where By is the component of the magnetic field in the toroidal direction.
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Figure 1. Cartoon of the coordinate system used for the Grad—Shafranov equation.

The weak form of the GSE is to find y € H'(Q) such that

/
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where Q is a bounded Lipschitz domain, & is the test function, p’ = %f and F/ = dfls;").
The functions p(y) and F(y) are specified in this problem. These profiles could
in principle be the output of a transport model. The pressure, p, is generally always a
monotonically decreasing function. This means that p’ will be negative across the whole
plasma. There may be regions of large gradient and possibly very small gradient. The function
FF' can be both positive and negative and so the right-hand side may change sign in the

domain.

2.1. An analytic model with multiple solutions

We assume a large aspect ratio toroidal plasma. Specifically, we assume that the radius of the
magnetic axis, Ry, is much larger than the minor radius, a, so that Ry > a. In this case we
see that the 1%3—}’; term can be ordered small compared to the other terms in (1). This results in
the Grad—Shafranov operator reducing to a Laplacian on the left hand side. If we now move
to a cylindrical coordinate system with the axis along the axis of the plasma, (Ro,Zy), and
we assume poloidal symmetry then we can reduce the problem to one dimension. We also
assume that at sufficiently large aspect ratio the flux surfaces are concentric, nested tori which
coincide with the surfaces of constant radius, and that the right-hand side is a pure function of

. This is reasonable since at large aspect ratio the variation in R over the minor radius will
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Figure 2. Plot of the tanh function with C = —35, v, = —1 and w = 0.05.

be small. The theory of cylindrical equilibrium is well known. This is equivalent to using the
By ~ 1, € < 1 expansion of the GSE given in [8]. This simple model will allow us to explore
multiple solutions of the GSE and provide test cases for comparison to numerical simulations.

In cylindrical coordinates, assuming no poloidal variation, (1) becomes

2
%—r‘i’ + %%—‘,’,’ =G(v) 3)
where r is the minor radius variable and G(y) is a function of y which mimics the behaviour
of the right-hand side. This function is often monotonically decreasing in physical cases but
this does not necessarily hold.

Clearly if G is a constant then the differential equation is linear, and a unique solution
will exist. If G(y) = Ay, then a unique solution exists whenever A is not an eigenvalue.
However, if G is nonlinear then the differential equation becomes nonlinear and thus permits
more interesting behaviour of solutions. As an example, we take a tanh function

Gly) = g [1 — tanh (M)] 4)

w

where we take C and w as parameters that can be varied. This function allows us to use
a continuous function to investigate the situation where we have a linear pressure profile
which transitions to a flat pressure profile at a given value. In the limit that w — O we have a
discontinuity which is the function that was used by Schnack [3]. Figure 2 shows this function

for C = -5, y, = —1 and w = 0.05. Other nonlinear functions may also produce multiple
solutions.
We use a shooting method to find the solutions of equation (3), fixing y, = —1 and

w = 0.05, enforcing the boundary condition that y(2) = 0. As we vary C, we find that for
C < 2.7 there is only one solution, the trivial solution. However, for C > 2.7 we find that there
are two additional solutions. The bifurcation diagram is shown in figure 3.
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Figure 3. Bifurcation diagram for our toy model varying the parameter C with w = 0.05 and
Y, = —1. The trivial solution always exists but at C ~ 2.7 two new solutions appear at a fold

bifurcation and persist as C increases.
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Figure 4. Bifurcation diagram for our toy model varying the parameter w with C = 2.9 and
Yy, = —1.0. The most negative solution is always there but at w ~ 0.88 two new solutions

appear at a fold bifurcation and persist as w decreases.

We can also produce a bifurcation diagram by varying w and keeping C = 2.9 fixed.
Figure 4 shows that there are three solutions when w < 0.88 and only one when w > 0.88.

We can also cast the problem of finding multiple solutions in a different way. We can ask
that we have a fixed value of central poloidal flux and investigate the equilibria at different
values of another control parameter. We have varied the value of w with C = 2.9 and fixed
values of Y to confirm that we can find two solutions, one with high w and one with low w.
This is a situation more akin to equilibrium reconstruction, especially with magnetics only,
where measurements of the internal plasma profiles are not used.
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3. Deflated continuation

Our analytic model is useful for insight, but the Grad—Shafranov equation cannot generally
be reduced to a one dimensional equation for solution in this way. It is fundamentally a two
dimensional problem. In this section, we will apply an algorithm of bifurcation analysis,
deflated continuation [4, 5], to find multiple solutions of the GSE in full geometry. The
algorithm is applied to a finite element discretisation implemented in Firedrake [6, 9]. We
will compare the results from deflated continuation with our analytic model in appropriate
limiting cases.

The aim of the deflated continuation algorithm is to compute the solutions of an equation

f(u,4) =0, ®)

where u is the solution of a PDE and A € R is a parameter on which the PDE depends. For
each parameter value, each known solution branch is continued to that parameter, and then the
nonlinear problem is modified so that those solutions are excluded (the solutions are deflated,
just as known roots of polynomials can be deflated by dividing by the appropriate factor). The
algorithm then seeks solutions of the modified nonlinear problem; if any are found, they are
new solutions of the original problem. Importantly, this approach can compute disconnected
bifurcation diagrams, like those already presented in figures 3 and 4.

We now apply deflated continuation to our model equation (3). We take the weak form
of (3) and approximate its solutions with a piecewise linear finite element method on a disk
(radius, a = 2 and origin (0,0) in two dimensions). We then use deflated continuation (as
implemented in the Defcon library¥) to explore the solutions of the problem. We have solved
the cylindrical variant of the problem, i.e. without toroidal effects, in these cases so Ry has no
effect.

Figures 5, 6 and 7 show three solutions that have been calculated for C = 2.9 with
this procedure. The central value of the flux agrees between the two methods to 0.9% or
better. This excellent agreement gives confidence to move forward to applying the same
computational methods to the full Grad—Shafranov equation. It should also be noted that the
finite element solutions and the shooting method are both well converged. These are real
multiple solutions of the reduced GSE arrived at by completely different numerical methods
and not numerical artifacts.

An issue to note is that deflated continuation is not guaranteed to find all the solutions
of the equation. We observed failure of the algorithm if there is a discontinuity or too sharp
a gradient in the function G. For the case in [3] with a discontinuity, our code only finds
one non-trivial solution unless a very specific initial guess is given. In the example above if
w < 0.1 then again our code does not find the roots. However, for w > 0.1 there is excellent
agreement between deflated continuation and the results from the shooting method. We bear
this caveat in mind as we proceed to a more realistic case. It should be noted that the shooting
method is very robust.

I https://bitbucket.org/pefarrell/defcon
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(a) Two dimensional plot of the first solution

withC=2.9and w =0.7.
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(b) One dimensional slice along arrow of the
first solution with C =2.9 and w = 0.7.

Figure 5. First of the non-trivial solutions of (3) with C =2.9 and w =0.7.

(a) Two dimensional plot of the second
solution with C =2.9 and w = 0.7.
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(b) One dimensional slice along arrow of the
second solution with C = 2.9 and w = 0.7.

Figure 6. Second of the non-trivial solutions of (3) with C =2.9 and w =0.7.
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(a) Two dimensional plot of the third (b) One dimensional slice along arrow of the
solution with C =2.9 and w = 0.7. third solution with C =2.9 and w = 0.7.

Figure 7. Third of the non-trivial solutions of (3) with C =2.9 and w =0.7.

4. Multiple solutions of Grad—Shafranov

In Section 3 we showed excellent agreement between our analytic model and finite element
simulations for a plasma with circular cross-section. We now apply the same computational
techniques to solve the problem with a more complete geometry to understand the effects of
aspect ratio and plasma shaping on the multiple equilibria. In this section we will assume that
the profile of F is a constant so that FF' = 0 and that the pressure has the profile we used

P (y) = g [1 —tanh (wﬂ . 6)

w

previously,

This represents a plasma that has a constant gradient of pressure with flux up to the value v,
and then transitions to zero after that. The weak formulation of the problem that we now solve
then becomes: find ¥ € H'(Q) such that

/%Vw.vgdgz/ {C‘;"R [l—tanh <%>” EdQ  forallE e H'(Q), (7)

since FF' = 0 if F is taken as a constant. The boundary condition is that y = 0.

The difference between equation (7) and (the weak form of) (3) is the 1/R term that
appears in the left hand side of (7) and also the factor of R that appears on the right hand side
of (7). These extra geometric terms break the poloidal symmetry of the plasma which exists

in the cylindrical case but not in the toroidal case.
We first study the effect of aspect ratio. We take a circular cross section plasma of minor
radius, a = 1, and change the major radius Ry with a fixed value of w = (.18 and R%C =6.
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Figure 8. Solutions of (7) with circular cross-section as the aspect ratio of the torus is varied.
The central value of poloidal magnetic flux (yp) for the three solutions is shown.

The results are plotted in figure 8. We see that the aspect ratio makes little difference to the
number of solutions in this case and also to their values. It has the strongest effect at small
aspect ratio when the variation of R across the plasma cross section is relatively largest. The
results of the two approaches converge at large aspect ratio.

We next study the effect of plasma shaping at low aspect ratio. We parametrise the plasma
shape with the standard elongation, x, and triangularity, d as defined by

R =Ry+acos(6+ dsin(0)), (8)
Z = axsin(9), ©)

where 0 is the poloidal angle. We used Gmsh [10] to generate appropriate triangular meshes
of these geometries. We show an example of the mesh and solution for a plasma with
triangularity 6 = 0.3 and elongation k = 2 in figure 9.

We fix Ry = 3 for this computation and vary elongation, figure 10 and triangularity,
figure 11. We see that plasma triangularity does not have a strong influence on the number
of solutions. However, for small enough elongation the two solution branches coalesce and
disappear. This is not in a regime where tokamaks are normally operated as high elongation
has other benefits. The strong effect of increasing elongation on the lower solution is partly
due to the plasma cross sectional area changing significantly with elongation.

5. Discussion and Conclusions

We have presented methods to calculate multiple tokamak equilibria solutions of the GSE and
demonstrate their use in relatively simple cases. We have shown that as system parameters
are varied we can lose equilibrium solutions. One immediate question is what will happen to
the plasma in this case. If the plasma is no longer in an equilibrium state then it will evolve on
an Alfvénic timescale until it reaches a new equilibrium, or transitions to a periodic orbit, or
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Figure 9. Example of solution mesh, generated with Gmsh, and solution, computed by
Firedrake/Defcon, for a plasma with elongation k = 2, triangularity & = 0.3, and major radius
Ro=3.
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Figure 10. Scan of plasma elongation, k, with fixed major radius Ry = 3 with fixed minor
radius a = 1. The central value of poloidal magnetic flux (yg) for the three solutions is
shown. Two solution branches coalesce at around x = 0.9 and only the trivial solution exists
for smaller values of elongation.

to a chaotic orbit. In principle, this may result in a complete loss of the plasma, but this is not
seen in experiments where the initial stage of a disruption is the loss of the thermal energy,
the thermal quench. The plasma that is left is much cooler and broadly force-free. It may be
that some types of major tokamak disruption are caused by such a loss of equilibrium. We
will attempt to make these calculations in future work.

A key part of understanding tokamak plasmas is equilibrium reconstruction where
diagnostic measurements are used to constrain an equilibrium model to infer the
experimentally realised equilibrium. There are various ways this is done, for various purposes.
If only magnetic diagnostic data is used then there are no measurements of the internal
profiles. In this case highly simplified profiles are used for FF’ and p’ which strongly
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Figure 11. Scan of plasma triangularity major radius Ry with fixed minor radius a = 1 with
circular cross section which amounts to a scan in aspect ratio of the torus. The central value
of poloidal magnetic flux (yp) for the three solutions is shown.

constrains the potential shapes of the reconstructed equilibria. We have shown that two very
different profile shapes can produce the same flux on axis. If internal measurements of the
plasma are used, for example from MSE or Thomson Scattering diagnostics, in what is often
called kinetic equilibrium reconstruction, then the profile shapes are given more freedom by
using more basis functions. However, there are more measurements to constrain the final
equilibrium. Extreme care still needs to be taken here to ensure that the basis functions used
do not overly constrain the potential profiles or generate spurious detail. It is important to
ensure that the choice of basis functions for equilibrium reconstruction does not determine
the conclusions of studies of the stability and transport of a given plasma.

The effect of multiple equilibria should be evaluated in predictive modelling where an
equilibrium model is coupled to a transport model. These two are evolved in time to simulate
a tokamak pulse, therefore ramping up the current to flat top and then ramping down. It may
be imagined that in this process bifurcation points will be passed where an equilibrium model
only finds one of the available equilibrium branches. It may be that an improved shot evolution
can be found (or a deleterious one avoided) if all bifurcation points are properly understood.
The work done on theoretically predicting super-H mode [11] may give indications of how
this should be done.

A further observation is that our analytic model is more accurate and robust than we
might expect. This means that we can use this method to explore a wide range of potential
profile shapes to find out when multiple solutions might be important. We may also use simple
transport models along with this analytic model to understand when equilibria may be lost.
This could improve our understanding of some types of major disruption or how we can plot
a path to higher performance plasmas.

We have assumed that the plasma here is axisymmetric, indeed this is required as we
are using the Grad-Shafranov equation. However, if we have a non-axisymmetric model
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of the plasma we could compute not only additional axisymmetric equilibria but also non-
axisymmetric states that could be thought of as saturated instabilities such as the helical core
mode [12]. This will also be the topic of further work.

In this work we have answered a call to develop techniques to calculate multiple solutions
to the GSE. We have provided both analytical and numerical techniques and shown that
they agree in the correct limits. We have shown that even in a relatively simple model that
bifurcation points can occur. If we have more complicated profiles of FF’ and p’ then we
would expect more of this behaviour. These tools can be exploited in future work to potentially
improve our understanding of disruptions and to to find routes to improved performance in
tokamak plasmas.
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Appendix

In this appendix we demonstrate that the f and plasma current are relevant to practical
situations for the large aspect ratio case. The theory of cylindrical equilibrium is well known.
We reproduce some results here for reference based on the B, ~ 1, € < 1 expansion of the
GSE given in Freidberg [8]. We start with the equations of static ideal MHD

JxB=Vp, (10)

V-B=0, (1)
1

J=—VxB. 12
o (12)

We assume cylindrical symmetry so all variables are independent of 8 and z. We can
then calculate the current density

dB(r) ld
dr rdr

ot = 0.~ (rBa(r)] a3

and so the radial component of the static momentum equation becomes
df  BetB)| B
dr P 2‘u0 N Hor

where we may specify two of the profiles, i.e. By and p(r) with the third, B,(r) in this case,
being determined by these two.

) (14)
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We may multiply equation (14) by 72 and integrate from 0 to a to get

B? B? B2
<p>+< L) -T2 o (s)
210 210 210
where
= / 2nrX (r (16)

is the average value of X (r) over a cross-section of radius a.
The ratio of the thermal pressure to the magnetic pressure is the plasma :

240 (p)
==/ 1
B)= g2 (17)
The poloidal and toroidal parameters are defined as
2p0(p) 210(p)
By = ; B = : (18)
" B ' Ba)

We have assumed for simplicity in this paper that B is a constant so (15) results in 8, = 1.

5.1. Safety factor profile

The twist of the magnetic field lines is captured by the safety factor which in a cylindrical
screw pinch is

rB.(r)
r)= ' . (19)
a(r) RoBo(r)
In this approximation we have [8]
B,o(r) =0, (20)
1 dyp
B 21
00(r) = Ro dr’ 21
—F
Bo(r) = T Y0, (22)
0
We have assumed that B, is a constant so
rB,
q(r)=—r. (23)
¥

5.2. Toroidal current profile

We need an expression for the toroidal current Jy which can be obtained from the derivation
of the GSE (and in the B, 1, € < 1 expansion of the GSE given in Freidberg [8])

dp 1dF?

—UgRoJ — —ugRZEE T 24
HoRoJ(r) = V?y = Noodw 2dy’ (24)
and so in our case, given we have taken F as a constant,

dp  RC -
7(r) = Rodf; o {1—t h("’wl”p)}. (25)
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Figure 12. Plot of the pressure profiles for the three solutions of the large aspect ratio GSE
with C =2.9.

5.3. Equilibrium scaling

The equilibrium can be scaled following the rules given in Lutjens et al. [13]. These allow us
first to specify the value of the ¢ profile at one radial location, therefore allowing us to move
the g profile up and down but not to change its shape. We can also scale the value of y and
so we can alter the toroidal . We cannot alter the poloidal 8 or the internal inductance with
these scalings. The first rescaling is

Yiew = 01 Yoiqa, Frew = 04 Fold7 Prew = alzpolch (26)

and the second rescaling is
Frew = Foia + 0. 27)

We use (27) first to pick the g-profile and then (26) is used to set the 3; and toroidal current. We
have used the scalings to produce a set of equilibria with pressure profiles shown in figure 12
and safety factor profiles shown in figure 13. These show that the pressures and safety factor
profiles for these simple cases are not pathological in any sense. The equilibrium scaling
shows that suitable equilibria can always be found and that when a bifurcation point exists the
two equilibria can always be scaled to be sensible.
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Figure 13. Plot of the safety factor profiles for the three solutions of the large aspect ratio GSE
with C =2.9.



