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Geodesic acoustic modes (GAMs) represent the oscillating counterpart of zonal flow in tokamak plasma
and can affect transport due to their interaction with turbulence eddies. GAMs have been observed in many
experiments and modelled under different conditions, but because of their variety of characteristics, we do not
yet have a complete picture of their dynamics. It has been demonstrated that optical methods can be efficiently
used to describe and predict several characteristics of the GAM radial structures that can be interpreted as
“waves” propagating in the space-time. We exploit eikonal and paraxial WKB theory to investigate the
behaviour of GAMs that are commonly observed in experiments, and find that their periodic modulation
and intermittency can be explained by the properties of the equilibrium temperature profile. Theoretical
results obtained in this work are supported by gyrokinetic simulations for several equilibria. Implications for
existence criteria and GAM dynamics in different plasma equilibrium conditions are discussed, with particular
attention to the edge plasma in low and high confinement modes.
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I. INTRODUCTION

At the edge of a tokamak device, drift waves and tur-
bulence are influenced by the oscillating counterpart of
zonal flows know as geodesic acoustic modes (GAMs).
These modes are oscillations characterized by poloidal
and toroidal (m,n) = 0, 0 wave number perturbations of
the electrostatic potential coupled with pressure (m,n) =
1, 0 perturbations1. An exhaustive paper including cur-
rent knowledge of GAMs has been recently published2.
Because of their action on turbulence cells, it is believed
that GAMs play an important role in establishing the
level of turbulent transport.
In fact, their frequency typically around 20 kHz in

present-day tokamaks is slow enough to radially shear
turbulent eddies and reduce the associated cross-field
transport. Their quasi-static character may make their
action perhaps less effective than that of stationary zonal
flows in turbulent transport reduction. However, GAMs
provide an additional energy dissipation route for the
turbulence via Landau and collisional damping. Thus,
GAMs are expected to have an equivalent role to that
of zonal flows in moderating edge turbulence behavior3.
GAMs are thought to be non-linearly driven by turbu-
lence and linearly damped by collisionless ion Landau
damping in the typical range of parameters in which toka-
mak machines operate.
Studies of GAMs are the most flourishing area in zonal

flow experiments. Many devices have provided informa-
tion on the basic features of GAMs, such as their ax-
isymmetric structure, dispersion relation, couplings with
turbulence and accompanying density fluctuations (see
Ref. 2 and references therein). So far, most observations
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show good agreement with predictions made using exist-
ing theories. For example, the essential dependence of
the GAM frequency should obey the theoretical expec-
tation. This has been confirmed in tokamaks, spherical
tokamaks such as MAST4,5 as well as stellarators. Al-
though extensive efforts have been made over the last
decades in zonal flow experiments, a number of issues
remain to be explored. Moreover, this huge quantity of
experimental results have revealed many interesting char-
acteristics that are yet to be understood theoretically.
For example, eigenmodes are often observed in exper-
iments with frequencies that do not follow trends pre-
dicted from the temperature profile4,6; GAM frequency
splitting are observed in ASDEX Upgrade (AUG) and
DIIID6,7; GAMs separating into two parts that move in
opposite directions8; and GAM modulation and/or inter-
mittency in amplitude and frequency2,5,9.

This last aspect is a common GAM characteristic ob-
served in different conventional and spherical tokamak
machines in steady plasma conditions. In fact, intermit-
tent GAM behaviour is often observed around a clear
spectral signal, that as mentioned previously, is typi-
cally around 20 kHz. Sometimes in steady state condi-
tions it is possible to observe a modulation of the GAM
frequency. This has been documented and investigated
experimentally. The modulation appears to be differ-
ent from zonal flow poloidal modulations whose causes
can be found in shear flow instabilities such as Kelvin-
Helmholtz10–13. GAM modulations can be more or less
regular or can degenerate in a burst. We note that modu-
lation in AUG appears to be more regular and sinusoidal
compared to other machines such as T-10. The intermit-
tency of GAMs has been quantified, revealing that the
autocorrelation time ranges from about 5 to 20 GAM
periods in cases examined, a difference that affects the
probability distribution function of the E×B velocity at
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the GAM frequency. The frequency of this intermittent
behavior generally varies between ∼ 0.2 kHz and ∼ 1 kHz
and the physical reason for the modulation is not fully
understood.

One candidate explanation has been proposed by con-
sidering a radial displacements of GAMs due to tem-
perature fluctuations. However, no significant variations
have been observed in the ECE diagnostic, nor in the
plasma position data. A possible correlation with mag-
netic fluctuations observed at around 0.2 kHz has also
been ruled out. The most plausible explanation seems to
be a correlation between the GAM intensity and low fre-
quency zonal flows, via Alfvén-drift wave turbulence9,14.
Moreover, averaged bispectral analysis shows that the
strength of the nonlinear interaction of the GAM with
broadband turbulence can vary with the magnitude of
the GAM. Thus, the modulation in the GAM amplitude
and frequency appears related with the density fluctu-
ation level15. In Tore Supra GAMs were modulated in
amplitude and in frequency around 100 Hz. In T-10 the
frequency of GAMs was several kHz. In HL-2A the mod-
ulation can be particularly strong.

Generally, when the GAM peak is reduced the broad-
band background spectrum is enhanced-suggesting an in-
crease in the random Er fluctuations 6. This feature is
very reproducible and is highly significant as it points
towards the predicted interaction between GAM/ZF and
the turbulence amplitude.

In this work we investigate aspects related to the os-
cillation and intermittency of GAMs by applying tech-
niques derived from the field of optics. We have already
shown how optical theories represent a robust basis for
the description of many characteristics of radial propa-
gation and spreading of GAMs16–19,21. Here we continue
to investigate the GAM behaviour using these methods
in order to describe analytically a certain number of ob-
servations and, where possible, to predict behavior. We
study GAMs in the low confinement L-mode and at the
L to H-mode transition, providing further insights with
respect to Refs. 22 and 23 as to why GAMs are not
observed experimentally in H-modes.

We recall that GAMs are universally observed in ohmic
and heated L-mode regimes24. However, they have not
to-date been seen in high power H-modes9,25 (note con-
trary result from EAST).

There are several open issues: what happens to GAMs
across the L-H transition?; what is the role of GAMs in
the self-suppression of edge turbulence in H-mode or in
triggering the transition through enhanced eddy shear-
ing?; and what is the interaction between GAMs and
the mean shear flow? We recall that strong GAMs are
observed across the edge region in the L-mode phase,
but their radial extent narrows as the discharge enters
an intermediate improved confinement state (I-phase)25.
As the H-mode transition approaches an increase in fre-
quency and amplitude modulation of the GAMs is ob-
served. This aspect is correlated with an increase of the
broadband turbulent flow and density fluctuation modu-

lation. Finally, when the H-mode regime is established,
the density turbulence is quenched across the pedestal
region, and the GAM disappears into the background
fluctuation level. Some of these aspects will be investi-
gated in the present paper.
The paper is organized as follows. In Sec. II we briefly

recall the principal aspects of the code and normaliza-
tions used in our numerical model. Sec. III first dis-
cusses the theory adopted to describe GAMs with a par-
ticular focus on the effects of the second radial deriva-
tive of the temperature gradient. In Sec. IV we present
the simulation results and compare these with analytical
theory. After demonstrating the validity of the theory,
we apply this to a range of parameters of interest de-
rived from two different AUG shots in L- and H-mode,
in which frequency modulation is observed and GAMs are
not present respectively. Finally in Sec. VI we present
the conclusion and the implications of this work.

II. NUMERICAL MODEL

The gyrokinetic ORB5 code used in this work has been
extensively described previously and consequently we
limit ourselves in this section to briefly recalling its prin-
cipal characteristics26. The code uses a Lagrangian for-
mulation based on the gyrokinetic (GK) Vlasov-Maxwell
system of equations and now includes all extensions made
in the NEMORB project27,28. The particle gyrocentre
trajectories are computed from equations derived from
the variational principles on the action. The code solves
the full-f gyrokinetic Vlasov equation using a particle-in-
cell δf method. The δf quantity represents the fluctu-
ating part of the distribution function and is discretized
using a population of numerical particles called markers.
Energy and momentum conservations can be proven via
gyrokinetic field theory29. To obtain the perturbed po-
tential, the Vlasov equation must be coupled with equa-
tions for the fields. These are obtained by taking func-
tional derivatives of the actions with respect the per-
turbed potential, leading to a polarization equation for
φ and the Ampére law for A||. In this work we have
used the electrostatic version of the model with a sin-
gle ion species and adiabatic electrons. The correspond-
ing polarization equation reduces to the standard linear
quasi-neutrality condition of Hahm30, written in the long
wave-length limit. ORB5 is massively parallelized. In the
code, time t is normalized to the inverse of the ion cy-
clotron frequency Ωi = eB0/mi, the radial direction is
normalized in terms of ρs =

√

kBTe,0mi/(eB0) with Te,0

the electron temperature, and the potential is given in
φ0 = kBTe,0/e units. We indicate Lr = 2/ρ∗ by denot-
ing the magnetisation 1/ρ∗ = a/ρs, where a is the minor
radius at the midplane. The quantity B0 is calculated at
the magnetic axis, while Te,0 is calculated in the middle
of the radial domain. The ion Larmor radius is defined
as ρi =

√
2
√

Ti,0/Te,0ρs with Ti,0 the ion temperature,
also calculated in the middle of the radial domain.
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III. OPTICAL TREATMENT OF GAM DYNAMICS

Before introducing the new results from this work, in
this section we briefly summarize findings from earlier
studies of GAMS using optical theory. Geodesic acoustic
modes are waves that, as mentioned in the introduction,
are characterized by (m,n = 0, 0) mode numbers for the
electric field and can be considered in a first approxima-
tion to vary essentially along the radial direction. The
GAM dispersion relation to second order in krρi can be
written as31,32:

ω = ωG

(

1 +
1

2
α1k

2
rρ

2
i

)

(1)

where the frequency ωG is a function of τe = Ti/Te and
of ion thermal velocity vth,i and major radius R0:

ωG =
[

1 +
2(23 + 16τe + 4τ2e )

q2(7 + 4τe)

]1/2(7

4
+ τe

)1/2 vth,i
R0

(2)

α1 =
1

2

[3

4
−
(7

4
+ τe

)−1(13

4
+ 3τe + τ2e

)

(3)

+(
7

4
+ τe)

−2
(747

32
+

481

32
τe +

35

8
τ2e +

1

2
τ3e

)]

We note that in Eq. 3, α1 > 0 for τe . 5.54. In our
treatment, we adopt Eqs. 2 and 3, neglecting effects re-
lated to plasma elongation, triangularity and so on, to
focus on the essential aspect of the problem. As we have
presented in Ref. 18 we can establish a certain paral-
lel between light beam evolution in a medium and GAM
dynamics that becomes evident on comparing the sta-
tionary two-dimensional Helmholtz equation:

(∇2 + k20n
2
0)E =

[ ∂

∂x2
+

∂

∂y2
+ n̄2

0

]

E = 0 (4)

with the wave equation of GAMs:

[

+
1

ω2
G

∂

∂t2
− α1ρ

2
i

∂

∂r2
+ 1

]

E = 0 (5)

In this way, we observe that Eq.5 appears as the normal-
ized version with n̄0 = k0n0 = 1 of Eq. 4, with x → ωGt
and y → r/

√
α1ρi). This analogy allows us to describe

the GAM evolution in terms of refraction, interference
and diffraction effects in a medium with a certain associ-
ated index of refraction nG in space-time. It is important
to emphasize that the analogy between Eq. 4 and Eq. 5
is completely established for α1 < 0. In fact, for these
α1 values, characteristics of waves for which phase path
and wave front trajectories are perpendicular each oth-
ers are respected. However, the analogy between the two
equations continues to be valid also for α1 > 0 by paying
attention to the fact that a positive value of α1 reverses
the concavity of the wave front in the space-time plane
(see Fig. 1 and Fig. 2 of Ref. 18). In our previous paper
Ref. 18, we focused on the applicability of two differ-
ent complex eikonal methods to describe the spreading

of GAMs. As a result it has been possible to associate
with GAMs an index of refraction as a function of the
temperature profile via ωG and ρi. The associated re-
fractive index is a function of space and time and this, in
principle, allows us to take into account also the influence
of turbulent fluctuations on the GAM dynamics (which
will be the subject of a future paper). Moreover, we note
that another analogy between the Helmholtz equation
and the Schrodinger equation makes it possible to adopt
a quantum mechanical approach to the description of the
GAM dynamics21.

By considering an inhomogeneous index of refraction
arising from the radial profile of the equilibrium temper-
ature, we have studied the evolution of a GAM packet
describing at the same time the spreading and the ra-
dial propagation of the packet. These considerations
can be summarized in Fig.1 which shows the time evo-
lution of the module of GAM radial electric field for a
radially extended wavepacket, with a non-uniform radial
profile of temperature. The gyrokinetic simulation has
been performed by assuming inverse aspect ratio ǫ = 0.1,
Lr = 320, flat safety factor and density profiles and tem-
perature gradient kT = −(1/T )(dT/dr) = 13 with r
normalized to the minor radius, which for this case is
a = 0.13m. Hereafter, the radial coordinate is normal-
ized to the tokamak minor radius a. Thus, the time-space
(t, r) plane shows, both the bend of the signal due to the
temperature gradient and the divergent character of the
GAM that is similar to that of a laser beam propagating
in an inhomogeneous medium.

However, in the figure we distinguish further char-
acteristics of the GAM evolution. The region between
0.5 < r < 0.6 shows a rapid damping of the signal,
whereas in the range 0.4 < r < 0.5 the mode propagates
maintaining a coherent structure like a soliton. Moreover,
the bottom panel of Fig.1 shows that the amplitude of
the electric field in the (t, r) plane exhibits a modula-
tion in the coherent part of GAM that propagates. We
will now apply optical theory to demonstrate that these
behaviours are due to the second radial derivative of nG

directly related to the equilibrium temperature profile via
ωG and ρi, and will then discuss the implications of these
effects on GAMs in real tokamaks.

A. Eikonal theory

In order to isolate effects related to the radial tempera-
ture profile, we consider the eikonal equation (∇s)2 = n2,
where s is the wave phase associated to the curvature of
the wave front R = 1/s which makes it possible to de-
scribe the behavior of a light beam traveling in a medium
with a refraction index varying ”slowly“ with position. In
order to give a intuitive picture of the problem, we ini-
tially neglect diffraction effects18,19 and observing that
light rays are defined as lines perpendicular to the wave
front s(x, y) = constant, we write the eikonal equation
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FIG. 1. Time evolution of GAMs with an inhomogeneous
profile of temperature. The top panel shows the spreading of
the signal and the bend of the GAM node starting at r0 = 0.5
due to the temperature profile. The latter is overplotted in
yellow. The bottom panel shows the amplitude modulation of
the GAM.

in the vector form20:

d

dτ
(n

dr

dτ
) = ∇n (6)

where dτ is the curvilinear element along the ray and
where r is the position vector of a generic point on the ray.
By adopting the configuration indicated in Fig. 1 in Ref.
18, we use the optical approximation dτ = dx (temporal
direction of GAM) based on the fact that we assume our
beam remains near some axis in space. We decompose
the vector r = xêx+yêy into the two components on the
fixed axis and write:

d

dx

[

n
(dx

dx

)

êx + n
(dy

dx

)

êy

)]

=
∂n

∂x
êx +

∂n

∂y
êy (7)

In the framework of the optical approximation, and for
the goal of this paper, we consider that the refraction
index n is constant along the x direction. By assuming

a Gaussian packet with centre y0 we obtain:

n
d2

dx2
y0(x) =

∂n

∂y







y0

(8)

By neglecting diffraction effects we can assume that a
generic radial point of the gaussian packet moves with
the same law:

n
d2

dx2
y1(x) =

∂n

∂y







y0

+ (y1 − y0)
∂2n

∂y2







y0

(9)

where we have used a Taylor expansion to connect ∂n/∂y
calculated in y0 and y1 respectively. In this way it is pos-
sible to model the evolution of the width W of a narrow
wavepacket, using y0(x) and y1(x) to represent the tra-
jectories of the centre and edge of the wavepacket with
W (x) = y1(x)− y0(x). By subtracting Eq. 9 from Eq. 8
we obtain:

n
d2

dx2
W (x) = +W

∂2n

∂y2







y0

(10)

This equation can be completed by adding the diffraction
term in order to obtain an equation of motion for the
beam radius:

n
d2

dx2
W (x) = +W (x)

∂2n

∂y2







y0

+
1

nc2W (x)3
(11)

where c2 is a constant related to the properties of the
medium35,36. Thus, we have obtained equations of mo-
tion for the time evolution of the central beam radial po-
sition (see Eq. 8) and for the time evolution of the beam
width (see Eq. 11). We note that the diffraction term
in Eq. 11 can be justified rigorously using the complex
eikonal approach18,19,38. Here, we also note that Eq. 11
is an Ermavok equation34 which represents the real part
of the complex Riccati equation used in different domains
of physics such as cosmology, quantum mechanics, optics
and so on:

d

dx
S(x) + S(x)2 +Ω2 = 0 (12)

where S is the complex quantity S = s+ iφ. From com-
plex eikonal theory we recall that s is related to the radius
of curvature of the wavefront, whereas the imaginary part
is related to the width φ = 2/W 2 of the wave packet. By
substituting the S relation in Eq. 12 it is possible to see
that the imaginary part of the obtained expression leads
to s = d/dx[lnW (x)]. When this latter expression is sub-
stituted in the real part of the Riccati equation, we obtain
Eq. 11. Further details can be found in the appendix in
which it is shown how the same results of this section
can be obtained in the framework of the paraxial WKB
method. We observe that the two equations Eq. 8 and
Eq. 11 are independent, which implies that the centre
trajectory and the width W quantity are uncorrelated.
We recall that we have already studied for GAMs the

competition between the first derivative kT of tempera-
ture and diffraction effects18. We have quantified the ef-
fects related to kT that produce an increase of the radial
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group velocity and a bend in the wave front in the space
time plane that corresponds to the phase mixing22,33,42.
At the same time we have estimated the diffraction effects
that generate a spreading of the energy GAM packet.

B. Eikonal equation applied to GAMs

In this section we apply the eikonal theory to the GAM
behaviour. By recalling the coordinate relations x = ωGt
and y = r/(

√
α1ρi) and that the GAM refractive index

is related to the temperature profile we can rewrite Eq.
10 as follows:

1

ω2
G

d2

dt2
wG(t) = +wG(t)α1ρ

2
i (13)

[

a2

( 1

T

dT

dr

)2




r0
+ a3

1

T

d2T

dr2







r0

]

where wG represents the width of the GAM packet and
where the two terms related to the temperature gradient
are obtained by considering the second derivative of the
refractive index with respect to r. A derivation of the
coefficient, whose values are respectively a2 = −1/4 and
a3 = 1/2 can be found in the appendix. Thus, by using
the diffraction term for the GAM dynamics that we have
obtained and studied in Refs. 18 and 19, we can complete
the evolution equation for wG:

d2

dt2
wG(t) = +wG(t)α1ω

2
Gρ

2
i (14)

[

− 1

4

( 1

T

dT

dr

)2




r0
+

1

2

1

T

d2T

dr2







r0

]

+
(2α1ωGρ

2
i )

2

w3
G

As mentioned, in Refs. 16 and 18 it has been shown that
the effect of first derivative of temperature is related to
a radial acceleration of GAMs. Consequently in order
to maintain the GAM in a fix radial position, and to
study the effects related to the second derivative of the
temperature profile and its competition with diffraction
term related to the spreading of the GAM, we consider
the following temperature profile for both ion and elec-
trons:

T (r) = Ae
−

(r−r0)2

w2
T +B (15)

In this way we have the first radial derivative of T equal
to zero around the point r0. Moreover, expression 15
will be useful in the following to compare the width of the
GAM packet wG with the parameter wT which is directly
related to the second derivative of the temperature with
which we can associate a parabolic index of refraction
around r0. Taylor expanding Eq. 15 around r = r0
gives:

T (r) ≈ T (r0) +
1

2

∂2T

∂r2
(r− r0)

2 = (A+B)− A

w2
T

(r− r0)
2

(16)

and consequently we have:

hT =
1

T

∂2T

∂r2







r0
≈ −2

A

A+B

1

w2
T

(17)

Eq. 14 has the following analytical solution:

wG(t) = wG0

[

cos2
(

ΩM t
)

+
1

(ΩM tR)2
sin2

(

ΩM t
)]1/2

(18)
where wG0 is the initial width of the GAM packet and
Ω2

M is equal to:

Ω2
M = α1ω

2
Gρ

2
i

(

− 1

4
k2T +

1

2
hT

) A

A+B

1

w2
T

(19)

Further, in Eq. 18, tR is the Rayleigh range or collima-
tion time that characterizes the divergent nature of the
optical beam that we have already calculated in Ref. 18:

tR =
w2

G0

2α1ωGρ2i
(20)

With the considered temperature profile we have ΩM =
ωGρi

√

−α1A/[(A+B)w2
T ]. Thus, the explicit expres-

sion for Eq. 18 is:

wG(t) = wG0

[

cos2
(ωGρi

wT

√

− α1A

A+B
t
)

+ (21)

4
α1(A+B)

A

w2
T ρ

2
i

w4
G0

sin2
(ωGρi

wT

√

− α1A

A+ B
t
)]1/2

We have now established a parallel between the time
evolution of the width of a GAM packet and the spa-
tial profile of a laser beam that propagates in a medium
with a parabolic index of refraction. Thus, Eq. 18 and
Eq. 21 show a modulation behavior of the GAM packet
when ΩM is real. It is important to note that where Ω2

M

is negative, the signal is evanescent indicating the dis-
appearance of GAMs. This implies that there are zones
related to the equilibrium profile in which the existence of
GAMs could be forbidden. These considerations will be
investigated in the next sections with a direct compar-
ison between theory and simulations and afterward by
analysing some experimental data in order to quantify
the importance of this phenomenon in tokamak devices.

IV. SIMULATION RESULTS AND PHYSICAL

INTERPRETATION

In this section, by using the gyrokinetic code ORB5,
we verify analytical results obtained in the previous sec-
tion. In the regime with τe ≈ 1, dispersion effects are
dominated by dissipation effects due to Landau damping
and by Phase-mixing Landau damping (PL) mechanism.
Thus, initially we investigate the modulation of the GAM
amplitude in a regime in which dissipative effects are neg-
ligible (large value of τe) in order to focus attention on



6

dispersion. After verifying the modulation behaviour of
GAMs, the theory will be applied to predict modulation
of the GAM in a range of parameter values of interest for
tokamak devices. GAM frequency modulation is of inter-
est in the nonlinear regime where dissipation effects may
compete with drive and, in principle, linear dispersion
becomes important to predict the correct GAM dynam-
ics. We note that all the simulations discussed in this
paper have been performed in the linear regime. Results
in the nonlinear regime will be presented in a future pa-
per. We begin by presenting simulations in the range
between 6 . τe . 40. On the basis of Eq. 19 the pos-
sible condition for the existence of GAM is given by the
dimensionless parameter:

Ce = α1(−
1

4
k2T +

1

2
hT ) > 0 (22)

It is important to emphasize that this constraint in our
approximation has been obtained by not considering non-
linear regime and then not taking the drive into account.
For our choice of profiles in Eq. 15 we can rewrite Eq.
22 as follows:

Ce = −α1
A

A+B

1

w2
T

> 0 (23)

We recall from Ref. 32 and Ref. 33 that α1 is negative
for τe & 6 and consequently we need to consider hT > 0.
We consider a tokamak with a major radius R = 1.3 and
a minor radius a = 0.13. As we have demonstrated in
Ref. 18, the applicability of optical techniques allow us to
describe GAMs by using a high-order Hermite function.
Thus, we can use either first order (Gaussian packets)
or second order Hermite functions for the GAM electric
field, depending on the emphasis that we would like to
give to a particular aspect. In order to perform a sys-
tematic study of the GAM width evolution we define a
Gaussian profile with a radial width wG of the packet:

φG = e−(r−r0)
2/w2

G (24)

We consider a temperature profile with A = 0.8 and
B = 0.2 in Eq. 15 to have T0 = 1 in the middle of
the box. Setting a finite B avoids numerica problems at
the boundary. In the first instant we choose τe = 40 in
order to neglect the Landau damping. We consider flat
density and safety factor profiles for all the simulations.
The effects of density gradients will be investigated in a
future work.
We vary the GAM width in the range 0.02 < wG <

0.08, setting this to be smaller than the temperature
width 0.1 < wT < 0.2 (see Eq. 15). Hereafter, we con-
sider a GAM packet and a temperature profile centered
at the same position by choosing for simplicity r0 = 0.
In this way, we avoid any radial motion of the peak of
the GAM potential that we recall is determined by Eq.
8 related to the first derivative of the refractive index.
This means that the corresponding node of the electric
field will be fixed in time at r0 = 0 and we focus on

FIG. 2. Time evolution of the module GAM electric field pro-
file oscillating in an equilibrium with wT = 0.14. The consid-
ered values for GAM width are wG = 0.08, 0.048, 0.028 from
top to bottom panel. Superimposed on the GAM signal, phase-
path trajectories (orange lines) predicted analytically by Eq.
21 reproduce well the modulation of GAM.

the shape evolution of the packet. Fig. 2 shows the
time evolution of three GAM electric field signals with
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wG = 0.08, 0.046, 0.028 from top to bottom panels respec-
tively in an equilibrium temperature with wT = 0.14, also
overploted is the GAM width evolution predicted by Eq.
21, which shows a good agreement between simulations
and analytical theory. We can give the following physical
interpretation of the phenomenon. The GAM packet os-
cillates in an environment whose influence on the GAM
structure is determined by the radial profile of the asso-
ciated refractive index. During a period tG = 2π/ωG the
environment acts as a lens on the GAM oscillation. If the
beam size wG is such that it compensates the focusing ef-
fects of the lens, the beam size remains constant and we
can talk about a steady-state or a GAM “eigenmode”
with a width wGeig

. In the general case the GAM width
does not match the Gaussian “eigenmode” determined by
equilibrium profiles. If the input beam is initially smaller
than the steady-state GAM width then the diffraction
spreading for this smaller beam will then be stronger than
the refocusing produced by the temperature profile. The
width wG(t) will therefore begin to grow, and the Gaus-
sian beam will begin to spread with time. As soon as its
width becomes larger than the “eigenmode” extension,
the opposite condition will prevail, and the beam will
be refocused again. Thus, an initial beam with a width
w(t) larger or smaller than the steady state value wGeig

will oscillate periodically inward and outward about the
steady state value in a sausage-like fashion as shown in
Fig. 2.
In order to better quantify this behavior we observe

that the maximum and minimum radius occur when
dwG/dt = 0. Some simple algebra using Eq. 18 - Eq.
20 from our theory we obtain the maximum and mini-
mum packet widths:

w2
Gmax

w2
Gmin

=
4α1ρ

2
i

−1/4k2T + 1/2hT
(25)

that for the case considered in our simulation corresponds
to haveing w2

Gmax
w2

Gmin
= −4α1ρ

2
iw

2
T (A+B)/A. We

conclude from this that the product of the maximum and
minimum radii is a constant, independent of the entrance
conditions of the beam. The condition to obtain a GAM
eigenmode oscillation can be found directly from Eq. 25.

wGeig
=

[ 4α1

−1/4k2T + 1/2hT

]1/4√
ρi (26)

By considering kT = 0, α1 = −8.9, A = 0.8, B = 0.2,
ρi = 1.9 ·10−3 and wT = 0.14 we obtain for this case that
the width for an eigenmode GAM packet is wGeig

= 0.04.
Thus, in the case with wG < wGeig

(bottom panel of Fig.
2) the packet first expands and then contracts in a repeat-
ing cycle. For the cases wG > wGeig

the GAM is initially
focused (top and central panel of Fig. 2). The expression
25 shows also that the product of the maximum and min-
imum of the GAM width depends on the characteristics
of the local environment. This implies that a larger min-
imum width GAM should be associated with a smaller
maximum radial spread, as it is evident in comparing the

FIG. 3. Plot of Ω−1
M (proportional to the period of the GAM

modulation) as a function of wTL
2
r. The direct proportionality

between these quantities is in agreement with the prediction of
Eq. 21.

top and middle panels of Fig.2. It is important to note
that energy during the oscillation behavior is conserved
and consequently the amplitude of the GAM strongly
increases when it reaches wGmin

producing strong varia-
tions in the GAM signature that we can associate with
bursts. The amplitude of the GAM is shown using the
color bar in the figures and is maximum when wG is min-
imum. The color bar is normalized to 1 by considering
the maximum value of the initial signal at t = 0. Fig.
3 shows Ω−1

M of the modulation as a function of wTL
2
r

and demonstrates that the simulation results show a di-
rect proportionality between these two quantities. This
result can be interpreted by observing that L2

r ∝ Ti via
the ρ2i dependence and Ω−1

M ∝ Ti via the dependence on
ωGρi. These considerations are confirmed in Fig. 4 in
which show the module of the electric field evolution of
a packet as a result of the competition between the sec-
ond derivative of the temperature and the gaussian beam
of the GAM for three case Lr = 320 (top), Lr = 640
(centre) and Lr = 960 (bottom). The ORB5 simulation
results are compared with the theory predictions of the
GAM width (yellow lines superimposed on the simula-
tion signal in Fig. 2 and Fig. 4). All cases in Fig 4
demonstrate that the maximum amplitude is achieved at
the minimum width, with Lr = 2/ρ∗ = 960 being par-
ticularly striking. Moreover, we can distinctly observe a
curvature of the wave front of the GAM in time. We em-
phasize that this curvature is produced in a time-space
plane and, as discussed in previous the section, is equal
to 1/R(t) = d lnW (t)/dt whose explicit expression is:

R(t) =
t2RΩ

2
M cot(ΩM t) + tan(ΩM t)

ΩM (1 − Ω2
M t2R)

(27)

This curvature, that changes concavity periodically in
time, corresponds to a periodically modulation of GAM
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FIG. 4. Time evolution of the module of GAM electric field
profile with wG = 0.048 oscillating in an equilibrium with
wT = 0.14. From top to bottom panel Lr = 320, 640, 960.
For Lr = 320 and Lr = 960, superimposed on the electric
field module, phase-path trajectories (orange lines) predicted
analytically by Eq. 21 well reproduce the modulation of the
GAM. For Lr = 640, superimposed on the GAM signal, there
are isocontours of the packet obtained by considering the wave
front described in Eq. 27.
frequency that has been observed in different experiment

(in the absence of bursts)15. Comparison between sim-
ulations and prediction from Eq. 27 is shown in Fig.
4 for the case Lr = 640. If we consider a cut of elec-
tric field signal along the time direction and we perform
the Fourier transform we observe a splitting of the fre-
quency starting from the principal frequency ωG. We re-
call that splitting of frequency is not a fully understood
characteristic of GAMs observed in experiments. More-
over, we note that recently in Ref. 8 a GAM has been
observed to split into two parts moving in opposite di-
rections. This behavior can be explained in geometrical
optics as a diffraction effect of the GAM due to equilib-
rium profiles. We observe that the temperature gradient
investigated in Ref. 16 and Ref. 18 bends the wave front
of the GAM in the time-space plane (t, r) via a Phase-
mixing effect22,42, while the second derivative of temper-
ature profile and the dispersive effect curves the wave
front. For completeness, we also perform simulations in
which the Ce condition is negative. As explained, for a
negative value of Ce, the initial GAM packet should dis-
appear. The simulation (not shown) demonstrates that
in this case the initial signal spreads very rapidly and
the packet disappears in a time shorter than the Raylegh
time tR. Thus, we have demonstrated the validity of our
approach to the GAM description in a range in which
dissipative effects are negligible. If we perform a generic
simulation in a regime of interest for tokamaks and con-
sequently with τe ≈ 1, the effect of dissipation linked to
Landau damping is so strong that we observe the classi-
cal signal decaying monotonically in time. However, by
using Eq. 19 we can perform a simulation with specific
parameter values that make it possible to demonstrate
the modulation effects also in the presence of the Landau
damping. By considering that α1 is positive for τe < 6 we
choose A = −0.4 and B = 1.4 in order to have a positive
hT (0) with T (0) = 1. We recall the condition to obtain
a GAM oscillation expressed in Eq. 23. By considering
a value τe = 1 we obtain a positive α1 = 1.9 We consider
Lr = 1441, a = 0.5m, R = 1.65m that corresponds to
the AUG value with an ǫ = 0.3. By choosing an ad-hoc
value wT = 0.075 and wG = 0.06, in Fig. 5 we are able
to show the time evolution of the GAM signal in which
Landau damping and the modulation frequency are ob-
served at the same time. The importance of the mech-
anism that we describe becomes apparent when we con-
sider realistic nonlinear simulations. In these cases, the
GAM is driven by turbulence, compensating the effects
of the Landau damping. Consequently the mechanism of
focusing/spreading previously discussed can play a very
important role in the modulation of GAMs. However, we
note that a similar nonlinear competition between drive
and dissipation could in principle generate a GAM inter-
mittent oscillation. In this case, our work may helps to
distinguish the two effects, isolating the action of drive
sources.
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FIG. 5. Time evolution of peak of the GAM electrostatic po-
tential at r0 showing how the Landau damped signal is mod-
ulated in amplitude due to the curvature of the temperature
profile. For this case wT = 0.075 and wG = 0.1 have been
used in order to illustrate the effect, which would otherwise
have been masked by Landau damping.

V. MODULATION IN REALISTIC PARAMETER

VALUES

In this section we apply the modulation theory to the
behaviour of GAMs observed in experiments. The prin-
cipal goal is to provide rough estimates from our the-
oretical model of the GAM amplitude and frequency
modulation that might be expected from the parame-
ters in the experiment. The experimental comparison is
taken from AUG discharge #29722, a circular (κ ∼ 1.1),
limiter L-mode with 400 kW of central ECRH heating,
B0 = −2.4 T, Ip = 0.6 MA, q95 ∼ 4, core density
ne0 ∼ 2 × 1019 m−3 and Te0 ∼ 3 keV43. GAMs and
plasma flow oscillations have been studied extensively
on AUG using microwave Doppler reflectometry (DR)25.
From the Doppler shifted peak frequency in the backscat-
tered signal fD = u⊥k⊥/2π and the Doppler peak am-
plitude AD ∝ δne one obtains radially localized mea-
surements of the perpendicular flow (dominated by the
Er × B velocity) and density turbulence15,44. Fig. 6(a)
shows flow velocity (green) and density fluctuation (red)
spectra from the edge region ρpol ∼ 0.962 of AUG shot
#29722. The GAM m = 0 flow oscillation appears as the
coherent peak around 15.8 kHz in the fD spectra. The
weaker peak in the AD spectra arises in these circular
plasma shapes due to the DR probing line of sight being
well below the flux surface magnetic axis, making the
DR peak amplitude sensitive to the GAM m = ±1 pres-
sure sideband. Note the absence of any low-frequency
ZF feature in this discharge. Radially the GAM is most
strongly localized to the edge, as shown in Fig. 6(b) by
the PGAM (purple) points, across the negative Er shear
region, as illustrated in Fig. 6(c). In this circular, lim-

iter configured shot #29722, the GAM is observed over a
fairly wide radial region of ρpol ∼ r/a between r1 ≈ 0.92a
and r2 ≈ 0.98a (see Ref. 43). For divertor configurations
the GAM is much more constrained to a narrow Er shear
region.
Across the GAM spatial peak region the GAM fre-

quency fGAM (green points) is constant, forming an
eigenmode structure. Further inside, the GAM is weaker
and its frequency follows the local sound speed, tak-
ing a on continuum-mode structure. Fig. 6(d) shows
the time resolved flow spectrogram S(fD, t) as a con-
tour plot. Here, the intermittent nature of the GAM
can be observed. Both the GAM amplitude and fre-
quency are modulated15. The dominant components of

FIG. 6. GAM evolution in L-mode, cicular limiter AUG shot
#29722 revealed by Doppler reflectometry: (a) Spectra of fluc-
tuations in Doppler peak frequency fD ∝ u⊥ proportional to
the perpendicular flow, and Doppler peak amplitude AD ∝ δn
at radius ρpol = 0.965, (b) radial profiles of GAM frequency
fGAM and magnitude PGAM plus (c) radial electric field Er,
(d) time resolved spectrogram S(fD, t) of plasma flow fD, (e)
time trace of integrated GAM frequency peak PGAM (t), and
(f) spectrum of PGAM (t).

the GAM flow modulation are obtained by integrating
the S(fD, t) spectrum over the GAM peak frequency
range fGAM ± 3 kHz, as shown in PGAM (t) trace in plot
Fig. 6(e), and then taking its spectrum as shown in Fig.
6(f). The GAM flow amplitude modulation has a dom-
inant peak around 440 Hz, with a slower deeper modu-
lation around a few tens of Hz. It should be noted that
the GAM modulation spectrum changes moderately over
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a period of tens of milliseconds as the discharge condi-
tions drift. Nevertheless, a dominant modulation of a few
hundred Hz is most common in AUG discharges cf. 15.
Generally, it has been found over a range of discharges
that the GAM modulation can be either rather coher-
ent with a sinusoidal-like amplitude variation (up to 50
% p.t.p. modulation), or more abrupt with an intermit-
tent nature (100 % modulation), as well as exhibiting a
strong frequency chirping2. The latter feature is more
suggestive of an intermittency in the GAM drive.

As in the experiment, the same temperature profile
for electrons and ions is assumed, ie. τe = 1. This
means that the α1 term (see Eq. 3) linked to the sec-
ond order effects is positive and equal to α1 = 1.9.
In this deuterium plasma Ωi = 1.15 × 108rad/s and
by assuming as a reference an intermediate tempera-
ture T = 150eV for the region of interest one obtains
vth = 1.2× 105m/s and ρi = 1.05× 10−3m and a GAM
frequency ωG/Ωi = 1.05 × 10−3 which corresponds to
fG = ωG/(2π) = 19.2kHz. Fig. 7 shows profiles of hT

and kT for the shot #29722 with peak values hTp
≈ 190

and kTp
≈ 13 respectively.

As we can see, the condition Ce > 0 (Eq. 22) is sat-
isfied in the region in which the GAM was observed.
The values of the prinicple plasma parameters for this
shot are listed in the top line of Table I. For these pa-
rameter values, using Eq. 26, we expect a GAM eigen-
mode with a size wGeig

= 1.4cm. The maximum exten-
sion of the GAM observed in the experiment is around
wGmax

= 2.5cm and on the basis of our model a variation
in the amplitude should be expected as a consequence of
the fact that wGmin

= w2
Geig

/wGmax
= 0.78cm. This

variation is indeed observed in the GAM signal as shown
in Fig. 6(d). Using the values of Table I in Eq. 19 we can
estimate an ΩM ≈ 5.26×103rad/s, which corresponds to
a fM = ΩM/(2π) ≈ 400Hz. By considering only the hT

term in Eq. 19 we have fM = ΩM/(2π) ≈ 540Hz. These
values are of the same order of magnitude as generally
observed in the experiments.

In order to better understand the results of the ex-
periment, we recall that in the literature we distinguish
between an eigenmode GAM and a continuum GAM.
In Ref. 21 the generation of an eigenmode GAM has
been demonstrated as a competition between nonlinear
effects and spreading of GAM in flat equilibrium profile
conditions. In the present work we have shown the lin-
ear existence of a GAM eigenmode as a function of a
nonuniform temperature equilibrium profile. Although
these works help to better understand the characteristics
of GAMs, further effort is required to achive a complete
understanding of the eigenmode description of GAMs
in general realistic situations. When GAMs “see” the
continuum, they exhibit a radial oscillation frequency
that depends on the temperature profile. This leads
to the generation of the well understood phase-mixing
effect22,33,42. One of the consequences related to phase-
mixing is a radial drift movement of the GAM with an
acceleration equal to ac ≈ 0.5α1ω

2
Gρ

2
i kT /a as a direct

FIG. 7. Top: temperaure profile with blue region indicating
where a GAM was observed in AUG shot #29722. Bottom:
corresponding first and second derivatives of the temperature
profile in the region in which GAM is developed.

consequence of the temperature gradient16. Using the
parameter values for the specific analysed shot we ob-
tain ac = 3.9 × 105m/s2. This means that the GAM
packet would leave the region of interest 0.92 < r < 0.98
in a time δt =

√

2S/ac = 3.8 × 10−4s. This suggests
that the GAM wavepacket should leave the region be-
fore any modulation due to the temperature equilibrium
profile could be observed. However, we note that in the
considered shot we are in the presence of an eigenmode
structure with a modulation spectrum that changes mod-
erately over a period of tens of milliseconds during the
which the GAM can be modulated at different rates on
the basis of the calculated frequency fM . In any case,
we use profiles of the shot principally to provide an order
of magnitude estimate of the modulation frequency. We
have shown that this value is compatible with observed
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TABLE I. Values of parameters for the AUG shot #29722 (L-mode) and #34954 (H-mode): The electron Te is assumed equal
to Ti temperature, α1 for τe = 1, axial magnetic field B0, Larmor radius ρi, ωG, normalized temperature gradients hT and kT
and Ce coefficient

Regime Ti(eV ) τe α1 B0(T ) ρi(m) ωG/Ωc hT kT Ce

L-mode 150 1.0 1.9 2.4 1.0 · 10−3 0.001 190.0 13 > 0 (GAM osc.)

H-mode 358 1.0 1.9 2 1.3 · 10−3 1.3 · 10−3
−420 15 < 0 (no GAMs)

values in the experiment, and we postpone a deeper anal-
ysis of the experiments in the framework of the present
theory to a future article.
Before discussing the H-mode regime, we recall the

principal GAM characteristics observed during the L-H
transition. As the transition is approached it is possible
to observe the following events45:

• The radial extent over which the GAM exists nar-
rows with the increasing radial electric field Er.

• The GAM generated zonal shearing interact with
the broadband background fluctuations.

• The GAM spectral peak generally appears contin-
uous in time, although its amplitude tends to be
modulated by up to 50% or more, giving the ap-
pearance of a stream of bursts.

• Both the GAM frequency and its amplitude, tend
to rise as the H-mode transition is approached.

• The GAM signal disappears when the plasma en-
ters H-mode.

This description is qualitatively consistent with what
is predicted by the model presented in the previous sec-
tions. In fact, during the L-H transition the temperature
at the edge increases, and truss correspondingly to an
increase of the modulation frequency (see Eq. 19). The
change of the modulation frequency is also determined by
the changes in kT and hT . Moreover, there is a change
of concavity of the temperature profile moving towards
the H-mode, for which the condition Ce > 0 becomes
satisfied more and more in a narrower region. Thus, also
the GAM width should decrease. These changes are fur-
ther reflected in the amplitude oscillations related to the
width condition (see Eq. 25 ). Finally, if the constraint
Ce becomes negative in the entire pedestal region then
the GAM structure should completely disappear. Thus,
the model presented in this paper could help to under-
stand the different aspects observed in the GAMs dy-
namics.
The top panel of Fig. 8 shows the edge temperature

profile for the AUG shot #34954 in which an H-mode has
been established. For this H-mode case we consider an
indicative temperature value of the edge region around
T = 358 eV and, by assuming τe = 1, with a B0 = 2T we
obtain an Ωi = 9.6× 107rad/s, ωG/Ωi = 1.3× 10−3 and

FIG. 8. Top: Edge temperature profile for AUG shot #34954
in which an H-mode is observed. Bottom: corresponding first
and second radial derivatives of the temperature profile.

a ρi = 1.3 × 10−3 m. The bottom panel of Fig. 8 shows
kT and hT quantities for the same shot. We can observe
the change of concavity for the temperature profiles with
respect to that of the previos L-mode shot. Using the pro-
files of kT and hT in Eq. 19 we deduce that the existence
of a GAM for which Ce > 0 is limited to r > 0.98, then in
a very narrow region close to the limits of the tokamaks.
The principal values for this H-mode case are summarised
in Table I. It is important to note that GAMs are ob-
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served in the I-mode. In this regime GAMs exhibit a
strongly intermittent behaviour with strong fluctuations.
This regime is characterized by a temperature gradient
similar to that of the H-mode but with a density gradi-
ent similar to that of L-mode. The difference between
H-modes and I-modes needs to be further explored. It is
possible that a different combination of kT and hT could
be involved in determining the GAM dynamics in these
regimes. However, having clear approximations in which
Eq. 22 have been derived, the differences between these
regimes suggest that further studies (similar to those on
the current sample of experimental shots) should be made
to understand, or to improve the validity of the criterion
on the GAM existance proposed here. We recall that in
Ref. 22 a model based on the competition between drive
and Phase mixing-Landau damping mechanism has been
proposed to explain the difference in the GAM behaviour
in I- and H-modes. Analysis of how the edge profiles im-
pact on GAMs, following the ideas outlined in this pa-
per, could help improve our understand the challenging
environment of the edge plasma. We emphasize that in
the experiments the physics of the nonlinear processes of
GAMs exhibit complex aspects in which several factors
determine the GAM behavior. In particular the drive
can compensate the damping and can interact with the
dispersive effects, probably contributing to generate in-
termittent behaviour of GAM. However, effects described
in this paper are involved in the dynamics and their in-
vestigation may help to isolate other phenomena such as
the interaction between turbulence and GAMs.

VI. CONCLUSION

In this work we have studied the intermittency of
GAMs. This appears as a low frequency modulation
commonly observed in experiments, that can appear as a
burst or as a simple sinusoidal oscillation in the intensity
of the GAM. In the steady state case a modulation of the
principal GAM frequency fG = ωG/2π has also been ob-
served. In order to investigate this phenomenon we used
an interesting approach already successfully applied to
describe the dispersion characteristics of GAMs18,19,21,
and here we extend the capability of previous works16,22

to describe a fuller range of GAM characteristics. In
particular, the eikonal theory and laser opto-electronics
methods have been successfully applied to describe the
modulation behavior of GAMs.
In this work, we have demonstrated that, as well as

being generated through nonlinear interactions between
turbulence and GAMs, GAM modulations can also be
generated by the properties of the equilibrium tempera-
ture profile. Both of these effects should be taken into
account in a complete description of the GAM dynam-
ics. In particular, we have shown that the temperature
profile could play a fundamental role in defining the char-
acteristics of the modulation amplitude and frequency of
GAM. In our modelling, the modulation frequency ap-

pears as a periodic change of the phase-front of the GAM
in the space-time plane, and the intermittent behavior of
GAMs is determined by competition between the curva-
ture of the temperature profile and the GAM radial ex-
tension. The competition between these two quantities
could be responsible for the generation of burst-like GAM
amplitudes and could also be involved in the generation
of GAM eigenmode structures. Finally, we emphasize
that the link established here between GAM dynamics
and equilibrium profiles, maybe key to explaining how
GAM dynamics varies in different plasma regimes. We
have also derived a possible criterion for the existence
of GAMs from the optical theory, based on the shape of
the temperature profile in the region in which GAM is
located. We note that this criterion has been obtained
in optical approximation and we have verified it in linear
global simulations. Further investigations are needed in
order to verify its validity in more general experimental
conditions in which nonlinear effects related, in particu-
lar to the drive, are also taken into account. However,
this criterion could help to elucidate, together with the
Phase mixing-Landau damping mechanism, the reason
for which GAMs are not observed in H-modes. In con-
clusion, the description of modulations presented here is
compatible with the different characteristics of GAMs ob-
served in plasma discharges in the AUG device. We even
propose that the observed GAM dynamics may prove a
useful constraint in diagnosing the local equilibrium pro-
files.

APPENDIX: PARAXIAL WKB METHOD

In this appendix, we discuss the parallel between the
eikonal theory and the paraxial WKB (pWKB) method
in the framework of GAMs. We recall that equivalence
between geometrical optical methods and pWKB has
been established in Ref.s 39–41 and further detail for the
specific GAM case can be found in Ref.s 18 and 19. In
the notation of Refs. 18 and 19, the equations for the
evolution of the GAM packet follow from the Hamilto-
nian:

H = F (r) +
1

2
G(r)k2r = ωG

(

1 +
1

2
α1k

2
rρ

2
i

)

= ω (A28)

where F = ωG and G = α1ωGρ
2
i . In local equilibria

where the first radial derivative of ωG and ρ2i can be
neglected, we obtain the following equations of motion
for the center (k0, r0) of the packet

dr0
dt

= Hkr
→ r = r0

dk0
dt

= −Hr → kr = k0 = 0

(A29)
The beam envelop evolution in time is calculated by
means of:

dS

dt
= −Hrr −Hkrkr

S2 (A30)
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which is a complex Riccati equation for the beam enve-
lope S = s + iφ with φ = 2/W 2(t) related to the width
W of the packet while s is connected to the curvature
of the wave front in the (t, r) space. The Riccati equa-
tion can be solved by adopting the following substitution
S = (Hkrkr

p)−1dp/dt. Thus, we rewrite Eq. A30:

1

Hkrkr

[1

p

d2p

dt2
−
(1

p

dp

dt

)2]

= −Hrr −Hkrkr

( 1

Hkrkr
p

dp

dt

)2

(A31)
Consequently we have:

d2p

dt2
= −Hkrkr

Hrrp (A32)

which gives the following solution:

p = A cos(ΩM t) +B sin(ΩM t) ΩM =
√

Hkrkr
Hrr

(A33)
By explicitly using expressions for Hkrkr

and Hrr:

Hkrkr
= α1ωGρ

2
i (A34)

Hrr =
∂2

∂r2
ωG +

α1kr
2

∂

∂r2
ωGρ

2
i (A35)

≈ ωG

[

− 1

4

( 1

T

dT

dr

)2

+
1

2

1

T

d2T

dr2

]

we obtain:

Ω2
M = α1ω

2
Gρ

2
i

[

− 1

4

( 1

T

dT

dr

)2

+
1

2

1

T

d2T

dr2

]

(A36)

Then:

S =
ΩM

Hkrkr

[− sinΩM t+B/A cosΩM t

cos(ΩM t) +B/A sinΩM t

]

(A37)

Using an initial condition φ0 = 2i/W 2
0 we obtain

2i

W 2
0

=
ΩM

Hkrkr

B

A
→ B

A
=

√

Hkrkr

Hrr

2i

W 2
0

= ib (A38)

Thus Im[S] = 2/W 2 will be:

2

W 2
=

√

Hrr

Hkrkr

b sin2(ΩM t) + b cos2(ΩM t)

cos2(ΩM t) + b2 sin2(ΩM t)
=(A39)

=
2

W 2
0

1

1 + (b2 − 1) sin2(ΩM t)

that corresponds to have:

W 2 = W 2
0

[

cos2(ΩM t) +
4Hkrkr

HrrW 4
0

sin2(ΩM t)
]

(A40)

It is immediate to show that:

Re[S] =

√

Hrr

Hkrkr

(b2 − 1) cos(ΩM t) sin(ΩM )t

cos2(ΩM t) + b2 sin2(ΩM t)
(A41)

=

√

Hrr

Hkrkr

[4Hkrkr
/(HrrW

4
0 )− 1] tan (ΩM t)

1 + 4Hkrkr
/(HrrW 4

0 ) tan
2 (ΩM t)

In this way it is possible to establish a parallel between
Eq. 18, Eq. 27 and Eq. A40, Eq. A41 respectively.
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