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Abstract. Linear and nonlinear gyrokinetic simulations are performed in experimen-

tally relevant scenarios built from a MAST case where a microtearing mode instability

dominates at ion Larmor radius scale. While this equilibrium is taken from MAST,

microtearing modes are only weakly unstable on the surface analysed here and are

not believed to dominate the experimental transport. This collisional microtearing

mode instability appears only when a velocity dependent electron collision frequency

is considered. Electrostatic potential fluctuations are found to provide a strong desta-

bilisation mechanism. The sensitivity to the electron collision frequency is investigated

in both linear and nonlinear simulations. While the effect of electron collision frequency

is moderate in linear simulations, a strong dependence on this parameter is found in

nonlinear simulations. The effect of magnetic islands generated by microtearing modes

and their interaction is analysed, showing that the radial extension of the stochastic

region caused by islands overlapping plays an important role in determining the sat-

uration level of the microtearing mode driven heat flux and it is consistent with the

heat flux increase observed in nonlinear simulations at low electron collision frequency

values. The magnetic shear is found to play an important role in the formation of a

stochastic layer.

1. Introduction

Previous theoretical and numerical works have shown the presence of a linear tearing

instability at high mode numbers driven by an electron temperature gradient and

denoted as microtearing mode (MTM) [1]. Recent nonlinear simulations have shown

that the MTM instability can significantly contribute to the electron heat flux in

the edge of H-mode plasmas as well as in the core of spherical tokamaks (see, e.g.,

Refs. [2–6]). The first theoretical description of the MTM instability has been proposed

in Ref. [1] and extended later in Refs. [7–12]. In particular, Ref. [7] shows that the MTM

instability separates into three regimes depending on the electron collision frequency,

νe = 4πnee
4 lnλ/[(2Te)

3/2m
1/2
e ] (ne is the electron density, λ is the Coulomb logarithm,

Te is the electron temperature and me is the electron mass): a collisionless regime
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with νe ≪ ω, a semi-collisional regime with νe ≪ (k∥vth,e)
2/ω and νe > ω (with

vth,e =
√

2Te/me the electron thermal velocity and k∥ the parallel wave vector), and a

collisional regime with νe ≫ ω, where ω is the MTM frequency. The work in Ref. [7]

neglects the effect of the electrostatic potential in the collisionless and semi-collisional

regimes. A following numerical analysis has extended this work by including the effect

of electrostatic potential fluctuations, showing that these provide a strong destabilising

effect [8], also confirmed in recent linear gyrokinetic simulations [13]. While first linear

studies show that the mechanism driving the collisional MTM instability requires a

velocity dependent collision frequency [9], unstable (collisional) MTMs have been found

also when a velocity independent collision operator is considered [14], highlighting the

presence of various driving mechanisms.

A magnetic perturbation δBmn associated with MTMs resonates at the rational

surface with q = m/n, where q is the safety factor, m and n are the poloidal and toroidal

magnetic perturbation mode number, respectively. Resonant modes can reconnect and

form magnetic islands. An estimate of the island width is derived in Ref. [15],

wisland = 4

√
δB

B0

rR

ns
, (1)

where B0 is the unperturbed magnetic field, r the tokamak minor radius, R the tokamak

major radius and s = (r/q)dq/dr is the magnetic shear. The distance between two

rational surfaces with consecutive m and same n, corresponding to q(rm) = m/n and

q(rm+1) = (m+ 1)/n, is approximated by

∆r ≃ 1/(nq′) = r/(nqs) , (2)

where q′ = dq/dr. When more toroidal modes are considered, the minimum distance

between two adjacent rational surfaces with q(rmn) = m/n and q(rm′n′) = m′/n′ can be

approximated by [16,17]

δr ≃ r∆n

n2qs
, (3)

where ∆n = n′ − n is the separation between toroidal mode numbers. If the magnetic

island width is larger than the distance between two adjacent rational surfaces, a region

of stochastic magnetic field lines can form [17]. Magnetic field stochasticity can provide a

strong transport mechanism, as described in Ref. [18], thus accounting for the significant

electron heat flux observed in nonlinear gyrokinetic MTM simulations [2]. In addition,

electron heat transport consistent with the island overlap criterion has been observed

in NSTX experiments [16].

While linear gyrokinetic simulations have been extensively carried out and show the

presence of MTMs in many experimentally relevant scenarios [4,14,19–24], an accurate

estimate of the electron heat flux driven by MTMs requires one to perform nonlinear

gyrokinetic simulations, which remain very challenging because of the high numerical

requirements [3]. In recent years, significant effort has been devoted to understand the

mechanisms behind the saturation of the MTM driven electron heat flux. For example,

Ref. [2] shows that the MTM driven heat flux can be significantly reduced by equilibrium
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flow shear. Zonal fields [6] and local temperature flattening [25] have also been found to

saturate MTM turbulence. In Ref. [5], ion-scale MTMs are suppressed by electron-scale

turbulence via cross-scale nonlinear interactions.

Here, we analyse the result of linear and nonlinear gyrokinetic simulations of

experimentally relevant cases built from the MAST discharge #22769. These cases are

characterised by a dominant ion scale collisional MTM instability, whose dependence on

various parameters and, in particular, on the electron collision frequency is investigated.

While the electromagnetic heat flux from MTMs is very low and not experimentally

significant on the chosen surface in this discharge, the local equilibrium nevertheless

provides a useful reference for a scientific study of nonlinear saturation of MTMs in

numerically tractable conditions close to marginal stability. Saturation mechanisms are

investigated, and indicate a significant contribution from zonal fields in the saturation

process, thus supporting Ref. [6]. In addition, the level of saturated heat flux is found to

strongly depend on the radial extension of the stochastic region due to magnetic island

overlapping.

This paper is organised as follows. The MAST reference case is introduced in

Sec. 2, where the dominant microinstabilities are identified by means of linear gyrokinetic

simulations. In Sec. 3, the main MTM instability is characterised and results from linear

simulation scans in electron temperature gradient, density gradient and electron collision

frequency are presented. Results of nonlinear simulations are reported in Sec. 4, where

the main saturation mechanism is identified. Finally, the effect of the stochastic layer

formation on heat flux is analysed in Sec. 5. Conclusions follow in Sec. 6.

2. The MAST reference case

The reference case is based on the MAST discharge #22769, which corresponds to the

high collisionality discharge of Ref. [21]. The equilibrium magnetic flux surfaces for

this discharge are shown in Fig. 1 at t = 0.2 s. The linear gyrokinetic analysis of

Ref. [21] points out the presence of a MTM instability at ion Larmor radius scales, thus

suggesting a possible important role played by MTMs in this discharge. This case is

therefore considered as a baseline scenario to characterise and analyse MTM turbulence

and transport. Details on the equilibrium and profiles are reported in Ref. [21].

In this work, we perform local linear and nonlinear gyrokinetic simulations at a

radial surface located in the middle of the tokamak core (r/a = 0.5) and depicted as

a red line in Fig. 1. The safety factor and magnetic shear profiles in a region around

r/a = 0.5 are also shown in Fig. 1. A Miller parameterisation [26], obtained by fitting

this radial surface using the pyrokinetics python library [27], is considered in the

following. Local parameters are reported in table 1.

Fig. 2 shows the growth rate and mode frequency of the dominant mode as

a function of ky from linear simulations carried out by using the gyrokinetic code

GS2 [28,29], with ky the binormal wave vector, ρs = cs/Ωi the ion sound Larmor radius,

cs =
√
Te/mD the ion sound speed, Ωi = eB/mD the ion cyclotron frequency and mD



Numerical investigation of microtearing modes in the core 4

(a)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
r/a

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 q
s

(b)

Figure 1: (a) Contour plot of the equilibrium poloidal magnetic flux for the MAST

discharge #22769 at t = 0.2 s [21]. The red line corresponds to the radial surface where

the gyrokinetic linear and nonlinear simulations are performed. (b) Safety factor and

magnetic shear profile in the region r/a ∈ [0.3, 0.7] around the relevant radial surface

at r/a = 0.5. The red dashed vertical line indicates the radial position of the reference

surface.

MAST #22769 at r/a = 0.5

q 1.07

ŝ 0.34

ρ∗ 0.015

κ 1.41

δ 0.23

∆′ -0.13

βe 0.057

ν∗ 0.1

ne 3.6× 1019 m−3

Te 450 eV

a/Ln 0.22

a/LTe 2.1

a/LTD
1.7

Table 1: Local parameters of the MAST discharge #22769 [21] at mid radius. The

parameters δ, κ, ∆′, ν∗, a/Ln and a/LT denote the plasma triangularity, the elongation,

the Shafranov shift, the collisionality, and the normalised inverse gradient lengths for

density and temperature, respectively, with ρ∗ = ρs/a, ν∗ = νeqR/(ϵ3/2vth,e) ≃ 0.1,

ϵ = r/R and a the tokamak minor radius.
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GS2 CGYRO

ETG MTM MTM

nθ 32 64 64

nr 17 65 64

nλ, nξ 24 24 24

nϵ 8 8 8

Table 2: Numerical resolution used in GS2 and CGYRO linear simulations, with nθ

and nr the number of grid points in the parallel and radial directions, respectively, and

nϵ the number of the energy grid points. In GS2 nλ is the number of pitch-angles,

while nξ is the number of Legendre pseudospectral meshpoints in the pitch-angle space

in CGYRO. A higher radial resolution in CGYRO, nr = 128, is required in some cases

to achieve an accurate agreement between CGYRO and GS2 linear results. Results of

CGYRO linear simulations are presented in Sec. 3.

the deuterium mass. We note in Fig. 2 the presence of two different instabilities at ion

and electron Larmor radius scale. The mode frequency of both instabilities is in the

electron diamagnetic direction (negative sign is used here for frequency in the electron

diamagnetic direction). The maximum growth rate of the electron scale instability is

two orders of magnitude larger than the one of the ion scale instability. The numerical

resolution used in GS2 linear simulations is reported in table 2. Results of convergence

tests are shown in Appendix A.

The real and imaginary components of the electrostatic potential δϕ and δA∥ are

shown in Fig. 3 as a function of the ballooning angle θ at the two different values of ky
corresponding to the maximum growth rate of the ion and electron scale instabilities.

The ion scale instability is characterised by δϕ extended along θ, while δA∥ is very narrow

around θ = 0. The mode has a tearing parity, i.e. δϕ has odd parity and δA∥ even parity

with respect to θ = 0. These are common features of a MTM instability [14]. The mode

at electron scale has a twisting parity (δϕ even and δA∥ odd), with both δϕ and δA∥

localised in the region of θ = 0. Electron scale modes are driven unstable by an electron

temperature gradient (ETG) instability. This agrees with previous gyrokinetic linear

simulations that have pointed out the presence of the ETG instability in various MAST

scenarios [30]. We note that the amplitudes of δϕ and δA∥, normalised to max |δϕ, are
comparable at kyρs = 0.5, while δϕ ≫ δA∥ at kyρs = 20. This is consistent with the ion

(electron) scale instability being electromagnetic (electrostatic).

In this work, we focus only on the MTM instability, although the ETG instability

drives most of the turbulent transport at the chosen radial surface of this MAST scenario,

as shown in Appendix B. In fact, we highlight that the aim of the present paper is

to investigate the saturation mechanism of this MTM instability and the role of the

stochastic layer rather than to provide an accurate prediction of the heat flux in this

MAST case.
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Figure 2: Growth rate (a) and mode frequency (b) as a function of ky. Only unstable

modes are shown. Results from linear GS2 simulations.

−60 −40 −20 0 20 40 60
θ/π

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

δϕ
/m

ax
|δ
ϕ|

kyρs=0.50
ℜ(δϕ)
ℑ(δϕ)

(a)

−60 −40 −20 0 20 40 60
θ/π

−1.5

−1.0

−0.5

0.0

0.5

δA
∥
/m

∥x
|δ
ϕ|

kyρs=0.50

ℜ(δA ∥ )
ℑ(δA ∥ )

(b)

−15 −10 −5 0 5 10 15
θ/π

−0.50

−0.25

0.00

0.25

0.50

0.75

δϕ
/m

ax
|δ
ϕ|

kyρs=20.00
ℜ(δϕ)
ℑ(δϕ)

(c)

−10 0 10
θ/π

−0.0010

−0.0005

0.0000

0.0005

0.0010

δA
∥
/m

∥x
|δ
ϕ|

kyρs=20.00
ℜ(δA ∥ )
ℑ(δA ∥ )

(d)

Figure 3: Real and imaginary part of δϕ/max |δϕ| [(a) and (c)] and δA∥/max |δϕ| [(b)
and (d)] as a function of the ballooning angle at the two ky values corresponding to the

maximum growth rate of the ion and electron scale instabilities.
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Figure 4: Poincare map of the magnetic field lines in the proximity of a rational surface

(centered at x = 0 here) showing the formation of a magnetic island caused by the MTM

instability at kyρs = 0.5. Panels (a), (b) and (c) correspond to different amplitudes of

δA∥.

Since νe ≃ ω, this MTM instability sits between the collisionless and semi-collisional

regimes of Ref. [7]. This regime has been numerically studied in Ref. [8] and analytically

addressed in a recent work reported in Ref. [31]. Both works show that the growth rate

of MTMs strongly depends on the electron collision frequency. The collisionality in the

MAST reference case is ν∗ = νeqR/(ϵ3/2vth,e) ≃ 0.1, with ϵ = r/R the inverse aspect

ratio. Therefore, trapped electron effects may also provide an additional drive for the

MTM instability, as described in Ref. [10].

The tearing instability leads to the formation of magnetic islands. Fig. 4 shows a

Poincaré map of the magnetic field at three different amplitudes of δA∥ at kyρs = 0.5,

which corresponds to the most unstable MTM. We highlight that the amplitude of δA∥

used in Fig. 4 is chosen only for representative purposes, as the actual value of δA∥ for a

linear unstable mode grows exponentially until nonlinear effects cause saturation. The

magnetic island forms at a rational surface located at x = 0. We note from Fig. 4 that the

magnetic island width increases from wisland ≃ 0.5 ρs to wisland ≃ 2 ρs as δA∥ is increased

from 5 × 10−3 ρ∗ρsB0 to 8 × 10−2 ρ∗ρsB0, which is in agreement with the prediction of

Eq. (1). The distance between adjacent rational surfaces at kyρs = 0.5 is given by Eq. (2)

and it is ∆r = 1/(sky) ≃ 6 ρs, which is a factor of three larger than the island width

at max |δA∥| = 0.08. If δA∥ is further increased, the magnetic islands generated by this

mode at different rational surfaces overlap partially, therefore generating a region of

stochasticity. The formation of a stochastic layer can strongly enhance heat transport,

as shown later in Sec. 5. We note that multiple toroidal modes are evolved in nonlinear

simulations, thus reducing the distance between adjacent resonant surfaces as compared

to the distance between rational surfaces for fixed n.
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Figure 5: Growth rate (a) and mode frequency (b) as a function of ky from CGYRO

and GS2 linear simulations with and without δB∥. Unstable and stable modes are shown

with solid and open markers, respectively.

3. Linear characterisation of the MTM instability

We explore here the sensitivity of the MTM instability to various parameters and, in

particular, to the electron collision frequency. Linear simulations are carried out with

the gyrokinetic codes CGYRO [32] and GS2, using a similar numerical resolution in

the two codes, as reported in table 2. A benchmark of the reference case is shown in

Fig. 5, where linear simulations with and without δB∥ are considered. A good agreement

between CGYRO and GS2 growth rate and mode frequency values is observed in the

region 0.2 < kyρs < 0.7 where MTMs are unstable. We note that the MTM instability is

weakly affected by δB∥, in agreement with Ref. [14]. The modes at kyρs ≤ 0.2 are stable

when δB∥ ̸= 0 and unstable when δB∥ = 0. Therefore, parallel magnetic fluctuations are

important to suppress this low ky ion temperature gradient (ITG) instability‡. Parallel
magnetic fluctuations are retained in all the following linear and nonlinear simulations,

and therefore the ITG mode at low ky is stable.

The effect of the electron temperature gradient is investigated in Fig. 6, where

growth rate and mode frequency values are shown at different values of a/LTe . The

growth rate depends on the electron temperature gradient, as predicted by early

analytical works [1, 9]. We note that the dependence on a/LTe is non-monotonic and

the maximum growth rate is reached at the reference value of a/LTe . A non-monotonic

dependence has also been observed in previous MAST linear simulations, as shown in

Ref. [14], where a resonance mechanism occurring at νe ≃ ω is proposed as a possible

explanation, as well as in ASDEX Upgrade and JET linear gyrokinetic simulations [23].

In addition, we also show in Fig. 6 the growth rate value from linear simulations with

‡ This instability is observed in the electrostatic limit and has a mode frequency in the ion diamagnetic

direction (positive sign).
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Figure 6: Growth rate (a) and mode frequency (b) as a function of the temperature

gradient at three different values of ky. Unstable and stable modes are shown with solid

and open markers, respectively. The star markers represent simulations with adiabatic

passing and kinetic trapped electrons at kyρs = 0.5 with a/LTe = 2.1 (nominal value) and

a/LTe = 3.6. The red vertical dashed line corresponds to the reference value of a/LTe.

Results from GS2 linear simulations.

adiabatic passing electrons and kinetic trapped electrons at two different values of a/LTe .

We note that these modes are stable when adiabatic passing electrons are considered,

hence pointing out a minor role played by trapped electrons.

Fig. 6 shows that MTMs are stable at intermediate a/LTe values, while another

instability appears at large a/LTe , associated with a transition in the mode frequency,

which, however, remains in the electron diamagnetic direction. The eigenfunctions

corresponding to the mode at kyρs = 0.5 and a/LTe = 4.2 are shown in Fig. 7. The

electrostatic potential is very elongated in the ballooning angle, similarly to the MTM

instability. On the other hand, the mode has a twisting parity (δϕ is even and δA∥ odd),

it is unstable also in the electrostatic limit and it is driven unstable by kinetic passing

electrons, as shown in Fig. 6. The instability appearing at large a/LTe is a ETG mode

characterised by kyρs ∼ 1 and kxρs > 1, which is similar to the long wavelength ETG

instability described in Ref. [33] (see Appendix C for further details on this instability).

The results of a density gradient scan are presented in Fig. 8, where the growth rate

and mode frequency at different ky values are shown as a function of a/Ln. The growth

rate decreases as the density gradient increases, similarly to the linear simulations in

Ref. [24].

The effect of the electron collision frequency is investigated in Fig. 9, where growth

rate and frequency values are shown at various values of νe and ky. The MTM instability

is suppressed at low collisionality in favour of ITG (at low ky) and ETG (at high ky),

thus confirming the collisional nature of this MTM instability, which is stable in the

collisionless limit. The MTM growth rate increases with νe, until it reaches its maximum
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Figure 7: Real and imaginary part of δϕ (a) and δA∥ (b) corresponding to the unstable

mode at kyρs = 0.5 and a/LTe = 4.2.
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Figure 8: Growth rate (a) and mode frequency (b) as a function of the density gradient

at three different values of ky. Unstable and stable modes are shown with solid and open

markers, respectively. The red vertical dashed line corresponds to the reference value of

a/Ln. Results from GS2 linear simulations.

value around νe = 0.42 cs/a. At this value of collision frequency, which is approximately

half the value of the collision frequency of the reference case, the growth rate is a factor

of two larger than in the reference case. The growth rate value decreases when the

collisionality is further increased. Since the maximum growth rate occurs at νe ≃ ω∗e,

with ω∗e the diamagnetic electron frequency, this may suggest a resonance mechanism

similar to the one observed in the electron temperature scan. We note that the ITG

instability is suppressed when νe > 0.4 cs/a, while the onset of the ETG instability

shifts at higher ky values when νe is increased (see Appendix C for further details). In

the following, we consider the most unstable case at νe = 0.42 cs/a. A comparison
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(a) (b)

Figure 9: Growth rate (a) and mode frequency (b) as a function of ky and νe. The white

dashed horizontal line indicates the value of νe in the reference MAST case. Results from

CGYRO linear simulations.
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Figure 10: Comparison between CGYRO and GS2 growth rate (a) and mode frequency

(b) from linear simulations with νe = 0.42 cs/a. Only unstable modes are shown.

between CGYRO and GS2 linear simulations at νe = 0.42 cs/a is shown in Fig. 10. A

good agreement is observed over the entire ky range both in the growth rate and mode

frequency values.

The driving mechanism of the MTM instability of Ref. [1] requires a velocity

dependent collision frequency [9]. In Fig. 11, we compare the results of linear simulations

with and without a velocity dependence in the collisional operator. The MTM instability

is retrieved only when the velocity dependence is retained. Modes at kyρs > 0.1 are

stable when νe(v) = νe(vth,e). The mode at kyρs = 0.1 is stable in the reference case and

unstable when an energy independent collision operator is considered. As an aside, we

note that the MAST linear simulations of Ref. [14] show a collisional MTM instability
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Figure 11: Growth rate (a) and mode frequency (b) as a function of ky from GS2 linear

simulations at νe = 0.42 cs/a with adiabatic ions (blue line), with δϕ = 0 (red line) and

with a velocity independent collision frequency (magenta line). Solid and open markers

are used for unstable and stable modes, respectively.

even when a velocity independent collisional operator is used, therefore suggesting a

qualitatively different MTM instability.

Previous analytical works suggest also an important stabilising effect on the MTM

instability from the ion dynamics [11]. Results of linear simulations with adiabatic ions

are shown in Fig. 11. Growth rate values increase slightly when considering adiabatic

ions, so the stabilising effect from kinetic ions is very weak in the case considered here.

Finally, the dependence on the electrostatic potential fluctuations is investigated.

Fig. 11 shows that MTMs are stable in the simulation with δϕ = 0, i.e. electrostatic

potential fluctuations are essential for the drift-tearing mode to be unstable in this case.

This is in agreement with the numerical calculations of Ref. [8] and the theoretical

predictions of Ref. [31], while it contrasts with previous MAST linear simulations [14],

where a weaker dependence of MTMs growth rate values on electrostatic potential

fluctuations is observed. The theoretical analysis in Ref. [7] predicts an important

effect of electrostatic potential fluctuations in the collisional regime.

4. Nonlinear simulation results and saturation mechanism

We present here the results of a nonlinear simulation scan carried out by using CGYRO.

These nonlinear simulations are computationally quite expensive since a high numerical

resolution is required to properly resolve the MTM instability, especially in the radial

direction (see table 3).

Fig. 12 (a) shows the time trace of the total heat flux from nonlinear simulations

with different values of aνe/cs ∈ {1.05, 0.82, 0.63, 0.42, 0.21}. The value of the electron

collision frequency in the MAST reference case is νe = 0.82 cs/a. The linear scan
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CGYRO nonlinear simulations

Parameters Reference Lower ky,min Higher s

nθ 32 32 32

nr 256 256 256

nky 10 20 16

nξ 24 24 24

nϵ 8 8 8

ky,minρs 0.07 0.035 0.035

Lx/ρs 168 168 82

Table 3: Numerical resolution used in CGYRO nonlinear simulations. The quantities

nky, ky,min and Lx represent the number of evolved ky modes, the minimum evolved finite

ky value and the radial extension of the flux tube domain, respectively. The simulation

“higher s” is discussed in Sec. 5.

presented in the previous section shows that the maximum MTM growth rate is achieved

at approximately νe ≃ 0.42 cs/a. We note that the heat flux driven by MTMs

is negligible for νe > 0.6 cs/a, despite MTMs being linearly unstable (see Fig. 9).

Therefore, there is no contribution to the heat flux from the MTM instability in the

reference MAST case (most of the turbulent heat flux is driven by the ETG instability

as shown in Appendix B). Fig. 12 (b) shows the electromagnetic and electrostatic

contribution to the saturated heat flux at different values of electron collision frequency.

When νe decreases from 0.63 cs/a to 0.42 cs/a, the heat flux increases by an order of

magnitude, while the maximum growth rate of the linear MTM instability increases by

less than a factor two. At νe = 0.42 cs/a and νe = 0.21 cs/a, the heat flux saturates

approximately at Qtot ≃ 0.02 QgB, where QgB = ρ2∗neTecs is the gyro-Bohm heat flux,

corresponding to Qtot ≃ 0.002 MW/m2. We note that the heat flux at νe < 0.6 cs/a

saturates at a value that is more than a factor of two than the saturated heat flux driven

by the ETG instability in the MAST reference case (see Appendix B). Fig. 12 (b) shows

that the electromagnetic heat flux largely dominates over the electrostatic contribution,

in agreement with previous nonlinear gyrokinetic simulations of MTMs [2, 3]. In the

following, we consider the case with νe = 0.42 cs/a.

The sensitivity to some numerical parameters is investigated by carrying out a

set of nonlinear simulations with different parallel grid resolution, different values of

ky,min (the minimum finite ky mode evolved in the simulation) and different size of the

radial flux-tube domain. The saturated heat flux level for each of these simulations

is shown in Fig. 13. The simulation with half the number of points in the parallel

direction predicts the same heat flux value within the error bar. Also the simulation

with ky,min = ky,min,ref/2 predicts the same heat flux level within the error bar. On the

other hand, the simulation with ky,min = 2ky,min,ref predicts a much lower heat flux. This

is partially expected as modes at kyρs ≃ 0.2 are MTM unstable. The importance of
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Figure 12: (a) Time trace of total heat flux from CGYRO nonlinear simulations with

different values of electron collision frequency. The nominal value of collision frequency

in the MAST reference case is νe = 0.82 cs/a, represented by the red line. (b) Saturated

level of the total (black), electromagnetic (red) and electrostatic (blue) heat flux obtained

by time averaging the heat flux at t > 1500 a/cs. The error bars are determined from

standard deviation.

low ky modes is highlighted in Fig. 14, where |δϕ(kx, ky)|2 and |δA∥(kx, ky)|2 spectra are

shown as a function of kx and ky. The maximum value of |δϕ(kx, ky)|2 and |δA∥(kx, ky)|2
occurs at kyρs ≃ 0.15 and small kx values§. In the simulation with ky,min = 2ky,min,ref , the

|δϕ(kx, ky)|2 and |δA∥(kx, ky)|2 spectra are under resolved and the heat flux is therefore

underestimated. We note that by varying ky,min the spacing between adjacent rational

surfaces is modified and this may potentially affect the formation of stochastic layers

due to magnetic island overlapping, as discussed in Sec. 5, thus also partially explaining

why the simulation with ky,min = 2ky,min,ref predicts a much smaller heat flux value.

The δϕ spectrum peaks at low ky values and is extended in kx [see Fig. 14 (a)], i.e.

significant δϕ amplitude is observed at high kx. The electrostatic potential fluctuations

are therefore very narrow radially and elongated in the binormal direction, as shown in

Fig. 15 (a). On the opposite, the δA∥ spectrum is more narrow in kx [see Fig. 14 (b)],

thus resulting in much longer radial perturbations, as shown in Fig. 15 (b), which remain,

however, smaller than the radial size of the flux tube domain. Given the presence of

elongated δA∥ structures, the effect of the radial extension of the flux tube domain is

tested. Fig. 13 shows that no significant difference on the heat flux level is observed in

the simulation with Lx = Lx,ref/2. This is also expected from Fig. 15 (b), where the

radial extension of A∥ fluctuations is considerably smaller than the radial size of the

flux tube domain, which therefore could be reduced by a factor of two without affecting

§ Large mode amplitudes at low kx values correspond to radially extended perturbations that may

question the applicability of the local approximation. On the other hand, Fig. 15 shows that the radial

extension of δϕ and δA∥ is considerably smaller than the radial size of the flux tube domain.
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Figure 13: Saturated heat flux value from CGYRO nonlinear simulations at νe =

0.42 cs/a and modified numerical resolution or domain size. The numerical resolution

used in the reference nonlinear simulation is listed in table 3. The error bar on the total

heat flux is determined from standard deviation.

(a) (b)

Figure 14: Spectrum of δϕ (a) and δA∥ (b) averaged over t ∈ [1500, 2500] a/cs and θ

from the nonlinear simulation at νe = 0.42 cs/a.

the radial resolution of δA∥. We note that, because of the low magnetic shear and

ky,min values, the Lx and Ly values used here are comparable to the size of MAST. This

questions the applicability of the local approximation and global gyrokinetic simulations

may be required to accurately predict the MTM driven heat flux, which is outside the

scope of the present work in which we are interested in the saturation of MTMs within

the local gyrokinetic framework.

The |δϕ(kx, ky)|2 and |δA∥(kx, ky)|2 spectra in Fig. 14 reveal the presence of a very
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(a) (b)

Figure 15: Snapshot of δϕ (a) and δA∥ (b) from the nonlinear simulation with

νe = 0.42 cs/a. Fluctuating quantities are shown without their zonal component.

strong zonal component, which is more than an order of magnitude higher than the

largest non zonal δϕ and δA∥ modes. Zonal flows and/or zonal fields may therefore

provide an important saturation mechanism here. In particular, the perturbed magnetic

shear from zonal A∥ perturbations, s̃ = qR/B(dδBy/dx) ≃ 0.1, is comparable to the

local magnetic shear, s = 0.34, thus suggesting a potential important role of zonal

fields. Saturation occurs via nonlinear interaction, where the nonlinear source term in

the gyrokinetic equation can be written as [32]

Sa,NL = [χa, ha] =
∂χa

∂x

∂ha

∂y
− ∂ha

∂x

∂χa

∂y
, (4)

where x and y are the radial and binormal coordinates, ha is the non adiabatic perturbed

distribution function of species a, and the generalised field potential

χa =
〈
δϕ(R+ ρ)− v∥δA∥(R+ ρ)− v⊥ · δA⊥(R+ ρ)

〉
R
, (5)

with R the guiding-center position, ρ = b × v/Ωca and ⟨·⟩R denotes the gyro-average

(see Ref. [32] for details). Different simulation tests are carried out to investigate the

effect of ⟨δϕ(kx, ky = 0)⟩θ and ⟨δA∥(kx, ky = 0)⟩θ in the nonlinear term of Eq. (4).

The time trace of the total heat flux from these tests is shown in Fig. 16. Removing

⟨δϕ(kx, ky = 0)⟩θ in Eq. (4) has little effect on the saturated heat flux level, thus

excluding an important effect of zonal flows on the saturation mechanism. On the

other hand, removing ⟨δA∥(kx, ky = 0)⟩θ leads to a substantial increase of the heat flux,

pointing out the main role played by zonal fields, in agreement with Ref. [6].

The kx spectrum of the zonal fields, ⟨A∥(kx, ky = 0)⟩θ, and its shear, ⟨k2
xA∥(kx, ky =

0)⟩θ, are shown in Fig. 17 in the proximity of kx = 0. We note that the zonal A∥

spectrum peaks approximately at |kxρs| ≃ 0.15 and decays quickly as |kx| increases.
The shear of the zonal fields shows a broader kx spectrum, with its maximum value

occurring in the region between |kxρs| ≃ 0.15 and |kxρs| ≃ 0.3. Therefore, we expect
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Figure 16: (a) Time trace of the total heat flux from nonlinear tests where the zonal

flows or zonal fields nonlinear interaction is turned off. The blue line represents the

reference simulation (νe = 0.42 cs/a), the orange line represents a test with ⟨δϕ⟩θ = 0

and the red line a test ⟨δA∥⟩θ = 0 in the nonlinear source term [see Eq. (4)]. (b)

Nonlinear simulation tests with ⟨δA∥(|kx| > kx0)⟩θ = 0 in the nonlinear source term for

various values of kx0.

an important role played by the low kx zonal field modes on the saturation mechanism.

The effect of the low kx zonal field modes on the heat flux is tested in Fig. 16 (b) by

removing ⟨δA∥(kx > kx0)⟩θ in Eq. (4) with different values of kx0. The saturated heat

flux value is controlled by the value of kx0. The heat flux increases when the zonal field

modes with |kx0ρs| ≥ 0.25 are removed, which is consistent with a reduction of the zonal

fields shear. We note that a transition to very large heat flux values is observed only

when the zonal field modes with |kx0ρs| > 0.11 are removed from the nonlinear source

term. We also mention that removing the zonal A∥ modes with |kxρs| ≤ 0.11 while

retaining the modes with |kxρs| > 0.11 causes a transition to large heat flux values, thus

confirming the important of the low kx zonal A∥ modes. As a consequence, the zonal

fields saturation mechanism is effective only if the low kx spectrum is well resolved (at

least in this case where both the zonal fields and the corresponding shear peak at low

kx), which translates into a domain sufficiently extended in the radial direction. Fig. 17

shows that the maximum of ⟨δA∥⟩θ and ⟨k2
xδA∥⟩θ spectra is well resolved in simulations

with Lx = Lx,ref and Lx = Lx,ref/2. On the other hand, the resolution is relatively low

in a simulation with Lx = Lx,ref/4 = 1/(sky,min), which is the minimum Lx value that

can be considered keeping all other parameters fixed. This simulation is affected by heat

flux oscillations and convergence difficulties. The kx resolution is therefore important

here to correctly capture the saturation mechanism via zonal fields.
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Figure 17: Normalised zonal fields (a) and zonal fields shear (b) averaged over time

and θ as a function of kx in the proximity of kx = 0 from nonlinear simulations at

νe = 0.42 cs/a with different radial domain extensions.

5. Magnetic islands interaction and local shear effect

We analyse here the effect of magnetic islands overlapping and subsequent formation

of a stochastic layer. Fig. 18 shows a Poincaré map of the magnetic field on a radial

section of the flux tube domain generated from the reference nonlinear simulation with

νe = 0.42 cs/a. Several magnetic islands with different mode numbers can be clearly

distinguished. The largest island width corresponds to the mode at ky/ky,min = 2, in

agreement with the δA∥ spectrum shown in Fig. 14, where the largest δA∥ amplitude is

achieved at ky/ky,min = 2 (excluding the zonal component). The island width is smaller

at higher ky and the subsequent perturbation of the equilibrium magnetic field is weaker.

Since the island separation is proportional to 1/n2 ∝ 1/k2
y (see Eq. 3), the effect of

these high-ky islands can nonetheless be important, especially when several islands at

different values of ky overlap. For example, the radial separation of resonant surfaces for

the ky/ky,min = 5 islands is ∆r = 1/(sky) ≃ 8.4 ρs and these islands appear in Fig. 18

at x ≃ 4 ρs, x ≃ 13 ρs and x ≃ 21 ρs. The ky/ky,min = 7 islands appear at x ≃ 2.2 ρs,

x ≃ 8 ρs, x ≃ 14 ρs and x ≃ 19.6 ρs (not clearly visible in Fig. 18). The ky/ky,min = 3

and ky/ky,min = 9 islands also appear at a radial surface near x = 14 ρs. The overlap of

these magnetic islands generates a layer of stochastic magnetic field lines in proximity

of x = 14 ρs, as shown in Fig. 19 (a). We note that the stochastic layer is quite narrow

in the radial direction and is surrounded by regions of weakly perturbed magnetic field.

In fact, the overall magnetic field stochasticity is relatively low, with regions of well

separated islands and almost unperturbed magnetic field. This is consistent with the

MTM driven heat flux at νe = 0.42 cs/a (where the MTM instability is linearly most

unstable) saturating at a small value.

The main role of zonal fields is to saturate the non zonal δA∥ at low amplitude,

thus reducing the width of the magnetic islands and therefore the stochastic layer size
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Figure 18: Poincaré map tracing where the magnetic field crosses the outboard

midplane as it winds around the torus. This is lines obtained from the nonlinear

simulation with νe = 0.42 cs/a. The color scale is used to identify magnetic field lines

starting at the same radial position. For the sake of clarity, only a part of the flux tube

radial domain is shown.

(see Sec. 4). However, a strong zonal A∥ can also directly affect the formation of a

stochastic layer. This is shown in Fig. 19 (b), where the Poincaré map is generated

without including the zonal A∥ (the nonlinear simulation does include the zonal A∥).

By comparing Fig. 19 (a) and (b), we note that the magnetic islands at x ≃ 12 ρs and

x ≃ 14 ρs merge together in the case without zonal A∥, thus extending the radial size

of the stochastic layer. We also note that the zonal A∥ slightly shifts the radial position

of rational surfaces. For example, the resonant surface with ky/ky,min = 5 moves from

x ≃ 12.5 to x ≃ 13.5 by adding the zonal A∥.

Heat flux transport caused by stochastic magnetic field lines depends on both the

size of magnetic islands and the separation between adjacent resonant surfaces. The

island width is estimated from δA∥ using Eq. (1), while the minimum separation between

adjacent resonant surfaces is given by Eq. (3). By following Refs. [2, 17], we compare

in Fig. 20 (a) wisland and δr from the nonlinear simulation at νe = 0.42 cs/a. We note

that δr is larger than wisland at all the ky modes evolved in the nonlinear simulations, in

agreement with the low level of field lines stochasticity shown in Fig. 18.

The resonant radial surface spacing is inversely proportional to the magnetic shear.

Therefore, a larger stochastic layer is expected to form at higher magnetic shear. We

consider therefore an additional case at higher magnetic shear, s = 2sref ≃ 0.7. The

growth rate as a function of ky in this new case is shown in Fig. 21. The maximum

growth rate of the MTM instability is higher than in the reference case with s = 0.34

and it occurs at a lower ky value. A nonlinear simulation at higher s is carried out

with the numerical resolution listed in table 3. A lower value of ky,min is used here
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Figure 19: Poincaré map of a thin radial layer of the flux tube domain generated from

the nonlinear simulation with νe = 0.42 cs/a. The zonal δA∥ component is retained in

(a) and turned off in (b) when generating the Poincaré map. The color scale is used to

identify magnetic field lines starting at the same radial position.
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Figure 20: Resonant radial surface spacing (red line) and island width (black line) as

a function of ky from the nonlinear simulations with s = 0.34 (a) and s = 0.7 (b).

to account for the low ky unstable modes. Fig. 20 (b) shows the comparison between

wisland and δr in the simulation at higher s. The island width at different ky values

is comparable to the one from the nonlinear simulation at s = 0.34. In fact, the

amplitude of A∥ fluctuations from the two simulations with different magnetic shear

is comparable. This is in agreement with the nonlinear MTM theory developed in

Ref. [34], which predicts |δB/B| ≃ ρe/LTe ≃ 3.5 × 10−5 (the temperature gradient is

the same in both simulations). This value is close to the one obtained from nonlinear

simulations at νe = 0.42 cs/a, i.e. |δB/B| ≃ 6× 10−5. On the other hand, the resonant

surface spacing is a factor two smaller in the simulation at higher s. This leads to an

important qualitative change in Fig. 20 (b), where wisland is larger than δr for kyρs > 0.3.
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Figure 21: Growth rate (a) and mode frequency (b) values from CGYRO linear

simulations with s = 0.34 (blue line) and s = 0.7 (orange line). Only unstable modes

are shown.

Consequently, island overlapping is more effective and a stochastic layer is expected to

extend over a wider region. This is clearly shown by the Poincaré map in Fig. 22.

The radial extension of the stochastic layer is much larger than in the reference case

(see Fig. 18). Most of the magnetic islands visible in Fig. 18 in the low magnetic

shear simulation are destroyed in the high magnetic shear simulation by the presence of

a stochastic layer. Consequently, the heat flux increases in the higher magnetic shear

simulation (see Fig. 23) and largely overcome the heat flux driven by the ETG instability.

We note that wisland values in the low and high magnetic shear simulations are similar

and the formation of a stochastic layer is mainly caused by a factor of four reduction of

the minimum adjacent resonant surface spacing.

Following Ref. [18], a magnetic diffusion coefficient is introduced,

Dm = lim
l→∞

⟨[r(l)− r(0)]2⟩
2l

≃ lim
l→∞

1

2l

1

N

N∑
i=1

[ri(l)− ri(0)]
2 , (6)

where ri is the radial position of a field line, l is the distance along the field line and N

is the number of field lines considered in the average. The magnetic diffusion coefficient

converges to a well-defined value at large N . The magnetic diffusivity is computed in

all the nonlinear simulations by considering the full radial extension, N = 400 field lines

and integrating along the perturbed field line for 2000 poloidal cycles. An estimate of

the electron heat transport due to stochastic magnetic field lines can be derived from

Dm [17],

Qe,stochastic

QgB

= 2fp

√
4mi

πme

a

LTe

(aDm

ρ2s

)
(7)

where fp ≃ 1−
√

r/R is the fraction of passing particles (magnetically trapped particles

do not contribute to the stochastic transport [18]). Fig. 23 compares the electron heat
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Figure 22: Poincaré map of magnetic field obtained from the nonlinear simulation with

νe = 0.42 cs/a and higher magnetic shear. The color scale is used to identify magnetic

field lines starting at the same radial position.

flux given by Eq. (7) to the electromagnetic electron heat flux calculated from nonlinear

simulations. The trend is well reproduced and the predictions of Eq. (7) are in qualitative

agreement with the heat flux predicted by nonlinear simulations. Importantly, the order

of magnitude increase in the heat flux observed at higher magnetic shear is reproduced

by Eq. (7). We note that the electron electromagnetic heat flux is entirely due to the

stochastic magnetic diffusivity in the case of s = 2sref ≃ 0.7, while a smaller contribution

from the stochastic transport is observed in the simulations with the nominal magnetic

shear value, though the stochastic contribution remains nonetheless important.

The minimum spacing between resonant surfaces depends on ky,min. Therefore,

different values of ky,min may affect the stochastic layer and the subsequent saturated

heat flux level. Fig. 23 shows the stochastic heat flux in the case with ky,min/ky,min,ref =

2.0 and ky,min/ky,min,ref = 0.5. The value of Qe,stochastic is much smaller when

ky,min/ky,min,ref = 2.0 than in the reference case and it is significantly lower than the

heat flux predicted by the nonlinear simulation. As discussed in Sec. 4, a smaller heat

flux is expected as the lowest ky unstable mode is not included in the simulation. The

discrepancy between Qe,stochastic and the electron heat flux from the simulation suggests

that the stochastic magnetic diffusivity is underestimated. In fact, the minimum

resonant surface spacing increases with ky, thus reducing the magnetic island overlap.

On the other hand, Qe,stochastic agrees well with the electron heat flux from the nonlinear

simulation, despite the smaller resonant surface spacing. In fact, the amplitude of

δA∥(ky) decreases as the number of ky values increases, thus preserving the condition

wisland < δr. This comparison highlights that convergence on ky,min should be carefully
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Figure 23: Electromagnetic electron heat flux due to magnetic diffusivity (see Eq. (7))

in various nonlinear simulations with different values of electron collision frequency and

ky,min. A nonlinear simulation with higher magnetic shear (s = 0.7) is also considered.

The red markers show the saturated electromagnetic electron heat flux level computed

from nonlinear simulations.

verified when performing nonlinear MTM simulations in order to avoid a possible

underestimation of the stochastic heat flux, even when all the low ky unstable modes

are included in the nonlinear simulation, especially when wisland ≃ δr. The condition

wisland ≃ δr can also be used as an indication of the importance of the MTM driven

heat flux.

6. Conclusions

The MTM instability can provide significant electron heat flux transport in the high-

β core of spherical tokamaks as well as in the edge of conventional aspect ratio

tokamaks. An accurate prediction of MTM driven heat flux requires one to perform

expensive nonlinear gyrokinetic simulations, which are often very challenging because

of their numerical requirements and convergence difficulties. This motivates improved

understanding of the saturation and transport mechanisms to aid the development of

cheaper reduced models. In this work, linear and nonlinear gyrokinetic simulations

are carried out by considering experimentally relevant scenarios built from the MAST

discharge #22769, where MTMs are the dominant linear instability at kyρs < 1. Linear

simulations show that the MTM instability is sensitive to electron temperature gradient,

density gradient, magnetic shear and electron collision frequency. In the conditions of

this MAST local equilibrium, MTMs carry a negligible fraction of the electron heat flux,

and are stabilised by increasing νe above the experimental value. The MTM instability

requires a velocity dependent electron collision frequency, while it is weakly affected by
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ion dynamics or parallel magnetic fluctuations, although including δB∥ is important in

order to suppress an electrostatic low ky instability. Electrostatic potential fluctuations

provide a strong destabilising mechanism. A comparison between CGYRO and GS2

linear simulations is also carried out, showing an overall good agreement both in the

reference case and in a case of stronger MTM drive.

Analogously to the linear analysis, a nonlinear simulation scan in the electron

collision frequency values is performed. Heat flux saturation at low heat flux is achieved

at all the considered value of electron collision frequency. The heat flux driven by MTMs

is negligible in the nonlinear simulation with the reference value of electron collision

frequency as compared to the ETG driven heat flux, while it is an order of magnitude

larger in nonlinear simulations with smaller electron collision frequency values. A strong

zonal ϕ and A∥ is observed in all the nonlinear simulations. While the effect of zonal

ϕ on the saturated level of heat flux is relatively weak, a much larger heat flux is

obtained when the zonal A∥ is removed from the nonlinear source term, thus pointing

out the importance of zonal fields in the saturation mechanism of this MTM instability,

supporting the result of Ref. [6].

The MTM instability leads to the formation of magnetic islands at resonant

surfaces. These magnetic islands can overlap if their width exceeds the radial separation

between adjacent resonant surfaces, thus generating a layer of stochastic magnetic field

lines. The effect of the stochastic layer formation and its radial extension on the heat

flux is analysed in various nonlinear simulations. In the reference MAST case, the

island widths are smaller than the minimum spacing between resonant surfaces and this

is consistent with the saturation at low heat flux level. On the other hand, the heat flux

increases by more than an order of magnitude when the value of the magnetic shear

is doubled. In this case, the island width of large ky modes exceeds the radial spacing

between rational surfaces and a radially extended stochastic layer forms.

Heat transport caused by stochastic magnetic field lines is quantified through the

magnetic diffusivity Dm given in Eq. (6). A reasonable agreement is found between the

electromagnetic heat flux predicted by nonlinear simulations and the stochastic heat flux

at different values of electron collision frequency and magnetic shear, thus suggesting

that the MTM driven heat flux in the cases considered here is mostly due to stochastic

magnetic field diffusivity and confirming the important role played by the formation

of stochastic layers. The criterion wisland ≳ δr can therefore be used as an indication

of saturation at non negligible MTM driven heat flux value. The saturated level of

heat flux is shown to depend on the radial extension of the stochastic layer, which in

turn depends on both the magnetic island width, proportional to magnetic fluctuations,

and the radial separation between adjacent resonant surfaces. Nonlinear simulations

with similar magnetic perturbation amplitude but different radial separation between

adjacent resonant surfaces are shown to saturate at very different values.

Further work is required to derive a relation between magnetic fluctuation

amplitude, adjacent resonant surfaces separation and saturated heat flux value, which

will extend current quasi-linear theories (see, e.g., Ref. [35]) and lead to a very important
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(a) (b)

Figure A1: Growth rate (a) and mode frequency (b) as a function of ky from GS2

linear simulations with δB∥ = 0 at different values of nθ and nr.

step towards reliable and accurate MTM driven heat flux predictions from reduced

models. Since the applicability of the local approximation is questionable due to the

large radial extension of the flux tube domain, as imposed by the low ky MTM instability,

future work is required to investigate global effects by means of global gyrokinetic

simulations.
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Appendix A. Linear convergence tests in the reference case

Linear simulations with different numerical resolution have been carried out in order to

verify numerical convergence. Fig. A1 shows the growth rate and mode frequency from

GS2 linear simulations performed at different values of nθ and nr. These tests have been

performed without evolving δB∥, which has a weak effect on the MTM instability (see

Fig. 5). At kyρs ≥ 0.3, convergence is achieved at nθ ≥ 32 and nr ≥ 65, while the mode

at kyρs = 0.2 requires a higher resolution along θ. On the other hand, this mode is not

driven unstable by the MTM instability and is stable when δB∥ ̸= 0.
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Figure B1: Time trace of the total heat flux driven by the ETG instability in the

reference MAST case. Results from CGYRO (blue line) and GS2 (orange line) nonlinear

simulations.

Appendix B. ETG driven heat flux in the reference case

The linear gyrokinetic simulations described in Sec. 2 show the presence of an ETG

instability in the MAST reference case. Since the aim of this work is to investigate the

mechanisms behind the MTM saturation at low heat flux level, only ion scale instability

is considered. We show here that the MTM driven heat flux is negligible with respect

to the ETG heat flux in this reference case at the chosen radial surface. Fig. B1 shows

the time trace of the total heat flux from GS2 and CGYRO nonlinear simulations

of the reference case. The heat flux saturates at Qtot/QgB ≃ 0.05, corresponding to

Qtot ≃ 0.01 MW/m2, which is of the same order of magnitude of the heat flux computed

by using TRANSP code for this MAST discharge (see Fig. 2 of Ref. [21]). We highlight

that the ETG heat flux is approximately two orders of magnitude larger than the MTM

driven heat flux at the nominal value of electron collision frequency (see Fig. 12).

Appendix C. Binormal ion scale ETG instability

Fig. 9 shows that, when the electron collision frequency value is decreased, two different

instabilities appear: an instability with positive mode frequency at kyρs < 0.4, which

is identified as an ITG instability, and an instability with negative mode frequency at

kyρs > 0.4, which we show here to be the electron scale ETG instability that extends

into the ion scale ky region at low electron collision frequency.

Fig. C1 shows the growth rate and the mode frequency values of unstable modes
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Figure C1: Growth rate (a) and mode frequency (b) values from GS2 linear simulations

at kyρs > 0.8 with νe = 0.82 cs/a (reference values) and νe = 0.21 cs/a. Only unstable

modes are shown.
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Figure C2: Real and imaginary part of δϕ/max |δϕ| (a) and δA∥/max |δϕ| (b) as a

function of θ at kyρs = 1.0. Results from the GS2 linear simulation at νe = 0.21 cs/a.

with kyρs > 0.8 from GS2 linear simulations at the reference value of electron collision

frequency and at a lower value. The growth rate of the ETG instability is higher at lower

νe than in the reference case and the ETG instability extends to modes at kyρs ≃ 1.

The real and imaginary parts of δϕ and δA∥ at kyρs = 1.0 are shown in Fig. C2.

Electrostatic potential mode structure is quite extended along θ and it is similar to the

one in Fig. 7, which shows δϕ(θ) at kyρs = 0.5 in the case of large electron temperature

gradient values. Therefore, while the MTM instability is suppressed at large a/LTe

values, the ETG instability extends into ion scale ky region, similarly to what is observed

when the value of νe is decreased.

These ETG modes, which are unstable at kyρs ≃ 1 and very extended along the

magnetic field line, are similar to the ones characterised in Ref. [33]. We note that
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decreasing the collisionality decreases the electron detrapping frequency and therefore

increases the drive at lower ky and ω values, as shown in appendix A of Ref. [30].
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