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Abstract. One of the biggest challenges to achieve the goal of producing fusion

energy in tokamak devices is the necessity of avoiding disruptions of the plasma

current due to instabilities. The Disruption Event Characterization and Forecasting

(DECAF) framework has been developed in this purpose, integrating physics models

of many causal events that can lead to a disruption. Two different machine learning

approaches are proposed to improve the ideal magnetohydrodynamic (MHD) no-wall

limit component of the kinetic stability model included in DECAF. First, a random

forest regressor (RFR), was adopted to reproduce the DCON computed change in plasma

potential energy without wall effects, δWn=1
no−wall, for a large database of equilibria from

the National Spherical Torus Experiment (NSTX). This tree-based method provides an

analysis of the contribution of each input feature, giving an insight into the underlying

physics phenomena. Secondly, a fully-connected neural network has been trained on

sets of calculations with the DCON code, to get an improved closed form equation of the

no-wall β limit as a function of the relevant plasma parameters indicated by the RFR.

The neural network has been guided by physics theory of ideal MHD in its extension

outside the domain of the NSTX experimental data. The estimated value of βn=1
N,no−wall

has been incorporated into the DECAF kinetic stability model and tested against a set

of experimentally stable and unstable discharges. Moreover, the neural network results

were used to simulate a real-time stability assessment using only quantities available in

real-time. Finally, the portability of the model was investigated, showing encouraging

results by testing the NSTX-trained algorithm on the Mega Ampere Spherical Tokamak

(MAST).

1. Introduction

High temperature plasmas being studied in tokamak magnetic confinement devices

for the purposes of fusion energy must be maintained at high pressures in order

to achieve good performance. Unfortunately, at high ratios of plasma pressure

to magnetic confinement field pressure, known as β, these plasmas are subject to

magnetohydrodynamic (MHD) instabilities that can lead to disruption of the plasma

current and impact of the plasma energy on the walls of the device. In order to study
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and prevent these disruptions, the Disruption Event Characterization and Forecasting

(DECAF) code [1, 2, 3] has been constructed. This code incorporates many different

physics models for various causes of disruptions. One of these is the kinetic stability

module [1], which directly addresses the issue of high plasma β leading to modes of

instability called resistive wall modes (RWMs) and accounts for the stabilizing effects

of plasma particle motions [4, 5, 6]. Included in this kinetic module is the ideal stability

model, which does not account for drift kinetic model effects, but provides the basis for

understanding when the plasma has reached a dangerous state and computes quantities

that are directly input into the larger kinetic model [7]. The ultimate goal of the DECAF
approach is to provide real-time forecasting of plasma stability. Since the computations

of both ideal and kinetic stability by traditional means, such as by the DCON [8] and

MISK [9] codes, respectively, are too computationally time consuming to be performed

in real-time, alternative approaches are necessary. For example, efforts have been made

to speed up the DCON ideal stability calculation by orders of magnitude [10]. A different

approach has been used previously with success: to formulate analytic reduced models

for both the ideal [7] and kinetic [1] stability, which maintain the physics basis of the

more complex code calculations. In this paper, an extension of that idea is explored,

with the help of machine learning (ML).

An important new direction in ML applications is to employ physics-guided, or

hybrid, techniques. That is to say, rather than simply feeding raw experimental data

into a ML algorithm, physics knowledge of the problem should be utilized to pre-process

input into the machine learning tools, as well as to interpret the output. On the other

hand, the patterns discovered through the computations can also be used to improve the

physics knowledge, by suggesting previously unappreciated dependencies, for example.

In this paper we make the first steps in the direction of this hybrid approach for the

specific problem at hand —ideal stability analysis of tokamak plasmas.

Machine learning approaches continue to show outstanding performance in

classification tasks. Early-stage neural networks have been proposed as a method

for disruption prediction many years ago [11, 12, 13, 14, 15, 16, 17] and interest has

recently grown rapidly [18, 19, 20] with the advent of modern neural network designs

that use appropriate non-linearities (i.e. parametric ReLU), customized cost functions

for classification problems, and training methods that converge to optima that are shown

to be sufficiently stable and surpass conventional optimization methods, like those based

on convex approximations. Additionally, neural networks are now being used to model

the outputs of plasma physics codes, for example in the area of particle transport [21, 22]

or neutral beam injection [23]. Here we use two different algorithms to classify the output

of DCON into stable and unstable regions, for a set of calculations for the NSTX tokamak.

A large database of equilibria from NSTX has been analyzed with DCON, providing the

ideal change in plasma potential energy due to a perturbation of the confining magnetic

field without the presence of a conducting wall, -δW n=1
no−wall. δW n=1

no−wall changes from

positive to negative when the plasma changes from ideal stable to unstable. We use the

negative of the change in potential energy throughout the present paper so that, more
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intuitively, negative values are below the limit (stable) and positive quantities are above

(unstable). For determining the ideal, and ultimately kinetic mode growth rates, the

value of βn=1
N,no−wall and both the value and the sign of -δW n=1

no−wall must be determined. To

that end, we have initially developed a machine learning based approach to determine

-δW n=1
no−wall as a function of several plasma parameters. We have tested with both

multilayer perceptron (MLP) artificial neural networks and random forest regression

(RFR)[24] and we found that the RFR outperformed MLPs in terms of R-squared and

flexibility. This model provides an emulation of DCON that could actually run in real-

time. The random forest technique has also been recently employed in plasma physics

research, specifically in disruption warning, prediction and survival analysis, where a

real-time random forest based predictor was employed on the DIII-D, Alcator C-Mod

and EAST tokamaks [25, 26, 27, 28, 29]. However, no such approach has been attempted

for the determination of the ideal stability limit, while also linking the features of this

model with respect to their importance. We are proposing such an approach, showing

that the original normalized beta, βN , aspect ratio ,A, internal inductance, li, and

pressure peaking, p0/〈p〉, are among the parameters that most affect the estimated

values of -δW n=1
no−wall, as expected by the underlying physics. Therefore, strengthened

by this analysis, we have subsequently used a neural network to obtain an improved

equation for the no-wall β limit. Stability regions can be evaluated by examining plots

of -δW n=1
no−wall in the parameter space of βN , versus li, p0/〈p〉, or A. Then neural network

defined decision boundaries determine the marginal stability boundaries, increasing the

accuracy compared to the previously defined no-wall limit modeling [7]. The overall

no-wall beta limit input into the kinetic model can be determined by combining the

defined boundaries with the dependencies of βn=1
N,no−wall on the parameters above used in

the neural network based model.

The remainder of the paper is organized as follows. In Section 2 the DECAF code

is described, in Section 3 we review the physics of a specific module in it which models

the ideal global plasma stability. In Section 4 the first machine learning technique, the

RFR, is utilized to get estimated values of -δW n=1
no−wall. Section 5 describes the results

of the neural network approach to defining decision boundaries between the stable and

unstable regions in plasma parameter space. These are consequently integrated into

the DECAF code in Section 6, and then applied for cross-machine testing to another

spherical tokamak, MAST, in section 7. Finally, Section 8 concludes the paper.

2. The Disruption Event Characterization and Forecasting (DECAF) Code

Tokamak plasma confinement devices utilize magnetic fields to contain high pressure

plasmas for fusion energy. The plasma creates a component of its own confining

magnetic field by carrying a large toroidal current. If the current is disrupted, a loss of

plasma confinement results, which can lead to large heat deposition and electromagnetic

forces on the surrounding structures. These so-called disruptions [30, 31, 32] have

varying causes and must be avoided for the safe operation of future fusion devices
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including ITER. Some of the major causes of disruptions in tokamaks are: when the

plasma density, plasma current, or ratio of plasma pressure to magnetic pressure exceed

empirical or theoretically defined limits, or when the plasma loses vertical position

stability and drifts into contact with surrounding surfaces [33]. A framework has

emerged which provides a comprehensive approach to disruption prevention through

forecasting and avoidance, or prediction and mitigation of the detrimental consequences.

First, it is important to identify disruption event chains and the specific physics elements

that comprise those chains. Second, if the events in the disruption chains can be forecast,

cues can be provided to an avoidance system to attempt to break the chain. Multiple

avoidance actions can be taken through available actuators, giving priority to events

that tend to happen earlier. Finally, if avoidance is deemed untenable, a prediction

of the impending disruption can be provided to a mitigation system to significantly

reduce disruption ramifications. Designs for disruption mitigation systems for ITER are

already under way [34, 35, 36]. Alternative disruption avoidance approaches also exist,

including for example real-time plasma state estimation [37, 38] or by compiling large

databases of previous disruptive discharge data [39, 40] and training various machine

learning techniques [41, 42, 43, 44, 45] on them, including the previously mentioned

neural networks or random forests.

Density limits

Mode stability

Confinement

Tokamak dynamics

Technical issues

Physical event 
modules

Power/current handling

Code control 
workbooks

Main data structure

Output processing

Figure 1: The Disruption Event Characterization and Forecasting framework illustrating

physical event modules.

In the present work, we use the Disruption Event Characterization and Forecasting

(DECAF) code, which utilizes the comprehensive structure described above. The

ultimate goal of such an approach is to provide forecasts which integrate with a

disruption avoidance system and are used in real-time during a device’s operation.

As shown in Figure 1, this approach provides a flexible framework to evaluate the
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proximity of plasma states to detected disruption events by coupled physics analyses,

model criteria, and machine learning techniques.

Although machine learning approaches are often referred to as black box techniques,

this definition is actually quite misleading in general. Neural networks have substantial

deficiencies when they treat the system to be modeled as a black box, rather than making

any assumptions about its behaviour, especially when attempting to use resulting neural

network matrices for forecasting and extrapolation outside the training domain. In other

words, the development of a shallow/deep learning system is complex, but does not need

to be a black box. Machine learning in DECAF, by contrast, follows a philosophy that

is more amenable to produce human understanding of the results and allows greater

flexibility for use in control systems. Specifically, we have presently adopted three

general approaches:

(i) Reduction of results from certain complex physical models by shallow ML

algorithms to allow rapid (including real time) determination of quantities used

in DECAF models.

(ii) Hybrid model approach that combines the use of a physical model and ML

techniques. The benefits are twofold: on the one hand, ML can be applied to

produce the part of the problem that does not have a clear physical model (akin

to an observer calculation in control theory); on the other, physics insight can be

used to regularize a ML algorithm.

(iii) Analysis of DECAF event chain linkages pertaining to disruption prediction and

avoidance understanding, utilizing graph theory [46]. This approach can give

a mathematical representation of the event chains and can be used to process

and interpret data structures in large datasets of DECAF events, in order to gain

knowledge on how they group and what are their key relationships.

The analysis presented later in this paper falls mainly into the first category above,

while also touching upon the second, which is an important new frontier in machine

learning application to physics problems.

3. Ideal MHD stability in the NSTX Spherical Tokamak

Global magnetohydrodynamic (MHD) stability of high performance tokamak plasmas

has long been recognised as a requirement for fusion-grade applications. Tokamak

fusion plasmas are theoretically stable up to a value of the ratio of plasma stored

energy to magnetic confining field energy of βn=1
N,no−wall. With ideal theory, the plasma

is unstable above this “no-wall” limit when no electrically conducting wall is present

to external kink-ballooning modes driven by the free energy of current of pressure

gradients. Successful wall stabilization of kink/ballooning instabilities uncovered the

reduced growth rate, yet still disruptive, resistive wall mode (RWM) [47, 48, 49, 50].

The RWM grows on a much slower time scale, the wall-time τw, but it is still fast

compared to the duration of the plasma shot, and is still theoretically unstable above
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the no-wall limit with ideal theory. Because the fusion power and the self-generated

current in a tokamak rise with β, it is strongly desirable to operate at high β above

the no-wall limit. Therefore it is necessary to stabilize the RWM as well. Tokamak

experiments found the fortuitous result that plasmas could be stably operated above

βn=1
N,no−wall [51, 52] with passive stability, not active control. Understanding the physics

of this stability is key to relying on it and projecting it to the operation of future devices.

One of the functions of the DECAF code is to monitor fusion plasma’s stability

and predict when those plasmas might be approaching instability so that something

can be done to avoid a catastrophic loss of plasma confinement. In the present paper

we will examine data from the National Spherical Torus Experiment (NSTX), which

was a spherical tokamak that operated at low aspect ratio and high beta. Disruption

of the plasma current leading to thermal and current quenches, halo currents [53, 54],

and heat and electromagnetic forces on the device structure were tolerated in NSTX

experiments as the energy in the disruptions was not high enough to cause damage

to the device. A reduced kinetic model for resistive wall mode stability based upon

theoretical understanding has already been included in DECAF [2]. Here we will briefly

describe the kinetic model and its underlying ideal stability components.

Calculation of the complex global mode frequency in a plasma, ω, can be performed

through the energy principle approach of calculating changes in potential energy (δW )

due to various effects and inputting these into a dispersion relation for ω (or stability

criteria for the growth rate γ). Hu and Betti derived a modified energy principle for

RWMs that includes the kinetic contributions of particle motions [4, 55]. The resulting

dispersion relation is:

(γ − iωr)τw = −
δW n=1

no−wall + δWK

δW n=1
with−wall + δWK

(1)

where ωr is the real frequency of the mode, δW n=1
no−wall and δW n=1

with−wall are fluid,

or ideal, changes in potential energy terms where the stabilizing device conducting

structure is omitted or considered, respectively, and δWK is the kinetic term. Therefore,

inclusion of kinetic effects represents a modification to ideal stability [7]. The fluid terms

can be broken out into terms depending on the magnetic field line shape, and current-

driven and pressure-driven instability terms [56]. This is why measurable quantities such

as A, li (which is related to current profile peaking), βN , and p0/〈p〉 are known to be

influential on ideal MHD stability. The DCON stability code was developed to calculate

the fluid δW terms and was previously used for thousands of calculations spanning the

NSTX operating space [7]. Analysis of these thousands of calculations formed the basis

of an analytical model for the fluid δW terms that was incorporated into the DECAF
code [2]. Improvements to that model now by means of machine learning is examined

in this paper.

Machine learning techniques, guided by physics, will be used as a tool in the present

work to determine the best fit to ideal MHD stability limits, as calculated by DCON,

within the range of parameters for which experimental data is available. In other
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words, the DCON calculations are the physics guidance within the range of applicability.

However, as we will see, ML techniques can also extrapolate outside of the training

region, and one must be cautious about accepting those projections at face value. In

that case, plasma physics theory of ideal MHD will be used to guide the predictions. For

example, it is well known that high pressure peaking is destabilizing to pressure-driven

kink modes [57, 58, 59], and that Troyon criterion implies that the stability should

decrease with aspect ratio [57, 60, 61].

4. Random Forest Regression for the value of -δW n=1
no−wall

4.1. Data pre-processing

Major efforts have been devoted to modeling -δW n=1
no−wall and βn=1

N,no−wall by defining

analytic relationships between plasma parameters [7]. This approach maintains

simplicity and causal inference of the dependencies. However, the prediction of the value

of -δW n=1
no−wall can be improved further by including more plasma parameters and utilizing

different approaches. Listed in Table 1, are 19 plasma parameters from the equilibrium

reconstruction and various diagnostics that can be used as features to predict aspects

of MHD stability.

Signal description Alias

Normalized beta, βN betan

Internal inductance, li li

Pressure peaking factor, p0/〈p〉 ppeakfac

Aspect ratio, A = R0/a aspectratio

Plasma stored energy, WMHD wmhd

Plasma elongation, κ kappa

Safety factor at 95% of the flux, q95 q95

Greenwald density fraction, n̄e/nG fgw

Toroidal rotation frequency in the core, ωΦ(0) ft core

Toroidal rotation frequency at mid-radius ωΦ(mid) ft mid

Plasma current, Ip ip

Toroidal beta, βt betat

Poloidal beta, βp betap

Cylindrical safety factor, q∗ qstar

Electron density in the core, ne0 ne0

Electron temperature in the core, Te0 te0

Line-averaged electron temperature, T̄e tebar

Line-averaged electron density, n̄e nebar

Electron density peaking factor, ne0/〈ne〉 nepeakfac

Table 1: List of signals used from NSTX equilibrium reconstructions and diagnostics.

Left column shortly describes each signal, while the right column provides the alias

name as it appears in the database.
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Recent studies have focused on the possibility of combining machine learning

algorithms with prior physics intuition [62, 63, 64]. For example, the process of pre-

selecting the input parameters reduces the risk of redundancy while keeping physical

significance. In this specific application, one can discern from the physics that the

first 10 parameters listed above are the ones that are mostly correlated to δW n=1
no−wall.

However, we must first make two important considerations. First of all, the toroidal

rotation terms were missing for around 2000 data points and undermined the model

performance, as shown later in Table 3. Second, when dealing with multivariate

regression problems, it is also essential to check that the absolute value of the pairwise

correlation between independent variables (predictors) is below a certain threshold,

typically 0.7 [65]. Whenever two predictors are highly correlated with one another, both

of them will have unstable partial regression coefficients with relatively large standard

errors. This issue is usually referred to as multicollinearity and can compromise the

statistical significance of a predictor, resulting in a higher potential for overfitting.

betan li

ppeakfac

aspectratio
wmhd

kappa q95 fgw

betan

li

ppeakfac

aspectratio

wmhd

kappa

q95

fgw

1.000 -0.076 -0.381 0.029 0.013 -0.046 0.002 0.027

-0.076 1.000 0.685 -0.021 0.065 0.006 -0.027 0.062

-0.381 0.685 1.000 -0.039 0.020 -0.014 -0.037 0.002

0.029 -0.021 -0.039 1.000 0.558 0.737 -0.514 0.403

0.013 0.065 0.020 0.558 1.000 0.596 -0.573 0.756

-0.046 0.006 -0.014 0.737 0.596 1.000 -0.361 0.358

0.002 -0.027 -0.037 -0.514 -0.573 -0.361 1.000 -0.501

0.027 0.062 0.002 0.403 0.756 0.358 -0.501 1.000

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pearson correlation

Figure 2: Pearson correlation matrix for the most relevant plasma parameters. A

pairwise coefficient above 0.7 generally means that the two predictors are strongly

correlated and may affect the model performance.

With regards to this, we have computed the pairwise Pearson correlation between

the 8 most relevant predictors (excluding rotation terms) as shown in the colormap in

Figure 2. This analysis shows evidence of multicollinearity between plasma parameters

linked to the same underlying phenomena, such as WMHD with n̄e/nG, and A with

κ. Such correlations are expected from constraints related to physical operation of the

NSTX device. It is also worth noting that the correlation between pressure peaking

factor and internal inductance is quite close to the 0.7 ”limit”. This experimental
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relationship was already known, since pressure broadens with broadened current profiles

(see Figure 4 in J.W. Berkery et al. [7]). We have found that the two strong correlations

introduced a minor overfitting issue, whereas leaving out either p0/〈p〉 or li from the

feature space led to worse performance, because of the high impact these plasma

parameters have on the determination of -δW n=1
no−wall. The effect of correlated input

variables will be analysed in depth later.

4.2. Hyperparameter tuning

The RFR algorithm belongs to the ensemble methods class, building multiple decision

trees and merging them together to get a more accurate and stable prediction. Each

tree selects a random number of features in order to better differentiate the influence of

each input parameter on the overall predictions. The final output is affected by several

hyperparameters ; among them the most important are the number of trees in the forest,

the maximum number of features considered by each tree, the maximum number of

levels in each tree, the minimum number of observations to split an internal node and

the minimum number of observations to be at a leaf node (deepest level).

The random forest analysis has the advantage of high predictive power for non-linear

regression problems and it is regarded as an interpretable technique, since it provides

the importance of each input feature and allows to have an insight into decision paths

via the export graphviz function in the scikit-learn Python library (see figure

4 in C. Rea et al. [27]).

Signal Relative importance

betan 0.633184

li 0.200685

ppeakfac 0.087245

wmhd 0.016737

fgw 0.015968

aspectratio 0.015762

kappa 0.015602

q95 0.014817

Table 2: Relative signal importance for the 8-feature RFR. The measure based on

which the optimal conditions are chosen is called impurity. For regression trees, this is

typically the variance. When training an entire forest, the decrease in impurity due to

each feature can be averaged and the features are ranked according to this metric.

We have trained a RFR on a large dataset, comprising of 1385 shots for training

and 293 for testing. Each shot contained around 5 measurements of δW n=1
no−wall, totalling

more than 10000 data points for the entire set of available equilibria. The RFR has

been tuned by running 5-Fold Cross Validation for 600 random combinations of the

hyperparameters and for each of the tested models. As widely explained before, the
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performance of any machine learning algorithm is strongly affected by the choice of

the input variables. The first model utilizing 8 plasma quantities to test the RFR

resulted in a minor overfitting problem. Luckily, the feature contribution capability of

the algorithm (Table 2) allowed us to discern which parameters we could sacrifice to

reduce the chances of overfitting.

Therefore, based on relative importance, we have decided to drop out κ and n̄e/nG,

solving the overfitting issue without compromising the generalisation performance. As

an additional test, we have also tried to train the random forest excluding either the

pressure peaking factor or the internal inductance. Table 3 shows the results obtained

with each of the mentioned combinations in terms of coefficient of determination, R2,

as well as the performance of the original reduced model [7]. Here one can get an idea

of the importance that p0/〈p〉 and li have in the determination of δW n=1
no−wall, despite the

correlation between the two plasma quantities.

Coeff. of determination (R2)

Training set Testing set

Original reduced model - 0.344

RFR - 10 features 0.789 0.735

RFR - 8 features 0.822 0.776

RFR dropping κ and n̄e/nG 0.786 0.775

RFR dropping li only 0.621 0.602

RFR dropping p0/〈p〉 only 0.711 0.682

Table 3: Performance of the previous model and the four combinations of plasma

parameters input to the RFR, with the best chosen regressor highlighted in bold. The

original reduced model was directly validated on the entire dataset, therefore there is

no distinction between training and testing set.

The best selected model had 600 estimators (trees), each one having a maximum

of 15 levels. These (and other hyperparameters) were chosen on the basis of the lowest

cross-validation mean squared error. The relative importance of the input features is

displayed in Table 4 and reflects, similarly to the 8-feature analysis, what we expected

from the underlying physics.

Signal Relative importance

betan 0.688461

li 0.198174

ppeakfac 0.074881

wmhd 0.014078

aspectratio 0.013183

q95 0.011223

Table 4: Relative signal importance for the 6-feature regression.
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Figure 3: -δW n=1
no−wall computed by DCON vs. F (li, A, p0/〈p〉, βN , q95,WMHD) predicted

by the 6-feature RFR for the (a) training and (b) testing sets. Each data point is color-

coded based on the spatial density of nearby points. Therefore, darker regions indicate

higher density, whereas lighter colors indicate higher sparsity of the points.

The DCON computed -δW n=1
no−wall vs. the RFR predicted value as a function of

equilibrium quantities is plotted in Figure 3. The left hand plot (a) displays the results

obtained on the training set, whereas the plot on the right (b) shows the predictions

during the test phase. Each point is colored by the spatial density of nearby points,

spanning from dark blue (high density) to yellow (low density). In both cases there is

generally a linear correspondence with some spread.

Furthermore, as long as -δW n=1
no−wall can take both negative and positive values,

we noticed that the stable/unstable classification improves with increasing regression

performance. Therefore, we can compute the percentage of misclassified points (e.g. the

ones in the upper left and bottom right quadrants of Figure 3(a),(b)), even though the

RFR is performing a regression task. In this case, the RFR classifies points better than

the previous model, reaching an overall accuracy of 91.1% in test phase and producing

only 2.8% of false negatives and 6.1% of false positives, compared to the original reduced

models’ 11.2% and 5.6%, respectively.

Ultimately, we will now proceed to sacrifice performance somewhat in favor of an

improved closed form equation for the no-wall limit to be used in the kinetic model.

5. Neural network defined decision boundaries for the no-wall limit

5.1. Base model configuration

The random forest approach can provide the value of -δW n=1
no−wall with a relatively high

level of accuracy, but it cannot define when the plasma goes unstable in terms of βN .

Therefore, we have decided to exploit the knowledge given by the RFR to re-define an

analytic expression for βn=1
N,no−wall.
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A 3-layer fully connected neural network (Figure 4) is proposed to classify whether

an equilibrium data point from NSTX is below or above the stability limit. The jth layer

implements a linear operation that is activated through a logistic function, mapping the

input to the subsequent layer (Xj+1) into a range between 0 and 1 as follows:

Xj+1 = g(Θj Xj + bj) (2)

where g is the logistic (or sigmoid) activation, Θj is the matrix of weights mapping from

layer j to j + 1, bj is the bias term and Xj is the feature vector input to the jth layer.

The dataset has been split in the same way as it was done for the random forest for

direct comparison. The entire training set is iteratively scanned for 1000 times (epochs)

and both the weights matrices and biases are updated at each pass.

We have trained different neural network architectures, varying the number of layers

between 2 and 5 and the number of neurons between 8 and 128. The main goal was

to find the best compromise between validation accuracy and physical explainability,

reducing complexity in order to avoid the risk of overfitting. Our training set consisted

of around 8000 measurements of βN , li, p0/〈p〉, and A from individual time points

in NSTX discharges for which DCON calculations of δW n=1
no−wall are available, while the

testing phase was performed on roughly 2000 samples.
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Figure 4: Proposed architecture of the ensemble neural network to classify whether a

data point is below or above the no-wall stability limit. The 5 sub-models outputs are

amalgamated into an ensemble in order to evaluate the uncertainty on the predictions.

By preselecting these particular plasma quantities we are engaging in the practice

of feature engineering, which is to try to feed the predictive model the data most

representative of the problem, rather than the most raw data. The features are not

only selected to make the most straightforward comparison to previous models, but

are also the ones contributing with around 97% of the information according to the

random forest. Each feature is Min-Max normalized since neural networks can better

process values between 0 and 1. The network was trained using a stochastic gradient
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descent optimizer with decaying learning rate in the KERAS library [66] in order to find

the optimum combination of parameters that minimises the binary cross-entropy loss

function, L.

Since neural networks can make different decisions depending on how the starting

kernels are chosen, we have decided to build an ensemble of 5 models, each taking a

random initialization of the network weights. Similarly to what was done by M.D. Boyer

et al. [23], the output is chosen to be the mean of the sub-models predictions and the

standard deviation from the mean is utilized to provide a sense of the uncertainty on

the predictions. The neural network returns the probability of -δW n=1
no−wall > 0 (i.e. the

probability of belonging to the unstable class). Therefore, points having an output

probability < 0.5 are considered below the stability limit, while the ones above are

classified as likely unstable points. The no-wall limit is defined as the locus of points

(here decision boundary) where the neural network’s outputs are equal to 0.5.

5.2. Physics-guided objective function

We found that if the training phase was performed on a data-driven-only basis, a

somewhat surprising result was that the no-wall β limit would monotonically increase

with pressure peaking, internal inductance and aspect ratio across the experimental

domain. As was noted in Section 3, the theoretical expectation is that at higher pressure

peaking (and li, the two parameters are correlated in NSTX [7]) the no-wall limit should

decrease. To a lesser extent, the same is true for the aspect ratio projection, which

should also be slightly decreasing rather than the implied slight increase, at higher

A. Therefore, the theoretical physics guidance is imposed by modifying the learning

objective function [62, 63] for the decision boundary projection at higher p0/〈p〉, li and

A. Normally, neural networks aim to minimise an empirical loss while keeping a low

model complexity for better generalisation. However, this approach doesn’t guarantee

that the predictions will be in line with the expected underlying physics, especially

outside the domain of applicability. Therefore, we introduce an additional term to the

loss function which penalizes the predictions with increasing p0/〈p〉, li and A. Let us

denote with ŷ the model predictions and with y the actual observations, and evaluate

the new learning objective as follows:

arg min
Θ,b

L(ŷ, y)︸ ︷︷ ︸
Empirical

loss
function

+
H(xi)

ŷ︸ ︷︷ ︸
penalization

term

(3)

where H(xi) is a two-step Heaviside function that defines the relative importance of

the penalization term and it is an additional hyperparameter that needs to be properly

chosen for each plasma quantity. In fact, an overly large step function would excessively

penalize the predictions, resulting in a too negative steepness of the boundary at high

p0/〈p〉, li and A, whereas a small H would not provide any change in the predictions.

Therefore, we have randomly initialized for 20 times the magnitude of the two steps: the
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first was chosen in the range [0.05, 2] and the second one was constrained to be larger

than the first but less than 4. We have selected the values at which the boundaries

smoothly decreased outside of the training region without compromising the validation

accuracy within the points. The magnitude of H for each of the plasma parameters is

displayed in Table 5.

xi H(xi)

li

0 if 0 < li < 0.9

0.95 if 0.9 ≤ li < 1.2

1.2 if li ≥ 1.2

p0/〈p〉
0 if 0 < p0/〈p〉 < 3.5

0.4 if 3.5 ≤ p0/〈p〉 < 4.5

0.9 if p0/〈p〉 ≥ 4.5

A

0 if 0 < A < 1.5

0.2 if 1.5 ≤ A < 1.6

0.4 if A ≥ 1.6

Table 5: Heaviside step function values used in the penalized objective function. The

additional term is not taken into account at low p0/〈p〉, li and A.

Stability regions and the uncertainty can be evaluated by plotting βN versus the

other plasma quantities. Figure 5 shows the 2D space defined by βN vs li, with each point

representing a DCON calculation for an individual NSTX equilibrium color coded either

in purple (-δW n=1
no−wall < 0, below the ”no-wall” stability limit) or in yellow (-δW n=1

no−wall
> 0, above). The contour plot is what the neural network predicts in each point of the

grid in terms of probability. The plots include the physics-guided projections outside of

the range where data was available; this point will be discussed further in Section 7.

Highlighted as a red solid line is the decision boundary, which effectively defines

the location of the no-wall beta limit. The red dashed lines indicate the standard

deviation from the mean. As expected, the 5 sub-models make similar decisions where

the density of the points is high, whereas they diverge outside the domain. An analytic

expression approximating the no-wall limit can be obtained by fitting the best curve to

the boundary points and in this case is given by:

βN,bnd(li) = 4.91 e
−

(
li − 1.17

1.14

)2

+ 0.21 e
−

(
li − 0.27

0.39

)2

(4)

Similarly, Figures 6 and 7 show the decision boundaries for aspect ratio and pressure

peaking, and the resulting equations are:

βN,bnd(A) = −4.14 A3 + 13.47 A2 − 14.95 A+ 10 (5)
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Figure 5: βN vs. li space with the red solid line as the mean decision boundary and the

dashed lines indicating the standard deviation from the mean. The contour plot shows

the probability of being above the no-wall limit.

βN,bnd

(
p0

〈p〉

)
= 2.56 e

−

(
p0/〈p〉 − 4.06

2.59

)2

+ 3.10 e
−

(
p0/〈p〉 − 0.43

4.29

)2
(6)

5.3. Model performance and uncertainty quantification

The overall no-wall beta limit can be determined by combining these defined boundaries

in a way that we will briefly explain. First, by plotting -δW n=1
no−wall vs. the ratio between

βN and any of the other plasma parameters, it can be easily seen that the best fit is

roughly given by a cubic expression (see Figure 2b in J.W. Berkery et al. [7]). The

same happens if we plot -δW n=1
no−wall vs. βN/βN,bnd. Secondly, as long as δW n=1

no−wall must

be equal to zero at the boundary, the best fit for each of the boundaries should be

given by -δW = aβN ,i ((βN/βN,bnd)
3 − 1); where the aβN ,i’s are coefficients that need

to be optimized. Then, each -δW term must be appropriately weighted via weighting

factors (i.e. wβN ,i) provided by the random forest. Therefore, the following fit for F =

-δW n=1
no−wall will be used:

F = a0 + β3
N

∑
i

aβN ,i wβN ,i
βN,bnd(i)3

−
∑
i

aβN ,i wβN ,i (7)

The chosen a coefficients are the ones providing the highest R2 and accuracy. With
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Figure 6: βN vs. A space for the NSTX database. Data points are color coded either

in purple (-δW n=1
no−wall < 0) or yellow (-δW n=1

no−wall > 0.)
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Figure 7: βN vs. p0/〈p〉 space for the NSTX database. Purple is below the no-wall limit

(class 0) and yellow is above (class 1).

regards to the weighting factors, one can see that in the above fit the importance of βN
is implicit because it is included in each term. Moreover, since the wβN ,i’s should add

up to 1, they need to be rescaled based on the relative importance of li, p0/〈p〉 and A

from Table 4. Both the weights and the coefficients are listed in Table 6.

Setting F = 0 at the boundary, this results, finally, for an expression for the no-wall
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Weights Coefficients

Intercept (a0) - −0.12

βN,li 0.3764 3

βN,p0/〈p〉 0.3246 1.2

βN,A 0.2990 1

Table 6: Weighting factors and coefficients for the δW n=1
no−wall fit.

beta limit:

βn=1
N,no−wall = 3

√√√√[(∑
i

aβN ,i wβN ,i

)
− a0

] [∑
i

aβN ,i wβN ,i
βN,bnd(i)3

]−1

(8)

We can then propagate the error on the no-wall limit estimation by combining the

uncertainty on the decision boundaries with the spread of F around the zero. When

the DCON calculated δW n=1
no−wall is in the range [−0.1, 0.1], the neural network assisted

predictions result in an average of F0 = − 0.06 and a standard deviation σF = 1.05. The

resulting estimated uncertainty on βn=1
N,no−wall, σβN,no−wall

, is obtained using the variance

formula for the error propagation:

σβN,no−wall
=

√√√√(∂βN
∂F

σF

)2

+
∑
i

(
∂βN

∂βN,bnd(i)
σβN,bnd

(i)

)2

(9)

which translates into an error on the estimated no-wall limit of around ± 18%.

The analytic expression obtained has been tested at low li < 0.64 and high li >

0.64, as well as at low p0/〈p〉 < 2.25 and high p0/〈p〉 > 2.25, for best comparison with

the previously defined limit. The results are displayed in Table 7, where accuracy

indicates the percentage of the DCON calculations which fall on the correct side of

the stable/unstable boundaries as defined by the original or neural network assisted

boundaries. The results show that the neural network outperforms the previously

defined equation in J.W. Berkery et al. [7], especially at low li, leading to an overall

improvement in accuracy of around 2.8%. The overall accuracy can also be displayed

in a so-called “confusion matrix” where the classification is broken into quadrants

based on the “actual” stable/unstable calculation from DCON, and the “predicted”

stable/unstable model based classification.

These are shown in Figure 8 for the original and neural network analyses,

respectively, where the overall accuracy numbers from the above table are the summation

of the diagonal quadrants: calculated stable and predicted stable, and calculated

unstable and predicted unstable. Here one can see that there is a slightly larger number

of false positives, but with the benefit of an almost halved amount of missed instabilities

(i.e. bottom-left quadrant in the confusion matrix). False positives, within certain

limits, are acceptable, whilst an abundance of missed instabilities represents a risk for

the safety of the reactor.
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Figure 8: Confusion matrices for the (left) original and (right) neural network decision

boundaries no-wall limit. The predictions are split into True Positives (upper-left

quadrant), False Positives (upper-right), True Negatives (bottom-right) and False

Negatives (bottom-left).

Accuracy

Original
Neural Net

boundaries

Low li and low p0/〈p〉 86.34 % 87.18 %

High li and high p0/〈p〉 89.47 % 90.56 %

Low li and high p0/〈p〉 62.58 % 84.06 %

High li and low p0/〈p〉 71.64 % 68.63 %

Overall 83.16 % 85.92 %

Table 7: Accuracy for the original splitting equations and for the neural network defined

boundaries.

Overall, the neural network analysis is capable of finding decision boundaries that

are still understandable in terms of a few expected plasma parameters and that perform

better than the previous analytic technique in terms of classification accuracy . On

the other hand, the 2D analysis intrinsically excludes possible correlations between

features. The decisions the neural network makes could be stronger and more accurate

by feeding it with all the parameters available, rather than just two at a time. However,

this approach does not provide a closed form equation for the decision boundary to be

included in the larger kinetic model. One possibility could be to use the 19-parameter

space shown in Table 1 and apply a dimensionality reduction technique (i.e. Principal

Component Analysis, t-SNE, etc.) to map the original features into a low dimensional

space, find the decision boundary in this “high-level” space and then map it back to
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real plasma parameters.

6. Integration of machine learning techniques into the DECAF global stability

module

The ultimate goal of the global stability monitoring algorithm is to include not only

ideal, but also kinetic effects – which has been shown to be able to explain experimental

stability [7]. A reduced model including kinetic effects is already implemented in DECAF,

but there are a few possible ways to improve this approach. One would be to utilize

machine learning techniques for the kinetic δWK terms in the way that we have done

here for the ideal no-wall terms, by constructing a neural network or a random forest

that can accurately approximate the results of a stability code calculation in a small

fraction of time. Unfortunately, this technique works best when many thousands of code

calculations are available, spanning the operational space of a device. This is not the

case for kinetic calculations. For example, the MISK code has been used to determine

the kinetic stability of NSTX for many equilibria, but due to the more demanding

computational nature of the code, compared to DCON for example, the number of

available MISK runs is certainly not thousands, let alone hundreds. This is why an

analytic reduced kinetic model was originally developed [1].

Second, it is possible to run the present analytic reduced model on a very large set

of discharges to obtain a database of calculated kinetic growth rates to be compared to

experimental stability. Then, a machine learning technique could replicate that analysis

producing stability maps and defining paths for improvement. One key question to

be demonstrated by such an approach would be how smoothly the gradients and the

partial derivatives flow in the stability map with various parameters. This is a necessary

line of research for a machine learning technique that will ultimately be interfaced into

a control system. Control algorithms will fail if machine learning techniques can not

provide smooth and reliable stability maps, upon which to act. The research line just

described will be the subject of future work.

6.1. Application to post-discharge NSTX data

For the present purposes, a less ambitious approach is to utilize the reduced kinetic

model for γτw (as in 1) currently included in DECAF, but with the neural network

improved calculation of the βn=1
N,no−wall term (i.e. using 8). In this case we anticipate

small changes, but adding slightly more accuracy, to the computed growth rate.

Figure 9 shows a comparison of the two models for the normalized ideal fluid growth

rate in black, and the full kinetic models as colored solid lines versus time leading to

disruption, for NSTX shot 139514.

One can see that the solid black line, indicating the neural network modeling

of γτw,fluid, gives smaller values than the current DECAF model (dashed). This is

mainly due to the reduced amount of missed instabilities (false negatives) in the
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Figure 9: normalized ideal fluid growth rate vs. time to disruption in black dashed line

for the original DECAF model, and black solid line using the NN boundaries, for NSTX

139514. The colored lines indicate the original and modified kinetic growth rates in red

and green, respectively.

present work, which consequently gives slightly higher βn=1
N,no−wall values. In fact,

since the ideal growth rate is computed as a function of the familiar parameter

Cβ = (βN − βn=1
N,no−wall)/(β

n=1
N,with−wall − βn=1

N,no−wall), the previous observation reflects in

lower Cβ values, with a smaller γτw,fluid for the entire shot as a direct consequence.

This decrease in γτw,fluid propagates in the green line as well, where the kinetic

growth rate is shown as a moving average for illustrative purposes. It is worth

emphasizing that all the moving averages in DECAF use only previous time points,

in order to be applicable in future real-time disruption warning systems. Again, no big

changes have been obtained in the final DECAF output, although in this particular case,

the improved γτw,kinetic has avoided a possibly erroneous early zero-crossing (i.e. when

the model estimates the RWM is going unstable).

When applied to a set of NSTX discharges previously analysed by the DECAF kinetic

model [1], the current physics-guided, machine learning assisted model failed to predict

an unstable RWM in 3 out of 20 experimentally unstable discharges, whereas just one

out of 9 stable discharges was predicted to be unstable. The fact that improving one

component in the dispersion relation (Eq. 1) leads to results consistent with current

DECAF calculations is quite promising and lays the basis for further machine learning
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assisted computations of the δWK term.

6.2. Simulated real-time stability calculations

It was previously stated that one benefit of training machine learning algorithms on

databases of calculations is their ability to emulate those calculations much more quickly

given the inputs. Tokamaks generally have some measurements and analyses, such

as equilibrium reconstruction, available in real-time during the discharge. Real-time

disruption avoidance algorithms can take advantage of that by using these inputs and

trained machine learning algorithms to provide stability quantities faster than the real-

time operation of the plasma device. In this case we can simulate what the real-

time βn=1
N,no−wall and -δW n=1

no−wall from the neural network would have looked like for

an NSTX discharge, using only the inputs that were available in real-time for that

shot. Then, we can compare these quantities to the no-wall limit from the DECAF
algorithm and -δW n=1

no−wall from a DCON calculation, which use post-processed equilibrium

reconstructions as input.
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Figure 10: Simulated real-time calculations for NSTX discharge 138556. (a) βN vs.

time with the estimated no-wall limit and the uncertainty area shown in red and grey,

respectively. (b) Estimated -δW n=1
no−wall and the σF as a grey shaded area. (c) DCON

computed -δW n=1
no−wall (ground truth).

Figure 10(a) shows in black the real-time equilibrium reconstruction of βN , with
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the simulated real-time no-wall limit in red and the ± 18% error bar as a grey shaded

area, for NSTX discharge 138556. Frame (b) displays the emulated -δW n=1
no−wall using

Eq. 7 along with the error bars in grey. The DCON computed -δW n=1
no−wall versus time

from post-discharge analysis is plotted in Fig. 10(c).

The neural network simulation of real-time βn=1
N,no−wall and -δW n=1

no−wall indicates that

the plasma is above the no-wall stability limit for 0.4 − 1.0 s. The value of a real-time

calculation of δW n=1
no−wall has been recognized [10], and these alarms will be used in a

future DECAF real-time disruption monitoring algorithm. In fact, even if the plasma

remained experimentally stable in this particular case, other unintended consequences

can occur when a plasma crosses the no-wall limit, such as error field amplification

and rotation braking [67]. When combined with other DECAF warnings, these signals

can contribute to a more robust real-time disruption warning system. Additionally,

these warnings can provide input to a control algorithm which, for example, can apply

actuators to maintain βN at a stable value [68].

7. Cross-device application of machine learning assisted stability calculations

Future high-powered fusion devices, such as ITER, will necessarily be operated in a much

more disruption averse manner than present devices. If machine learning algorithms for

disruption avoidance are to help, they must demonstrate that they can be trained on one

device and reliably operated on another. Several efforts are underway to determine if

this approach is feasible, including for example cross-machine comparisons of disruption

forecasting between the DIII-D and JET tokamaks [20]. Here, our goal is to attempt

to use the model trained on NSTX data and apply it to the most similar other device,

the spherical tokamak MAST, to discover the advantages and limitations of such an

approach. Naturally, the same process as was used here to train a neural network for

determination of the no-wall beta limit, or a RFR for emulation of the DCON calculation

of δW n=1
no−wall can be repeated on the database of MAST equilibria, and it is our intention

to do so in the future. However, in order to properly repeat this process, first high quality

equilibrium reconstructions using kinetic profiles and motional Stark effect constraints

on the q profile for the MAST database are required as the basis of the DCON calculations

or as input to the machine learning algorithms. As these reconstructions are now being

generated in present research, we can start with the available magnetics-only equilibrium

reconstructions for some examples of cross-machine application. Although this is mostly

future work, we will here briefly present some initial examples which show the promise

of the approach.

First, we will utilize the NSTX-trained βN formula on two discharges (25109 and

25112) in MAST, for which the no-wall beta limit was experimentally probed by active

MHD spectroscopy [69, 70] and calculated with the MISHKA-1 code [71].

Active MHD spectroscopy is an established experimental diagnostic technique used

to measure MHD mode stability when the plasma is stable by measuring the resonant

field amplification (RFA) of a travelling toroidal mode number n = 1 applied tracer field.
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Figure 11: βN vs. time with the neural network no-wall limit trained on NSTX data,

for MAST discharges (a) 25109 and (b) 25112. The grey area indicates the uncertainty

on the no-wall limit estimation, as per 9.

Experimental evidence to date has shown that increasing amplitude generally indicates

decreasing mode stability and a sharply increasing amplitude can indicate the approach

to the no-wall limit. By using magnetics-only equilibria and the NSTX derived no-wall

limit formula from 8 without any changes for MAST, we can see in Fig. 11 that the

predicted βn=1
N,no−wall is somewhat larger than the RFA asymptote, but very close to the

MISHKA-1 predictions.

It is worth noting that the operating point of these MAST discharges is just at the

edge, or even above, the domain of applicability of the neural network results, with li >

0.8 and A up to 1.6 at high βN . Therefore, the NSTX-trained formula applied to MAST

has been influenced by the physics guidance outside the training region. This helped

to improve the MAST no-wall limit predictions, compared to the previous calculations,

as otherwise they would have been even larger. As was stated, this analysis needs to

be repeated with accurate kinetic equilibrium reconstructions and DCON calculations of

βn=1
N,no−wall. This example also demonstrates the utility of using multiple machines to

validate and refine a machine learning assisted physics model, as doing so can expand

the domain of applicability. This can be tried by training the neural network with just

a glimpse[20] of MAST data, since this might be the necessary path for future devices
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such as ITER where a small amount of initial data might be used to update previously

trained algorithms, or by combining the full databases of both machines.

The second example of cross-machine application from an NSTX-trained machine

learning approach to a MAST discharge is to attempt to emulate DCON calculations of

δW n=1
no−wall. A very high beta MAST discharge, 7090 [72], was selected for this purpose.

Figure 12(a) shows that βN peaks in this discharge at ∼ 5.5, and the magnetics-only

equilibrium is used as an input to DCON to calculate -δW n=1
no−wall in Fig. 12(b). The

RFR trained on NSTX data (with kinetic equilibrium reconstructions) was then used

to emulate -δW n=1
no−wall .
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Figure 12: (a) βN vs. time and (b) -δW n=1
no−wall calculations from DCON (colored points),

and from the random forest algorithm trained on NSTX data (black line) for MAST

discharge 7090.

The trend is similar, although interestingly the DCON calculations show the no-wall

limit (zero crossing) at around 5.2 while βN is increasing in the shot, and at 4.3 when it is

decreasing, whereas the random forest results are more consistent, both times crossing

at about βN ∼ 4.6. The magnitude is also different, although the DCON results of -

δW n=1
no−wall > 6 are unusually large based on the NSTX experience (see Fig. 3). Overall,

-δW n=1
no−wall predictions for this MAST discharge, based on a random forest trained on the

NSTX device, seem quite reasonable and may be closer in magnitude when compared

to potentially new DCON results from kinetic equilibria for MAST. This remains to be
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seen, but the results are encouraging. Of course, when the random forest predictions

are compared to new MAST DCON runs, differences will surely be found as well, which

will be informative and in future work may lead to a better predictor.

8. Discussion and conclusions

The reduced kinetic stability model is one of the core modules inside the DECAF
framework and has been widely used to reproduce marginal stability points in NSTX.

A novel approach combining prior physics knowledge and machine learning algorithms

was explored to improve the underlying ideal stability calculations of the no-wall limit.

Interpretable machine learning approaches, such as the random forest regression, can

give an insight into the physics behind DCON calculations and provide the importance

that each plasma quantity has in the determination of βN,no−wall and δWno−wall. An

improved closed-form equation of the no-wall limit has been derived by combining

random forest weights with neural network defined decision boundaries in the βN
versus li, A and p0/〈p〉 operating spaces. This new formulation outperforms the

previously defined equation, leading to a significant reduction of missed instabilities

(false negatives) and consistently replicating DCON calculations in simulated real-time

analyses.

There are various elements in this approach that may be improved. First of all,

the current DECAF model incorporates modifications to ideal stability by kinetic effects

that are left unchanged in the present work and that will be subject of further machine

learning assisted calculations. Secondly, the usage of neural networks has revealed a

caveat of many machine learning algorithms, which is the extrapolation outside of the

training region. Here we have used ideal MHD theory as physics guidance for the neural

network. A first cross-device application on a similar tokamak, MAST, is so far quite

promising, especially since the neural network has not seen any MAST data. There

is still room for improvement as soon as high quality equilibrium reconstructions and

DCON runs are available for MAST, though.

In conclusion, a first attempt to include machine learning tools inside the DECAF
framework has proved that physics knowledge and artificial intelligence can cooperate in

order to build robust real-time disruption avoidance systems for future relevant fusion

devices.

Work in the near future will cover a study of the kinetic effects and the possible

procedures to improve the δWK term, which will provide a machine learning assisted

alternative to the entire kinetic stability model. Moreover, domain adaptation is a

necessary line of research in order to refine understanding of how kinetic RWM stability

scales across different machines.
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[42] Vega J, Dormido-Canto S, López J M, Murari A, Ramı́rez J M, Moreno R, Ruiz M, Alves D,

Felton R and JET-EFDA Contributors 2013 Fusion Eng. and Design 88 1228 URL https:

//doi.org/10.1016/j.fusengdes.2013.03.003

[43] Moreno R, Vega J, Dormido-Canto S, Pereira A, Murari A and JET Contributors 2016 Fusion

https://doi.org/10.1088/0029-5515/55/9/092001
https://doi.org/10.1088/0029-5515/55/9/092001
https://doi.org/10.1088/1741-4326/aa7776
https://doi.org/10.1088/1741-4326/aa7776
https://doi.org/10.1088/1741-4326/ab0762
https://doi.org/10.1088/1741-4326/ab0762
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1088/1361-6587/aac7fe
https://doi.org/10.1080/15361055.2017.1407206
https://doi.org/10.1080/15361055.2017.1407206
https://doi.org/10.1088/1741-4326/ab28bf
https://doi.org/10.1088/1741-4326/ab1df4
https://doi.org/10.1088/1741-4326/ab1df4
https://doi.org/10.1088/1361-6587/ab32fc
https://doi.org/10.1088/0029-5515/47/6/S03
https://doi.org/10.1088/0029-5515/47/6/S03
https://doi.org/10.1063/1.3703327
10.1088/0029-5515/55/6/063030
10.1088/0029-5515/56/5/054001
10.1063/1.4901251
https://doi.org/10.13182/FST14-926
https://doi.org/10.13182/FST15-176
https://doi.org/10.1088/0741-3335/57/12/125008
https://doi.org/10.1088/1741-4326/aaf451
https://doi.org/10.1088/1741-4326/aaf451
https://doi.org/10.1016/j.fusengdes.2017.10.003
https://doi.org/10.1088/1009-0630/18/12/04
https://doi.org/10.1088/0029-5515/49/5/055028
https://doi.org/10.1016/j.fusengdes.2013.03.003
https://doi.org/10.1016/j.fusengdes.2013.03.003


Physics-guided ML approaches for ideal stability forecasting 28

Science and Tech. 69 485 URL https://doi.org/10.13182/FST15-167

[44] Yokoyama T, Miyoshi Y, Hiwatari R, Isayama A, Matsunaga G, Oyama N, Igarashi Y, Okada

M and Ogawa Y 2019 Fusion Eng. and Design 140 67 URL https://doi.org/10.1016/j.

fusengdes.2019.01.128

[45] Pau A, Fanni A, Carcangiu S, Cannas B, Sias G, Murari A, Rimini F and the JET Contributors

2019 Nucl. Fusion 59 106017 URL https://doi.org/10.1088/1741-4326/ab2ea9

[46] Cranmer M D, Rui X, Battaglia P and Ho S 2019 ArXiv (Preprint https://arxiv.org/abs/

1909.05862v2)

[47] Bondeson A and Ward D J 1994 Phys. Rev. Lett. 72 2709 URL https://doi.org/10.1103/

PhysRevLett.72.2709

[48] Sabbagh S A, Bell R E, Bell M G, Bialek J M, Glasser A H, LeBlanc B P, Menard J E, Paoletti

F, Stutman D, Fredrickson E, Garofalo A M, Gates D A, Kaye S M, Lao L L, Maingi R,

Mueller D, Navratil G, Ono M, Peng M, Synakowski E, Zhu W and NSTX Research Team 2002

Phys. Plasmas 9 2085 URL https://doi.org/10.1063/1.1468230

[49] Sabbagh S A, Bell R E, Menard J E, Gates D A, Sontag A C, Bialek J M, LeBlanc B P, Levinton

F M, Tritz K and Yuh H 2006 Phys. Rev. Lett. 97 045004 URL https://doi.org/10.1103/

PhysRevLett.97.045004

[50] Chu M S and Okabayashi M 2010 Plasma Phys. Control. Fusion 52 123001 URL https:

//doi.org/10.1088/0741-3335/52/12/123001

[51] Strait E J, Taylor T S, Turnbull A D, Ferron J R, Lao L L, Rice B, Sauter O, Thompson S J and
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