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Abstract

Solution reconstruction from limited number of measurements is useful in many areas of heat
transfer applications. Unlike the standard problems, such reconstruction problems are ill-posed;
thus, the non-uniqueness of solution and inherent instability severely complicates the mod-
elling process. Consequently, more conventional inverse analysis methods to reconstruct solutions
remain computationally intractable and lacking sufficient flexibility, especially when dealing
with time-dependent problems. Aided by powerful Graphical Processing Units (GPUs), Machine
Learning (ML) methods rose in popularity due to their flexibility and ability to efficiently process
large amounts of data. In recent years, the Transformer-based ML models have gained recog-
nition for their remarkable performance in Natural Language Processing (NLP) tasks as well
as time-series analysis, overshadowing the performance of the ML models conventionally used
for sequence processing, such as the long short-term memory (LSTM) models. These achieve-
ments make Transformer-based models seemingly ideal candidates for reconstructing full solutions
from a few measurements. This article compares the performance of these novel Transformer-
based models with a simple LSTM model in reconstructing transient one-dimensional (1D) and
two-dimensional (2D) thermal fields using sparse spatial measurements. Counterintuitively, the
simple LSTM model achieves higher or comparable prediction accuracy compared to the com-
plex Transformer-based models while also exhibiting shorter or comparable training times, which
may render Transformer-based models a suboptimal choice for reconstructing transient solutions.
Instead, more traditional sequence processing ML models, such as LSTM, might be preferred for
this purpose.

Keywords: Machine Learning, Transformer, Transient problem, Solution reconstruction, Conduction,
Computational heat transfer, Sparse measurements

Nomenclature

α Thermal diffusivity
αx Thermal diffusivity in x direction
αy Thermal diffusivity in y direction
[K] Key matrix for self-attention operation
[Q] Query matrix for self-attention operation
[Upred] Predicted temperature matrix
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[Utrue] True temperature matrix
[V ] Value matrix for self-attention operation
[W ]

′
Scaled weight matrix for self-attention operation

[W ] Normalised weight matrix for self-attention operation
[Wk] Key weight matrix for self-attention operation
[Wq] Query weight matrix for self-attention operation
[Wv] Value weight matrix for self-attention operation
[X] Input matrix for self-attention operation
[Y ] Output matrix for self-attention operation
{ki} Key vector for self-attention operation
{qi} Query vector for self-attention operation
{vi} Value vector for self-attention operation
{xi} Input vector for self-attention operation
{yi} Output vector for self-attention operation
b Bias of the RNN cell
bf , bi, bc̃, b0 Biases of the modified LSTM cell
bi, bc̃, bo Biases of the original LSTM cell
ct Original LSTM cell state at time t
dmodel Model dimension
ft Forget gate value of the modified LSTM cell at time t
h Number of heads in multi-head (self-)attention
ht Hidden state (or recurrent information) of the RNN, original and modified LSTM cells at

time t
it Iteration number
l Prediction window size (sequence length)
lr Learning rate
Nout Number of output channels
Ntotal Total number of temperature data points
PEi,n Prediction error at node n at time step i
t Time
u Temperature
upred i,n Predicted temperature at node n at time step i
upred k kth temperature value predicted by the ML model
utrue mean True temperature mean
utrue i,n True temperature at node n at time step i
utrue k kth true temperature value out of Ntotal temperature data points
Wh, Wx Weights of the RNN cell
Wfh, Wfx, Wih, Wix, Wc̃h, Wc̃x, Woh, Wox Weights of the modified LSTM cell
Wih, Wix, Wc̃h, Wc̃x, Woh, Wox Weights of the original LSTM cell
x Spatial coordinate
xt Input of the RNN, original and modified LSTM cells at time t
y Spatial coordinate
yt Output of the RNN cell at time t

1 Introduction

Transient inverse analysis is a research area in computational engineering which addresses solving
various time-dependent inverse problems, including solution reconstruction from limited number of
measurements. An inverse problem significantly differs from a standard forward problem. Generally,
transient forward problems are well-posed; therefore, given the appropriate initial and boundary
conditions the numerical solution can be calculated with a defined accuracy (Tarantola, 2004). Con-
trariwise, one type of transient inverse problem involves reconstructing the full data inside a problem
domain using the available sparse data (observations or measurements). Unlike the standard forward
problem, the inverse problem is ill-posed (Tarantola, 2004); consequently, the non-uniqueness of the
solution and inherent instability severely complicates the modelling process oftentimes making it
computationally intractable, especially for challenging problems.

In order to combat the limitations of the more conventional approaches to reconstructing transient
solutions, this paper explores the use of two types of Machine Learning (ML) models to aid the
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process of obtaining solutions within an acceptable margin of uncertainty. With the advent of powerful
Graphical Processing Units (GPUs) ML became popular in many areas of science and engineering
due to its flexibility and the ability to process vast amounts of data within a feasible timescale. In
recent years, the Transformer-based ML models have attained recognition by achieving outstanding
performance in various Natural Language Processing (NLP) tasks, as evidenced by the well-known
ChatGPT chatbot (Qin et al., 2023), as well as numerous time-series analysis problems (Wen et al.,
2023; Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Lim and Zohren, 2021). These successes in
the area of temporal sequence transformation make them seemingly ideally suited for transient inverse
analysis. This paper compares the performance of the novel complex Transformer-based models with
the performance of simple long short-term memory (LSTM) model (Hochreiter and Schmidhuber,
1997), which is the ML model type traditionally used for the sequential data processing (Yu et al.,
2019), for the task of reconstructing the transient one-dimensional (1D) and two-dimensional (2D)
thermal fields.

The aim of the current work is to showcase the suitability of the increasingly popular Transformer-
based models for reconstructing transient solutions, a problem encountered in many industrial
applications, against more conventional ML models, such as LSTM. The source codes used to produce
the results can be found at https://doi.org/10.5281/zenodo.8208286.

2 Background

This section provides the background information and add context necessary for understanding the
significance of the study presented in this paper.

2.1 Transient inverse problem

The general definition of a transient forward problem can be given as determining the time-dependent
effects of the given causes using the applicable physical model of a system. In order to solve the
transient forward problem and obtain a full solution inside a domain using standard methods, the
system parameters, the boundary conditions, and the initial conditions of the system should be
prescribed. Contrariwise, the transient inverse problems can be divided into two types:

1. Determining the system parameters from the observed causes and effects. This is a classic definition
of an inverse problem (Tarantola, 2004).

2. Determining the causes from the observed time-dependent effects. In essence, it is a task of using
the available sparse data inside a domain (observations or measurements) to reconstruct the full
data solutions.

Various methods have been employed over the years to deal with the inverse problems; however,
historically, more attention has been given to the inverse problems falling under the first type.
The more traditional methods include functional analytic regularisation as well as the statistical
regularisation, with the most well-known example being the Bayesian inversion (Tarantola, 2004;
Arridge et al., 2019). A search-and-optimisation-based approach is another way to obtain solutions
to transient problems. For instance, Bangian-Tabrizi and Jaluria (2018) solved the inverse 2D natural
convection problem in steady state using a Particle Swarm Optimisation (PSO) algorithm (Zhang
et al., 2015). Whereas Arridge et al. (2019) and Tamaddon-Jahromi et al. (2020) provide a more
comprehensive review of the various methods used to solve inverse problems.

This paper focuses on the transient inverse problem of the second type, the reconstruction of
transient thermal fields in particular. Perhaps the most common sources of the sparse data observed
inside a domain are the data obtained from physical experiments. Fusion energy technology research
facilities, designed to test components’ suitability for the extreme environment inside a fusion rector,
regularly encounter transient inverse problems stemming from the sparse experimental data. The
HIVE (Heating by Induction to Verify Extremes) experimental facility (Hancock et al., 2018) is an
illustrative example of that: inverse analysis has to be performed to reconstruct the full temperature
field using the temperature measurements recorded by a few thermocouples. Figure 1 shows an
example of the HIVE experimental setup.

2.2 Long short-term memory (LSTM)

Recurrent neural networks (RNNs) are extensively used for various sequential data processing tasks
(Yu et al., 2019). RRNs typically consist of a number of standard recurrent cells (Figure 2), the
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Fig. 1: The arrangement of coil and sample inside HIVE (Hancock et al., 2018).

mathematical representation of which can be written as:

ht = σ (Whht−1 +Wxxt + b)

yt = ht (1)

where xt, yt, and ht represent the input, output, and the hidden state (or recurrent information)
of the cell at time t respectively, ht−1 is the hidden state at time t − 1, while Wh and Wx are the
weights of the cell, and b is the bias. The operator σ is a sigmoid function.

Fig. 2: Standard recurrent cell for RNNs.

However, a RNN comprised of the standard recurrent cells tend to experience difficulties during
the training process due to the vanishing or exploding gradients between inputs that are far apart in
time (Bengio et al., 1994). In order to address this problem of long-term dependencies, the long short-
term memory (LSTM) cell, a type of RNN, was developed more than two decades ago (Hochreiter
and Schmidhuber, 1997) and successfully applied to a wide range of sequential tasks, such as speech
recognition (Hsu et al., 2016), trajectory prediction (Altché and de La Fortelle, 2017), and prediction
of the remaining useful life (Ren et al., 2021), to name a few. The original LSTM cell contains only
input and output gates (Figure 3) and is represented by the following expressions:

it = σ (Wihht−1 +Wixxt + bi)

c̃t = tanh (Wc̃hht−1 +Wc̃xxt + bc̃)

ct = ct−1 + it ⊙ c̃t

ot = σ (Wohht−1 +Woxxt + b0)

ht = ot ⊙ tanh (ct) (2)

where ct and ct−1 represent a LSTM cell state at times t and t−1 respectively, while Wih, Wix, Wc̃h,
Wc̃x, Woh, Wox are the weights, bi, bc̃, bo are the biases. The operator ⊙ is the Hadamard product
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(also known as the element-wise product). The input gate determines what information should be
stored in the cell state, whereas the output gate chooses what information should be extracted from
the cell state for the output.

Fig. 3: Original LSTM cell (Hochreiter and Schmidhuber, 1997).

In the present work, a LSTM network comprising a modified version of the original LSTM cells
is used. The modification incorporates a forget gate, which decides what information should be
eliminated from the cell state (Gers et al., 2000). Figure 4 shows the modified LSTM cell, and the
following equations represent the cell:

ft = σ (Wfhht−1 +Wfxxt + bf )

it = σ (Wihht−1 +Wixxt + bi)

c̃t = tanh (Wc̃hht−1 +Wc̃xxt + bc̃)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ot = σ (Wohht−1 +Woxxt + b0)

ht = ot ⊙ tanh (ct) (3)

where ft represent the value of the forget gate at a time t.
It should be noted that in this sub-section t is the tth time step in a sequence as it is the commonly

used notation for RNNs; however, t means the total sequence length in the subsequent sub-sections.

2.3 Transformers

The classic Transformer model was created by the Google research team in 2017 and successfully
applied to the Natural Language Processing (NLP), such as natural language generation and machine
translation (Vaswani et al., 2017). Nowadays, Transformer is considered to be the best model for the
various NLP tasks (Wolf et al., 2020), with Chat Generative Pre-trained Transformer (ChatGPT)
(Qin et al., 2023), an Artificial Intelligence (AI) chatbot, being probably the most famous exam-
ple of the impressive results Transformers are capable of achieving. However, NLP is essentially a
sequence-to-sequence transformation task, since the model input and output are almost always an
ordered series of elements. This fact makes the Transformer an appropriate model for time-series
prediction. Indeed, in recent years a number of Transformer-based models were successfully applied
to various time-series tasks, such as weather, electricity consumption, and exchange rate prediction.
Wen et al. (2023) reviewed the state-of-the-art Transformer-based models used to analyse the time
series; whereas, Lim and Zohren (2021) conducted a survey of Deep Learning (DL) methods used for
time-series forecasting. The aforementioned surveys might not be completely exhaustive; as Trans-
formers are gaining popularity, the new Transformer-based models and the numerous variations of
the already existing ones are created every year. Consequently, it is quite challenging to keep track
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Fig. 4: Modified LSTM cell with a forget gate.

of all new developments, particularly due to the fact that these advances are oftentimes made in
widely different areas of research, such as weather prediction (Wu et al., 2022) and computer vision
(Ivanovic and Pavone, 2019). Meaning that the process of comparing the new models between each
other is complicated by the fact that they have been tested on the research-area-specific datasets,
therefore it is not immediately obvious which model is better suited for engineering applications.

The primary advantage of the Transformer-based models lies in the absence of any recurrent
connections, which are present in RNNs (Hochreiter and Schmidhuber, 1997). The elimination of
the recurrent connections should significantly reduce the training times and make the model more
parallelisable, which is beneficial for the model training on GPUs. Furthermore, they were found to
be excellent at detecting the long- and- short-term sequence dependencies, which should make the
model more accurate. (Vaswani et al., 2017).

Figure 5 shows a simplified transformer block. This paper will not provide a detailed explanation
of how Transformers work. Readers are referred to Bloem (2019) and Vaswani et al. (2017) for a more
detailed introduction to self-attention and the classic Transformer. Nevertheless, a brief overview of
the classic self-attention is provided in the next sub-section.

Fig. 5: Simplified transformer block, which consists of multi-head (self-)attention, layer normalisa-
tion, feed-forward network, and another layer normalisation. The reader is referred to Bloem (2019)
for a more detailed introduction to the classic Transformer.
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2.4 Self-attention

At the core of any Transformer-based model is a self-attention operation or a variation thereof.
Figure 6 shows the classic self-attention operation used in the classic Transformer (Vaswani et al.,
2017). The input is t vectors of size K, while the generated output is a different set of t vectors of
the same size. The input vectors are used to calculate queries, keys, and values using query, key, and
value weight matrices:

{qi} = [Wq]{xi}
{ki} = [Wk]{xi}
{vi} = [Wv]{xi} (4)

where {qi}, {ki}, {vi}, and {xi} are ith query, key, value, and input vectors, respectively; [Wq],
[Wk], and [Wv] are the query, key, and value weight matrices, respectively. All query, key, and value
vectors can be concatenated to obtain query, key, and value matrices, which are [Q], [K], and [V ],
respectively. The scaled weight matrix [W ]

′
is calculated using the following equation:

[W ]
′
=

[Q] [K]
T

√
K

(5)

The scaled weight matrix is normalised using a softmax function (Goodfellow et al., 2016):

[W ] = softmax
(
[W ]

′)
(6)

Finally, the normalised weight matrix [W ] is then multiplied by the values vector to finally obtain
the output matrix [Y ], consisting of output vectors {yi}:

[Y ] = [W ] [V ] (7)

The query, key, and value weight matrices are trainable parameters. The Transformer-based
models tend to employ several self-attention operations in parallel (Figure 7), which allows for a
more efficient extraction of the various features in the given time series. The self-attention operation
comprises a number of matrix multiplications, which is beneficial as they can be performed using a
highly optimised and efficient matrix multiplication code.

Fig. 6: Classic self-attention used in the classic Transformer (Vaswani et al., 2017). The input is
t vectors of size K, while the generated output is a different set of t vectors of the same size. The
input vectors together with the query, key, and value weight matrices are used to calculate queries,
keys, and values; a weight matrix is produced by multiplying queries and keys, and it is subsequently
scaled and normalised.
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Fig. 7: Classic multi-head (self-)attention operation. Several self-attention operations are employed
in parallel, which allows for a more efficient extraction of the various features in the given time
series. The output vectors with reduced dimensions are concatenated and then the linear projection
is applied to them to obtain the output vectors.

3 Methodology

3.1 Selected models

In this paper LSTM model and four Transformer-based models are applied to the 1D and 2D heat
conduction problems. Table 1 provides a summary of these models; the classic Transformer will
hereafter be referred to as the Transformer. The self-attention operation used in the Transformer
(Vaswani et al., 2017) is described in Sub-section 2.4. Informer (Zhou et al., 2021), Autoformer
(Wu et al., 2021), and FEDformer (Zhou et al., 2022) were developed with an aim of increasing
the Transformer’s efficiency by reducing its complexity and adapting the architecture specifically to
time-series processing (Table 1).

Table 1: The summary of the models considered in this paper.

Model type LSTM Transformer Informer Autoformer FEDformer

Original purpose Sequential data Linguistic data Temporal data Temporal data Temporal data
Self-attention type N/A Classic self-attention Sparse self-attention Auto-Correlation Discrete Fourier

Transform (DFT)

3.2 Model structure

Table 2 presents the model hyperparameters used for the Transformer-based models in this paper.
Three layers, two encoder layers and one decoder layer, are used; three values of the input and
output time-series length (sequence length hyperparamter) are considered: 25, 50, and 100. For
greater clarity, the sequence length l will be referred to as the prediction window size, with the
prediction window being defined as the time interval for which a prediction is made by the model.
The hyperparameters No. 4-9 are assigned the values used in literature (Vaswani et al., 2017; Zhou
et al., 2021; Wu et al., 2021; Zhou et al., 2022).

Table 3 presents the model hyperparameters used for the LSTM model in this paper. Only
one layer is used; the model dimension is fixed at 512 to match the Transformer-based models.
Three values of the prediction window size l are considered: 25, 50, and 100. Furthermore, the feed-
forward layer is added after one LSTM layer in order to reshape an output and directly predict the
temperature over multiple time steps in one inference step.
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Table 2: Hyperparameters selected for all Transformer-based models.

No. Hyperparameter Value(s)

1. Encoder layers 2
2. Decoder layers 1
3. Prediction window size (sequence length) l 25, 50, and 100
4. Model dimension dmodel 512
5. Multi-head (self-)attention heads h 8
6. Feed-forward network dimension 2048
7. Dropout rate 0.05
8. Activation function GELU
9. Attention factor 3

Table 3: Hyperparameters selected for LSTM models.

No. Hyperparameter Value(s)

1. LSTM layers 1
2. Prediction window size (sequence length) l 25, 50, and 100
3. Model dimension dmodel 512
4. Dropout rate 0.05

3.3 Training

All Transformer-based models are trained using an Adam optimiser (Kingma and Ba, 2017). Addi-
tionally, the warm-up stage is applied to the learning rate as it was shown to improve the training
process of the Transformer-based architectures (Xiong et al., 2020). The learning rate during the
warm-up stage is given by:

lr(it) =
it

Twarmup
lrmax for it ≤ Twarmup (8)

where lr is the learning rate, and it is an iteration number. While the learning rate after the warm-up
stage is given by:

lr(it) =
lr(it− 1)

√
Twarmup√

it
for it > Twarmup (9)

Transformer-based models are trained using lrmax and Twarmup values provided in Table 4 for
500 epochs with the batch size of 32; then the best option is selected for each model type listed in
Table 1 using Normalised Root Mean Square Error (NRMSE) as a metric:

NRMSE =
RMSE

utrue mean
and RMSE =

√∑Ntotal

k=1 (utrue k − upred k)2

Ntotal
(10)

where Ntotal is a total number of temperature data points, utrue mean is the true temperature mean,
utrue k is the kth true temperature value out of Ntotal temperature data points, while upred k is the
kth temperature value predicted by the ML model. Further details are provided in Section 4.

The LSTM model is trained using just an Adam optimiser (Kingma and Ba, 2017) for 500 epochs.
Finally, NVIDIA A100 40GB GPU is used for training of all ML models considered in this paper.
Figure 8 shows the convergence during the training, with the best options shown for Transformer,
Informer, Autoformer, and FEDformer.

All models are initialised with a fixed random seed to ensure the repeatability of the results.
This approach guarantees the consistency of the initial weights and any stochastic processes within
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Table 4: Learning rates used to train the models for 500 epochs; the best option is selected for
each model type listed in Table 1 using Normalised Root Mean Square Error (NRMSE) as a metric
(Eq. 10).

Option No. Constant lr or with warm-up lrmax Twarmup

1. Constant lr = 1e−4 N/A N/A
2. With warm-up 1e−3 4000
3. With warm-up 1e−3 2000
4. With warm-up 1e−3 500
5. With warm-up 5e−4 4000
6. With warm-up 5e−4 2000
7. With warm-up 5e−4 500

the training algorithm across different runs. Thus, the potential variability in performance due to
random initialization is mitigated allowing for a balanced comparison of the model architectures.

Fig. 8: Model convergence during the training process for 1D and 2D transient heat conduction cases
discussed in Section 4.

4 Results and discussion

4.1 One-dimensional transient heat conduction

The linear 1D transient heat conduction equation is given by the following expression:

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
(11)

where u is temperature, α is thermal diffusivity, t is time, and x is a space coordinate.
For this case α is set to be equal to 8.6e−4m2/s, while the boundary and initial conditions are

given by (Figure 9):

Boundary Conditions: u(x = xA, t) = 255.372K and
∂u(x = xB , t)

∂x
= 0

Initial Conditions: u(x, t = 0) = 272.039K (12)

The Ground Truth (GT) solution is obtained using the Finite Difference Method (FDM) imple-
mented in the PyPDE Python package (Zwicker, 2020). Figure 9 shows the grid used to generate the
GT; Figure 10 shows the GT used for model testing. The simulation is run for 1000s and the tem-
perature is recorded every second: the first 700s of the obtained data is used for ML training, the
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next 100s for ML validation, and finally the last 200s is used for ML testing. The temperature values
at the six input channels (Figure 9) are given to the ML model, whereas the temperature values at
the 194 output channels are generated by the ML model (Figure 11). The locations of the six input
channels are randomly selected.

For the training, validation, and testing the prediction window is moved by one time step forward,
which is equal to one second in this case, to generate one input-output sample. For example, assuming
that the prediction window size l is equal to 50, the first prediction window spans from 1s to 50s
of 200s used for ML testing, the second one spans from 2s to 51s, the third from 3s to 52s etc.
Consequently, for testing when l = 50 there are 200− 50+1 = 151 prediction windows for which the
predicted temperature matrix [Upred] and true temperature matrix [Utrue] are generated. [Upred]
and [Utrue] are matrices of dimension ((50 · 151)×Nout), where Nout is the number of output
channels, which is equal to 194 for this case. Therefore, for Eq. 10 Ntotal can be calculated as:

Ntotal = (50 · 151) ·Nout = (50 · 151) · 194 (13)

For other values of the prediction window size l and Nout the calculations are performed in the same
manner.

Fig. 9: The 1D grid used to generate the Ground Truth (GT) for 1D transient heat conduction.
The input and output channels of the mesh nodes are highlighted, with the six green crosses being
the input channels and the 194 red dots being the output channels. The temperature values at the
six input channels are given to the ML model, whereas the temperature values at the 194 output
channels are generated by the ML model at every time step, which is equal to 1s in this case. The
locations of the six input channels are randomly selected.

Fig. 10: The Ground Truth (GT) for 1D transient heat conduction problem generated using the
Finite Difference Method (FDM) implemented in the PyPDE Python package (Zwicker, 2020). This
region is used for the model testing. The temperature values at the six input channels (green crosses)
are given to the ML model, whereas the temperature values at the 194 output channels (not shown
on this figure, please refer to Figure 9) are generated by the ML model. The locations of the six input
channels (green crosses) are randomly selected.

Table 5 provides testing NRMSEs calculated using Eq. 10 with Eq. 13, as well as the training
times. In order to visualise the error distribution in space and time, four consecutive prediction
windows (out of 151 prediction windows) are selected for the prediction window size l = 50; these
are four prediction windows spanning from 1s to 50s of 200s used for ML testing, from 51s to 100s,
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Fig. 11: Outline of the Machine Learning (ML) model used for the transient thermal field recon-
struction. The temperature values at the six input channels are given to the ML model, whereas the
temperature values at the 194 output channels are generated by the ML model. The locations of the
six input channels are randomly selected.

from 101s to 150s, and finally from 151s to 200s. Figure 12 (top row) shows the prediction error
distribution defined using Eq. 14, whereas the bottom row of this Figure shows the prediction errors
averaged at each time step using Eq. 15.

PEi,n =
|upred i,n − utrue i,n|

utrue i,n
(14)

PEi =

∑Nout

n=1 PEi,n

Nout
(15)

where PEi,n is a prediction error at node n at time step i, PEi is a prediction error averaged at
time step i; upred i,n and utrue i,n are the predicted and true temperatures, respectively, at node n
at time step i.

Table 5 shows that for all three values of l LSTM model achieves the lowest training times,
whereas FEDformer model consistently has the highest training times. For l = 25 and l = 50 LSTM
model attains the lowest NRMSE; and, indeed, this correlates with the prediction error distribution
on Figure 12. For l = 100 Transformer displayed the lowest NRMSE; however, the NRMSE of LSTM
is only 0.004% higher. Finally, Autoformer model obtained the NRMSE more than two times higher
than LSTM model.

Table 5: Model testing errors and training times for the 1D heat conduction calculated using
Eq. 10. The best results are highlighted in green bold and the worst results are highlighted with a
red underline.

Model type LSTM Transformer Informer Autoformer FEDformer

Prediction window size l = 25
NRMSE (Eq. 10) [%] 0.188 0.189 0.192 0.497 0.362
Training time [min] 35.9 39.1 40.2 40.9 46.4

Prediction window size l = 50
NRMSE (Eq. 10) [%] 0.189 0.190 0.190 0.493 0.365
Training time [min] 36.0 38.5 39.8 42.4 52.3

Prediction window size l = 100
NRMSE (Eq. 10) [%] 0.196 0.192 0.195 0.468 0.371
Training time [min] 36.3 38.5 40.9 43.8 65.2

4.2 Two-dimensional transient heat conduction

The linear 2D transient heat conduction equation is given by the following expression:

∂u(x, y, t)

∂t
= αx

∂2u(x, y, t)

∂x2
+ αy

∂2u(x, y, t)

∂y2
(16)

where x and y are the spatial coordinates, and αx and αy are the thermal diffusivities in x and y
directions.
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Fig. 12: Prediction error distribution calculated using Eq. 14 (top row) and prediction errors averaged
at each time step calculated using Eq. 15 (bottom row) for the 1D heat conduction for five models
with the prediction window size l = 50. For this error visualisation four prediction windows located
consecutively to one another are selected. The six green crosses are the input channels.

For this case αx is set to be equal to 13.9e−4m2/s, while αy is set to be equal to 3.3e−4m2/s.
The boundary and initial conditions are given by Eq. 17, and Figure 13 shows the location of the
domain boundaries.

Boundary Conditions:

1. u(x, y, t) = 255.372K for x, y ∈ [AB] ∪ [BC]

2. ∇u(x, y, t) = 0 for x, y ∈ [CD] ∪ [DA]

Initial Conditions: u(x, y, t = 0) = 272.039K (17)

The Ground Truth (GT) solution is obtained using the Finite Element Method (FEM) imple-
mented in Code Aster open-source software (Électricité de France (EDF), 1989–2023). Figure 13
shows the mesh used to generate the GT; Figure 14 shows the GT used for model testing. The sim-
ulation is run for 1000s and the temperature is recorded every second: the first 700s of the obtained
data is used for ML training, the next 100s for ML validation, and finally the last 200s is used for ML
testing. The temperature values at the twelve input channels are given to the ML model, whereas
the temperature values at the 1142 output channels are generated by the ML model (Figures 11
and 13). The locations of the twelve input channels are randomly selected. Similar to 1D case (Sub-
section 4.1), for the training, validation, and testing the prediction window is moved by one time
step forward, which is one second in this case, to generate one input-output sample; the procedures
for calculating the total number of prediction windows and NRMSEs are exactly the same as in the
1D case.

Table 6 provides testing NRMSEs calculated using Eq. 10 with Eq. 13, as well as the training
times. The prediction error distributions for the prediction window size l = 50 are visualised in the
similar way to 1D case (Sub-section 4.1). Figure 15 (top row) shows the time-averaged prediction
error distribution defined using Eq. 18, whereas the bottom row of this figure shows the prediction
errors averaged at each time step using Eq. 15 (please note that the different scales are used for these
charts in comparison with Figure 12).

PEn =

∑200
i=1 PEi,n

200
(18)
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where PEn is a prediction error averaged at node n. Figure 16 shows the prediction error distribution
variation with time; the four selected time instances correspond to the middle of each prediction
window in Figure 15. This Figure highlights the areas where the prediction errors tend to increase
with time.

Fig. 13: The 2D mesh used to generate the Ground Truth (GT) for 2D transient heat conduction.
The input and output channels of the mesh nodes are highlighted, with the twelve green crosses being
the input channels and the 1142 red dots being the output channels. The temperature values at the
twelve input channels are given to the ML model, whereas the temperature values at the 1142 output
channels are generated by the ML model. The locations of the twelve input channels are randomly
selected.

Fig. 14: The Ground Truth (GT) for 2D transient heat conduction problem generated using the
Finite Element Method (FEM) implemented in Code Aster open-source software (Électricité de
France (EDF), 1989–2023). It is used for the model testing. The temperature values at the twelve
input channels (green crosses) are given to the ML model, whereas the temperature values at the
1142 output channels (not shown on this figure, please refer to Figure 13) are generated by the ML
model. The locations of the twelve input channels (green crosses) are randomly selected.

Table 6 shows that for all three values of l FEDformer displayed the lowest NRMSEs and the
highest training times. However, the NRMSEs achieved by LSTM model is only 0.1-0.2% higher than
FEDformer, whilst LSTM model’s training is 20-41% faster than FEDformer’s. Moreover, one-layer
LSTM architecture is significantly less complex than FEDformer structure, meaning that it is easier
to troubleshoot it.

Surprisingly, the overall prediction error distribution patterns display similar features for all
models (Figures 15 and 16). For the Transformer-based models this can be potentially explained by
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the fact that all these models are structured around self-attention operation of some description.
However, the fact that the simple LSTM model, the structure of which is unrelated to the self-
attention operation, demonstrates almost identical error patterns is rather counterintuitive and may
potentially challenge the confidence in Transformer-based models.

Table 6: Model testing errors and training times for the 2D heat conduction calculated using
Eq. 10. The best results are highlighted in green bold and the worst results are highlighted with a
red underline.

Model type LSTM Transformer Informer Autoformer FEDformer

Prediction window size l = 25
NRMSE (Eq. 10) [%] 2.197 2.208 2.218 2.543 2.015
Training time [min] 37.9 38.3 40.9 42.7 47.5

Prediction window size l = 50
NRMSE (Eq. 10) [%] 2.170 2.191 2.193 2.415 2.015
Training time [min] 39.7 39.6 41.5 44.2 67.0

Prediction window size l = 100
NRMSE (Eq. 10) [%] 2.127 2.155 2.157 2.430 1.979
Training time [min] 42.0 42.0 43.6 48.1 66.9

Fig. 15: Time-averaged prediction error distribution calculated using Eq 18 (top row) and prediction
errors averaged at each time step calculated using Eq. 15 (bottom row) for the 2D heat conduction
for five models with the prediction window size l = 50. For this error visualisation four prediction
windows located consecutively to one another are selected. The twelve green crosses are the input
channels.

5 Conclusions

In conclusion, the popular Transformer-based ML models are compared with the simple one-layer
LSTM models for transient thermal field reconstruction problems. Generally, there are three main
reasons why it might be advantageous to use the Transformer-based models over RRNs, such as
LSTM, for sequence processing (Vaswani et al., 2017):
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1. Self-attention operation is more effective at capturing the long-range dependencies in a sequence,
thus the Transformer-based models should be more accurate.

2. They are more parallelisable as there are no recurrent connections; consequently, the training time
should be shorter.

3. Due to the attention maps (Appendix A), they are more interpretable, and thus suffer less from
the “black box” syndrome (Rudin, 2019), which ML models tend to be afflicted with; this should
facilitate better trust in the predictions.

However, the present work demonstrates that none of the aforementioned reasons hold true for
the considered cases of thermal problems concerned with solution reconstruction by providing the
following arguments:

1. Transformer-based models exhibited lower or comparable prediction accuracy relative to the simple
LSTM model.

2. The training times of the Transformer-based models are higher or comparable to the simple LSTM
model.

3. The attention maps (Appendix A) may provide interpretability improvement for the language-
related tasks, such as NLP (Vaswani et al., 2017) and computer vision (Kolesnikov et al., 2021),
since the significance of the attention weights in attention maps can be easily intuitively deducted
from the relationship between words in a sentence and from the parts of an image the attention
operation “pays attention” to, respectively. However, this is not so easily done when dealing
with just temporal data, as the relationship between values at different time steps cannot be
interpreted in such an intuitive fashion, especially for the problems intrinsically based on a set of
differential equations. Moreover, the LSTM layer weights can be visualised in the similar manner
(Appendix B) and have the same rather low level of interpretability for the problems considered
in this paper. Consequently, the interpretability advantage is negated.

Overall, the results of this study suggest that there is no significant benefit to using complex
Transformer-based ML models over the conventional simper ML models, such as classic LSTM
network, for solving transient thermal field reconstruction problems.

Regarding the application of these models to the practical problems, such as the one outlined
in Sub-section 2.1, the appropriate number of the reliable forward simulations would need to be
available in order to generate the training data. Or, alternatively, the abundance of experimental
data would need to be collected, which is rarely possible. Additionally, the computational effort of
the training process and the memory usage increase with the length of the input time sequence
(Table 7); consequently, for more complex problems significantly more time should be allocated for
the training and VRAM (GPU memory) more carefully managed with batching.

Table 7: Computational complexity and memory usage of the models considered in this paper.

Model type LSTM Transformer Informer Autoformer FEDformer

Computation complexity
(training)

O(L) O(L2) O(LlogL) O(LlogL) O(L)

Memory usage (training) O(L) O(L2) O(LlogL) O(LlogL) O(L)

* L represents the length of the input time sequence.
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Fig. 16: Prediction error distribution dependence on time for the 2D heat conduction for five models
with the prediction window size l = 50. The four selected time instances correspond to the middle
of each prediction window in Figure 15. The prediction errors are calculated using Eq. 14 for fixed
time instances i.
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Arridge, S., Maass, P., Öktem, O., and Schönlieb, C.-B., Solving inverse problems using data-driven
models, Acta Numerica, vol. 28, pp. 1–174, 2019.

Bangian-Tabrizi, A. and Jaluria, Y., An optimization strategy for the inverse solution of a convection
heat transfer problem, International Journal of Heat and Mass Transfer, vol. 124, p. 1147 – 1155,
2018.

Bengio, Y., Simard, P., and Frasconi, P., Learning long-term dependencies with gradient descent is
difficult, IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

Bloem, P., Transformers from scratch, 2019, URL https://peterbloem.nl/blog/transformers, accessed
on: March 29, 2023.
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Appendix A Attention maps for Transformer-based models

In general, self-attention operation or a variation thereof allows the model to attend to different
parts of the input vector sequence in order to generate an output vector sequence, meaning that it
concentrates more on the selected input vectors, which it deems to be more relevant, while generating
a certain output vector (Vaswani et al., 2017). As it is mentioned in Sub-section 2.4, the queries and
keys produced using query and key weight matrices are combined to produce a weight matrix, which
can be called an attention matrix; each element of this attention matrix, which can be referred to as
an attention score, represents the contribution it makes towards a certain output vector.

In order to illustrate this, the NLP example shown in Figure A1 can be considered (Bloem,
2019). The key representing the qualities the book contains and the query, which represent the reader
preferences, are matched using a dot product to obtain the attention score. This score demonstrates
how well the book matches the reader’s preferences. Generally, the attention score indicates the
degree of relevance between the key and the query; thus, it shows to what degree a certain output
vector out of the output vector sequence is influenced by a certain input vector out of the input
vector sequence. In the case of the transient thermal field reconstruction problems considered in this
paper, each input vector i contains the information provided by the input channels at ith time step,
while each output vector i contains the information provided by the output channels at ith time step
(Fig. 9 and 13). For the classic Transformer, the attention score indicating the degree to which the
output vector i is influenced by the input vector j can be calculated using a dot product between
the query i and the key j (Eq. A1).

Attention score (i, j) = {qi}T · {kj} i, j = 1, 2, ..., t (A1)

where {qi} is the query vector i corresponding to the output vector i, {kj} is the key vector j
corresponding to the input vector j, and t is a sequence length (Table 2).

Fig. A1: The book example illustrating the self-attention operation. The key representing the qual-
ities the book contains and the query, which represent the reader preferences, are matched using
a dot product to obtain the attention score. This score demonstrates how well the book matches
the reader’s preferences. Generally, the attention score indicates the degree of relevance between the
key and the query; thus, it shows to what degree a certain output vector out of the output vector
sequence is influenced by a certain input vector out of the input vector sequence. In the case of the
transient thermal field reconstruction problems considered in this paper, each input vector i contains
the information provided by the input channels at ith time step, while each output vector i contains
the information provided by the output channels at ith time step (Figures 9 and 13).

The attention matrix containing the attention scores can be visualised as a map by projecting
it on an image where each cell (i, j) corresponds to the attention score computed for query vector i
and key vector j. Figure A2 shows an example of an attention score (i, j) located on the attention
map image.
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Transformer-based models considered in this paper employ a multi-head attention operation
(Figure 7) where several self-attention operations are performed in parallel (Sub-section 2.4). Con-
sequently, each multi-head attention operation generates a number of attention maps equal to the
number of self-attention heads the multi-head attention operation is comprised of. Eight attention
heads are used in this paper (Table 2); therefore, eight attention maps can be generated per one
multi-head attention operation. It is important to note that these attention scores should not be
used to compare the different heads between each other, they should only be used to compare the
attention scores from one attention map between each other. Furthermore, the attention matrix size
for Transformer (Vaswani et al., 2017) and Informer (Zhou et al., 2021) is prediction window size l
by prediction window size l (Table 2); however, the attention matrix size for Autoformer (Wu et al.,
2021) and FEDformer (Zhou et al., 2022) is sequence length by dmodel/h (Table 2), this is because
the keys are projected in the sequence length direction prior to the calculation of attention scores.

Figures A3 and A4 show four out of eight attention maps for multi-head attention in the first
layer of each model for l = 50. The attention scores are scaled between 0 and 1 with the scaler fitting
done separately for each attention map.

Some distinctive characteristics can be observed in these attention maps. Transformer and
Informer attention maps are diverse, which means that different attention heads tend to attend to
different parts of the input vector sequence. This is beneficial for the model’s performance because
it signifies that the attention heads are extracting different features from the input data. Trans-
former’s attention maps are smoother than Informer’s ones, which can be attributed to the fact that
Informer utilises a sparse version of Transformer’s self-attention operation. On the other hand, in
spite of some differences Autoformer’s attention maps look vastly similar, which is undesirable since
this means that the attention heads are attempting to extract the same features from the input data.
The attention map similarity might be the reason why Autoformer’s performance is worse than the
performance displayed by other models.

Fig. A2: Attention score example. The attention matrix containing the attention scores can be
visualised as a map by projecting it on an image where each cell (i, j) corresponds to the attention
score computed for query vector i and key vector j. This Figure shows an example of an attention
score (i, j) located on the attention map image.

Overall, the ability to produce attention maps allows the Transformer-based model to be more
interpretable than other ML models, as they show how the model focuses on the various sections of
the input vector sequence. By visualising the the attention scores in this manner, it is possible to see
which parts of the input sequence the model “pays attention” to at each time step.
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Fig. A3: Attention maps for Encoder layer No. 1 for 1D heat conduction problem for four models
considered in this paper. The prediction window size l is equal to 50. This Figure show four out of
eight attention maps for multi-head attention in the first layer of each model. The attention scores
are scaled between 0 and 1 with the scaler fitting done separately for each attention map.

22



Fig. A4: Attention maps for Encoder layer No. 1 for 2D heat conduction problem for four models
considered in this paper. The prediction window size l is equal to 50. This Figure shows four out of
eight attention maps for multi-head attention in the first layer of each model. The attention scores
are scaled between 0 and 1 with the scaler fitting done separately for each attention map.
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Appendix B Weight visualisations for LSTM models

The purpose of this appendix is to illustrate that the weight visualisations similar to the attention
maps can be easily constructed for the one-layer LSTM model. These LSTM weight visualisations
have the same low level of intuitive interpretability as for the Transformer-based models specifically
for the transient thermal field reconstruction problems considered in this paper. Figure B5 shows the
values of ht for each time step l (Eq. 3) for LSTM models with the prediction window size equal to 50;
these values are scaled between 0 and 1 with the scaler fitting done separately for each visualisation.
For consistency these values are refereed to as attention scores in Figure B5.

Fig. B5: Weight visualisations for 1D and 2D heat conduction problems for LSTM models with the
prediction window size equal to 50. This Figure shows the values of ht for each time step l (Eq. 3).
The attention scores are scaled between 0 and 1 with the scaler fitting done separately for each weight
visualisation.
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