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Abstract

This study aims to systematically examine various methods leveraging machine learn-

ing (ML) to assimilate data for investigating thermal systems. These measured or

observed data may include temperature or thermal material properties and could be

synthetically (computationally) generated or experimentally obtained. The goal of

these ML-augmented methods is to derive the unknown material properties and/or

reconstruct the full temperature field by integrating such measured data into physics-

based computational models, such as FE models. The present work continues the

previously conducted review of ML in heat transfer with a strong focus on inverse

modeling techniques. It also attempts to closely incorporate ML into the FE work-

flow. Data assimilation and inverse modeling are closely linked tasks. While inverse

modeling typically focuses on recovering unknown parameters or inputs from given

observational data, data assimilation incorporates observations into dynamic models

in a sequential manner, often with the goal of improving forecasting performance. In

this review, we use the terms interchangeably for simplicity, though they arise from

distinct methodological traditions.
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1. INTRODUCTION

Inverse problems in thermal systems are vital to a wide range of engineering and scientific

applications. These problems are characterized by identifying the unknown causes, includ-

ing boundary conditions, internal heat sources, or material properties, from observed effects.

Unlike the direct or forward problem, where known system parameters are used to estimate

the temperature field, inverse problems require the reconstruction of unknown inputs from

limited or noisy data. These measurements often come with challenges when direct mea-

surements are difficult or impractical, and only surface or sparse measurements are available.

Another inherent characteristic of inverse heat transfer problems (IHTPs) is ill-posedness.

According to Hadamard’s criteria1, well-posed problems must have a solution that exists,

is unique, and has continuous dependency between the solution and initial conditions. In-

verse problems mostly violate one or more of these conditions, making it difficult to solve.

Furthermore, inverse problems are susceptible to minor errors in the measurements. This

further increases with noise measurement, limited sensor placements, and cost or techni-

cal challenges in obtaining a large amount of high-fidelity data. Due to these facts, direct

inversion of the governing equation always leads to an unstable or unrealistic solution.

To address these challenges, various traditional methods and numerical techniques were

developed. Regularization methods, such as Tikhonov regularization2, introduce additional

constraints or penalty terms to stabilize the solution and effectively eliminate the effects of

noise and ill-conditioning. Sequential approaches, such as Beck’s sequential function3, are ef-

ficiently used in time-dependent or dynamic problems. Analytical and semi-analytical meth-

ods, such as space marching techniques4, are employed for inverse heat conduction problems.

Optimization-based strategies, such as the Levenberg–Marquardt algorithm5, and classical

gradient-based optimization6, are widely implemented to estimate unknown parameters or
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reconstruct a thermal field from limited observations. In conjunction with these traditional

methods, data assimilation (DA) has emerged as a vital framework for integrating model

predictions and observations to estimate unknown physical states and parameters in thermal

systems. Traditional DA techniques such as Kalman filters and their variations7, variational

methods8, and ensemble-based techniques9 methodically incorporate new measurements into

dynamic models and update the estimates in real-time as new data become available. In

the context of IHTPs, data assimilation techniques not only stabilize the solution but also

allow real-time monitoring, control, and optimization capabilities. Despite their success,

these conventional methods face significant challenges in various aspects. These shortcom-

ings include computational complexity, being prone to local minima, high dimensionality

and nonlinearity, handling complex priors, and limitations in scalability due to the increased

dimensionality.10

The growing complexities of thermal systems and the need for rapid, robust solutions

brought attention to the limitations of the traditional methods. To mitigate the limitations,

machine learning (ML) techniques are used as an aid to address the inverse problems. In par-

ticular, deep learning (DL) using deep neural networks (DNNs) has demonstrated a potential

capability in learning patterns from data and extracting complex features.11 Furthermore,

DNNs are efficient in finding complex, nonlinear relations between sparse measurements and

unknown parameters or fields in the context of thermal systems. Using a large dataset or

experimental data, these models can serve as efficient surrogate models that provide rapid

and accurate predictions once trained. Combining data-driven models and physics-based

solvers shows greater potential as the governing laws and constraints are incorporated into

the learning process, eventually estimating physically meaningful solutions.

The present work systematically examines the diverse machine learning methods currently

explored for assimilating data into thermal systems. The primary focus is on inverse thermal

problems of unknown parameter estimation or reconstruction of the thermal field, where

ML capabilities are efficiently incorporated. This review mainly includes different methods
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where ML algorithms are used to identify parameters from measured or observed data,

whether synthetically generated or experimentally obtained. It also includes techniques

for reconstructing the full thermal field from sparse measurements and approaches that

demonstrate coupling between machine learning and physics-based models.

2. PRINCIPLES OF DATA ASSIMILATION AND INVERSE PROBLEMS IN

THERMAL SYSTEMS

Data Assimilation is the process of integrating measured data, which are typically sparse and

noisy, into numerical models like the FE model to generate an improved state or to predict

the underlying parameters of a system. These principles are widely used in diverse fields,

from optimizing heat exchangers and designing advanced materials to climate modeling and

bio-medical engineering.12 Thermal systems, governed by heat conduction, convection, and

radiation, present significant challenges for accurate modeling. In traditional forward prob-

lems, the system behavior is predicted based on known inputs such as material properties,

initial conditions, and boundary conditions, which often come with uncertainties or are in-

complete.13 In contrast, inverse problems can generally be categorized into two types: (1)

determining the system state or unknown parameters from observed causes and effects14,

and (2) finding the causes from limited measurements or observations.15 These demand the

adoption of data assimilation and inverse problem techniques. Objective of the the inverse

modeling is to find the unknown parameters or inputs from the given observational data.

Since data assimilation is a special class of inverse problems16, the terms data assimilation

and inverse problems are used interchangeably in this review, though they arise from distinct

methodologies. Data Assimilation (DA) technique focuses on sequentially integrating real-

time or near real-time measurements into a dynamic model of a physical system to improve

the accuracy and best possible estimate of the system’s present state.17,18 This is benefi-

cial for forecasting and active control applications where the system state evolves. In some

cases, DA is capable of finding the best description of uncertain state variables, parameters,
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and model control, or all of them simultaneously.19 The preliminary background on the DA

process as described by Arcucci et al.20, is provided here.

The system state u is replaced with uDA, which incorporates the observations through the

predictor-correction cycle. The forecasting model u̇ describes the evolution of the systems

given as:

u̇ = M (u, t, θ) (1)

where u is the state, M is a nonlinear function, θ is a state parameter. t =∈ [0, T ] is

time and The observation of the state u is provided as,

v = H(u) + ϵ (2)

where H is the observation function and ϵ represents the measurement error. In this scenario,

data assimilation explores the method of obtaining a possible state of the system as a function

of time using observations Eq. (2) and the model Eq. (1). Consider a fixed time step, say

tk, the estimated system state is provided as:

uk = Muk−1 (3)

where M is a discretization of a first order approximation of M. The corresponding

observation of the state at time tk is vk, and let H : uk → vk be the discretization of a first-

order approximation of H. The DA method involves determining uDA (referred to as analysis)

as an optimal solution between the predictions derived from the estimated system state or

background state and measured observations. The prediction-correction cycle process is

illustrated in Fig.1. The uDA is computed as an inverse solution as

vk = HuDA + eRk
(4)
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FIG. 1: The prediction-correction cycle (Reprinted under a Creative Commons Attribution
4.0 International license, Copyright 2021).20

with constraint

uDA = uk + eBk
(5)

where eRk
and eBk

are the observation and model errors respectively. The observation error

accounts for both instrumentation and representativity errors21, and the discretization, ap-

proximation, and any other numerical inaccuracies contribute to both errors. The Eq. (4) is

usually ill-posed, which means at least one of the conditions, such as (i) the solution exists,

(ii) uniqueness, (iii) stability, is not satisfied.1,22,23,24This means that H is usually non-square

and/or rank deficient; therefore, we cannot invert H to find uDA directly.25 The Tikhonov

regularization mitigates the ill-posedness problem with a minimization of the least-squares

cost function26, and the DA problem can be defined as:

uDA = argminu{∥u − uk∥2
B−1

k
+ ∥v − Hu∥2

R−1
k

} (6)

where Rk and Bk are the observation and model error covariance matrices, respectively.

Several methods are used to solve the DA problem specified in Eq. (6). The Variational

approach and Kalman Filter (KF) are primarily used for the traditional data assimilation

process to improve the system state by integrating observations.27 In the variational ap-

6



proach, minimization of a functional which estimates the difference between the numeri-

cal solution and measurements is carried out by finding a solution which minimizes a cost

function.28,20 On the other hand, the Kalman Filter (KF) finds a solution with minimum

variance.29 However, both methods show limitations due to their mathematical and statis-

tical assumptions. The major issue is their dependence on unrealistic assumptions, such as

linearity, multivariate normality of errors, and stationary state-transition functions, along

with the assumption of zero error covariances.30,21,31 These presumptions often are not valid

for complex, highly nonlinear systems, where even a minor uncertainty in the input can

cause an amplified error in the system behavior.32 In the case of the variational approach,

its performance greatly depends on the accuracy of the background and observation error

covariance matrices.33 A precise definition of these matrices is intricate and computation-

ally challenging, especially in the context of high-dimensional data, as they are critical for

effectively communicating between observed and unobserved variables. Moreover, this ap-

proach does not naturally account for the temporal evolution during the DA process, and

there is a high risk of convergence to the local minima in the cost function rather than a

globally optimal solution.34,35 Conversely, the Kalman Filter (KF) faces different challenges.

The primary limitation of the KF is the size of the Kalman gain matrix, which can be very

large in the case of high-dimensional problems. Since KF relies on the linear assumption

for the system dynamics and observations, it restricts its applications to strongly nonlinear

physical systems36. Also, the linear assumptions make it less effective in situations where

small uncertainties can propagate and amplify dramatically, leading to erroneous system

behavior.37

Furthermore, computational cost poses a major hurdle for traditional DA methods. They

involve significant computational resources for solving, storing and manipulating larger ma-

trices, especially in higher-dimensional problems and are less efficient when dealing with

very large data sets.38,39 Another important limitation of these traditional methods is their

inability to learn from past error corrections. While DA aims to improve the forecast, it
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doesn’t improve the error propagation within the forecast model. Consequently, frequent

corrections need to be applied at each step without the benefit of previous experience from

the assimilation process. Additionally, taking the information in a temporal window into

account, these methods often struggle to take the past information into account due to the

complexity of the forecasting problem and computational cost.20

These limitations exhibit the need for novel approaches that can handle complex, high-

dimensional, nonlinear inverse problems more effectively and robustly. Machine learning

(ML) techniques, with their ability to learn complex patterns from data and their poten-

tial for creating faster surrogate models, offer significant advantages in the context of data

assimilation (DA) and inverse problems. Several works explored integrating DA with ML

to improve the efficiency and accuracy of numerical simulations. While this integration in-

creases the prediction reliability and reduces errors by incorporating physically significant

information from observed data, learning from the past state of a DA process leads to a

faster and more accurate model.30 For higher-dimensional systems, DA can be combined

with reduced-order modeling (ROM) techniques, including ML-based autoencoders, to re-

duce computational cost.33 ML is also being used to correct model errors in the DA and

forecast system state.40 In the broader concept of inverse problems, ML offers a more effi-

cient and accurate approach by analyzing large data compared to traditional methods. Its

main advantage lies in its ability to self-learn and predict trends through algorithms, an

opportunity for continuous training with an increasing dataset, and more accurate results

over time.41

In the field of heat transfer and thermal systems, it often involves complex physics,

which can be identified through reduced-order modeling and extracting system information

from the measured data. ML techniques can provide computationally efficient models for

accurate forecasting and robust optimization in this domain. The applications of ML to

thermal problems include building reduced-order models, predicting heat transfer coefficients

and pressure drop, analyzing complex experimental data, and optimizing large-scale thermal
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systems.42

3. MACHINE LEARNING PARADIGMS FOR DATA ASSIMILATION AND

INVERSE PROBLEMS IN THERMAL SYSTEMS

Machine Learning (ML) techniques are emerging as a powerful tool for data assimilation

in thermal systems, overcoming significant challenges of traditional methods outlined in the

previous section. Thermal or heat transfer problems are often classified into two categories:

direct and inverse problems. The direct problem deals with heat transfer, testing, and for-

ward temperature field construction.43 The finite element method is often considered the

most widely used technique44, especially for heat conduction; however, for the inverse prob-

lems, conventional techniques such as FEM are often paired with optimization algorithms.

This creates a bottleneck, as the direct problem must be solved several times using FEM in

each iteration of the optimization problem.45 This repeated process can lead to substantial

computational resources and time and may require regularization strategies to ensure stabil-

ity, especially in the case of ill-posed inverse problems.46,47,48 In contrast, ML and DL offer a

more robust approach that can circumvent these challenges. The following sub-sections dis-

cuss the principal ML paradigms for data assimilation/inverse problems in thermal systems.

3.1. Supervised Learning Approaches

The most common type of machine learning technique is supervised learning. Supervised

learning algorithms can discover patterns in the given data with existing dependent and

independent factors to predict the future of the dependent factors.49 In other words, these

algorithms can learn a mapping between a set of input and output variables and use this

mapping to predict the output for unseen data.50 Supervised learning can be classified into

two categories: Regression and Classification. In regression, the output is continuous, and

the latter is implemented for categorical output.51,52 In the context of thermal problems,

input might be sparse sensor measurements of temperatures or fluxes at specific locations,
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or geometric parameters, interfacial temperature and pressure, while outputs could be the

unknown material properties, boundary conditions, reconstructed temperature profile or

fluxes, and heat transfer coefficient (HTC).53,54

3.1.1 Deep Neural Networks (DNNs) for Parameter Identification and Field

Reconstruction

Artificial Neural Networks (ANNs) are nonlinear, non-convex regression models with excel-

lent predictive abilities, regarded as universal approximators of continuous functions.55 ANNs

are capable of learning and generalizing underlying information from data.56 An artificial

neuron or perception57 is the fundamental building block of an ANN. A more sophisticated

version of the ANN, with deep architecture, advanced training algorithms for higher feature

abstraction and complexity58 is known as Deep Neural Networks (DNNs). ANNs with more

than three layers, including two or more hidden layers, qualify as deep neural networks.

If the NN has a single hidden layer, it is usually called a shallow network.59 Each hidden

layer consists of multiple neurons, thus increasing its nonlinearity and feature prediction. A

schematic of a DNN is provided in Fig. 2. The architecture comprises an input layer, an

output layer, and multiple hidden layers, and each hidden layer can have multiple neurons.

This section explores the application of DNNs in effectively implementing the DA/inverse

problems in the context of thermal systems. Standard DNNs, including Feedforward Neural

Networks (FNNs), are widely used as flexible function approximations. In thermal data

assimilation or inverse problems, they can be used to map sparse observation data directly

to the parameter of interest.

The work conducted by Tamaddon-Jahromi et al.41 uses a database generated from forward

FE solutions to train a DNN. In this earlier work, the trained network was used for finding

the boundary conditions from sparse temperature measurements in linear/nonlinear heat

conduction/convection problems. Various test cases were introduced, and the FE mesh used

for this study is shown in Fig. 3. They performed a forward problem with constant tem-
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FIG. 2: Schematic of DNN with two layers, where {1, x1, x2, .., xn} is the input dataset,
{w(1), w(2, w(3)} is the weights for each layer, {f (2), f (3)} is the vector of activation functions
and ŷ is the predicted output.

perature boundary conditions and obtained the temperature distribution inside the domain.

The objective was to use a selected number of these outputs as input for the DNN and to

obtain an accurate boundary condition, which was used as input for the forward problem to

check the accuracy of the inverse model. Various network architectures based on the number

of layers, neurons per layer, and different temperature measurements are established. For

example, linear and nonlinear conduction problems with three temperature measurements

in the domain were used to train the network to predict the boundary condition. Linear and

nonlinear thermal conductivity are considered as K(T ) = k0 and K(T ) = k0T , respectively,

with k0 = 1. Fig. 4 shows the model accuracy and loss of the 3-64-32-16-4 NN for the linear

and nonlinear heat conduction problems. As the number of measured temperatures inside

the geometry increases, the performance of the NN improves, and it predicts the solution

with higher accuracy. However, another research shows that interpolation methods perform

better for linear heat conduction problems, and DNN performs very well for nonlinear heat

conduction problems.60

In reference61, ANN is trained with data from both FEM and experiments to invert

thermo-physical properties, including density, thermal conductivity, and heat capacity of
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FIG. 3: Problem descriptions and FE mesh.41

FIG. 4: Model accuracy and loss (Three measured temperatures), (a) Linear heat conduc-
tion, (b) Nonlinear heat conduction.41
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lunar regolith simulant based on thermal probe measurements. They later implemented a

multivariate Newton iterative algorithm for further optimization of the ANN. The results

show that the ML model was effective in predicting the temperature responses, thus offering

a novel approach to measuring the in situ thermal properties of extraterrestrial regolith.

Similarly, in reference62, a machine learning model is introduced to solve the Inverse Heat

Conduction Problem (IHCP), such as identifying the inner wall shape of a pipe by estimating

the relationship between temperatures and thermal conductivity.

A critical aspect of these supervised methodologies is the generation of a large dataset. This

dataset must span the expected range of input measurements and output parameters to

ensure the trained model can generalize well with unseen data. Often, the data may not be

clean, of good quality, or require manual labeling. Researchers usually rely on small data or

computationally expensive simulations. To overcome the difficulties of restricted data and

improve machine learning methods for IHCPs, synthetic data can be generated by intro-

ducing algorithms like the Gaussian Copula.63 The deep integration criterion emphasized in

this review suggests that parameters identified by DNNs are subsequently used to inform

or update an FE model, or the DNN itself is part of the larger FE-based workflow. For

example, DNN trained on FEM data can predict temperatures with higher accuracy and

speed, and it allows for inverse modeling to find the thermal conductivity from measured

temperatures.64

Estimating hot-wall surface heat flux from internal temperature measurement presents a

challenging IHCP due to its ill-posedness and nonlinearity. To address this, Wang et al.65

discussed a novel inverse ANN. A one-dimensional heat conduction problem with net heat

flux at the front and heat sink or radiation and convection at the back was considered.

They formulate the inverse estimation of the incident heat flux as a nonlinear model and

introduce a nonlinear ANN due to its ability to approximate nonlinear functions. A single

hidden-layer feature with two temperatures as inputs and an ANN output estimated the

heat flux. To validate the inverse problem, a new type of hot-wall heat flux sensor was
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incorporated, and the estimated heat flux agrees with the calibrated values. A feed-forward

neural network (FFNN) with a digital filter approach was proposed for one-dimensional

IHCPs with and without a moving boundary, along with and without temperature-dependent

material properties.66 The temperature from a limited time window was used as the input of

the network, and the current time step heat flux value was the output. They examined the

effectiveness of the ANN in terms of prediction accuracy and computational time. The results

revealed that the ANN performed well in the robustness test, and it predicted accurate and

consistent results when the temperature measurements were near the boundary surface. In

another research67, the ANN was considered as a digital filter to find near-real-time heat flux

using temperature measurements. The ANN model was trained with a set of temperatures

and heat flux values. This trained network was effectively able to capture various heat flux

profiles for constant and temperature-dependent material properties. Another important

discovery was that the ANN required only a smaller set of data from the future or previous

time steps to obtain the current time step heat flux, compared to the traditional filter-

form Tikhonov regularization algorithm. Mirsephai et al.68 have proposed an ANN for an

inverse heat transfer model to identify the absorbed heat in radiation-dominated heat transfer

problems. The ANN with three layers was trained with experimental data and proved its

applicability to predict the input heat to the system. The real heat applied to the system

and the predicted heat from the ANN were accurate and consistent for various test problems.

3.1.2 Convolutional Neural Networks (CNNs) for Spatially Distributed Data

Convolutional neural networks (CNNs) are a powerful machine learning algorithm based

on traditional ANNs. The architecture consists of an input layer, an alternating series of

convolution and pooling layers, a fully connected layer, activation functions, and an output

layer.69. A typical CNN architecture is illustrated in Fig.5. The input raw data was converted

to an abstract or higher-level feature representation through the convolution and pooling

layers, often known as a feature extractor.70,69 This process typically involves a combination
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FIG. 5: Schematic of CNN.

of linear and nonlinear processes using convolution and activation functions.71 CNNs offer

significant advantages over traditional neural networks, including strong adaptability, robust

feature learning, minimal training parameters, reduced redundant computations, and higher

recognition accuracy.72,70,69 The objective of a CNN is to interpret an array of data through

local operations in various parts of the array and send the resultant output to the new

layer.73 Convolution layer consists of kernels or filters to generate an output feature map

of the input data74. The feature map is then provided to the pooling layers, where the

higher spatial dimension of the feature is reduced without losing the dominant features.

Thus reducing the size of the data and parameter count.75 Another core part of the CNNs is

the activation function, which maps the input to the output through nonlinear functions.76

Finally, the fully connected layer, similar to a feed-forward ANN, situated at the end of the

NN, acts as a CNN classifier.74

Early research shows the benefit and efficiency of CNNs to solve forward problems and

reconstructions of thermal fields. Edalatifar et al.77 modeled a convolutional neural network

to learn the physics of 2D heat transfer without prior knowledge of the underlying governing

PDE. The input of the neural network consisted of two-channel images of geometry and

boundary conditions, and the output was an image of the temperature distribution. CNN

was trained with a large dataset (images) created using the Finite Volume Method (FVM).

Another study78 also used CNN to reconstruct the physical field in a thermal problem and
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obtained the Nusselt number (Nu) and friction factor (f). This study shows the signifi-

cant potential of the computational efficiency of a well-trained CNN model by comparing

GPU-accelerated with typical CFD solvers. CNNs techniques were systematically applied to

various thermal problems like boiling heat transfer79, fast prediction of 2D steady state con-

duction80, convection flow of nanofluids81, heat flux in turbulent flow82, surrogate modeling

of conjugate heat transfer83, and many more. For brevity, we restrict the discussion of such

problems and focus on the use of CNN in DA/inverse problems of heat transfer.

Virupaksha et al.84 discussed the application of CNNs to transient natural convection in

heterogeneous porous media. This study focuses on surrogate modeling, inverse modeling,

and time series prediction. In this inverse problem, the goal was to predict the domain het-

erogeneity from temperature maps. The data was generated using FE solver OGS.85 Initially,

Encoder-Decoder CNN (ED-CNN)86 was used with a single input image created by merging

the transient data, and the output was the Rayleigh-Darcy map. Its performance in inverse

modeling was poor compared to surrogate modeling. The authors hypothesized that merging

the transient thermal images caused a loss of information about the temporal progress of

the heat flow, and ED-CNN was unable to use the time progress information. To address

this, authors have developed another technique, 3D-CNN, where a temperature map was

provided at a given instant as independent inputs. This allowed the model to leverage the

time evolution of heat flow. The 3D-CNN was evaluated for classification and extended to

regression in heterogeneous domains. For the inverse problem, the 3D-CNN with transient

data achieved greater accuracy and significantly outperformed steady and transient data

trained on 2D-CNNs. A multiple regression convolutional neural network (MRCNN) was

introduced to estimate various parameters in IHTPs.87 Traditional CFD and DL are used to

generate a dataset, and the proposed method was validated with cubic cavity experiments.

The MRCNN technique shows good accuracy for predicting unknown parameters.

Lockwood et al.88 propose an inverse surrogate model (ISM) using CNNs to evaluate various

building parameters such as wall insulation conductivity. Synthetic data was generated using
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building energy simulation software EnergyPlus89 by varying parameters to obtain the room

temperature series and parameter values. The geometry model was divided into zones analo-

gous to rooms in a building. The modeled CNN was used to predict the building parameters

when the time series was given as input. The performance of the CNN model was promising,

especially for smaller periods. However, the model struggled to predict attic insulation and

glazing conductivity as the number of zones was reduced from 15 to 4. Masrouri & Tahsini90

discussed a comparative study between a novel one-dimensional convolution network and

traditional methods such as the Levenberg–Marquardt and conjugate gradient methods for

solving inverse IHTP. The objective was to find the heat transfer coefficient and the gener-

ated temperature of an industrial heat gun from temperature measurements. The numerical

solution was used as the training data, and measurements were taken from experiments. Re-

sults show that one-dimensional convolution network predictions were slightly different from

other traditional methods for the estimated parameters. However, the predicted temperature

profiles were reasonably well matched with the measurements.

A combination of CNNs and Long Short-Term Memory Networks (LSTMs), CNN-LSTM,

was introduced to estimate the thermal boundary parameters for a transient IHTP.91 The

training, testing, and validation data were generated from CFD analysis. The authors out-

line that CNN-LSTM models were able to extract the temperature features accurately and

additionally use the correlation between time series to enhance the predictive accuracy of

the parameters. And the performance of the CNN-LSTM model was significantly superior

to that of standalone CNNs and LSTM models. In another study92, taking advantage of

the CNN-LSTM model was discussed for the reconstruction of the 3D temperature field at

multiple future moments from non-invasive combustion features derived from Light Field

(LF) tomography. This type of problem is called the inverse radiative heat transfer prob-

lem. To address the challenges of the ill-posed and time-consuming nature of the traditional

methods, the authors combined CNNs and LSTMs for a novel CNN-LSTM model for online

prediction of instantaneous flame temperature. This model uses CNNs for the extraction of
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3D flame temperature features and radiation images, while LSTM predicts accurate future

moments of the flame temperature using time series data of extremely dynamic combustion

flame profiles. The model learns the complex flame evolution with high accuracy and ro-

bustness to the noise. These studies facilitate the greater potential of CNN-LSTM models

in IHTPs.

3.1.3 Recurrent Neural Networks (RNNs) for Transient Thermal Problems

Recurrent Neural Networks (RNNs) are a type of ANN to process sequential data.93 Their

fundamental architecture consists of an input layer, a hidden layer, and an output layer.

A key difference between RNNs and FNNs is the presence of recurrent cells, as shown in

Fig.6, enabling the information to cycle within the networks.94 This allows the network to

maintain a hidden state that captures information from previous inputs. The inherent time

series memory makes RNNs best for modeling and processing temporal dependencies within

the sequential data.95. The mathematical formulation of a standard recurrent cell can be

written as15

ht = σ(Whht−1 + Wxxt + b)

yt = ht

(7)

where xt, yt, ht, and ht−1 are the input, output, and hidden state of the recurrent cell at

time t, and hidden state at time (t − 1). Wh and Wx indicate the weights, b is the bias and

σ is the activation(sigmoid) function.

Traditional RNNs, often with sigmoid or tanh activation functions, struggle to learn im-

portant features when the input gap is large. This is because of vanishing or exploding

gradients during training due to long-term dependencies in the dataset.96 To overcome these

limitations, LSTMs were developed by incorporating gating mechanisms to control the in-

formation flow in the network. These gated cells consist of an input gate(it), an output gate

(ot), and a forget gate (ft).97 These gates regulate how much input data to consider, how

much prior state to forget, and how much cell state to send out.94 Schematic of an LSTM
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FIG. 6: Schematic of a Recurrent cell.15

FIG. 7: Schematic of LSTM architecture.15

model is provided in Fig.7. The following paragraphs discuss the recent progress in the

applications of RNNs to DA and inverse problems in thermal systems.

Zwart et al.98 proposed a novel integration of DL and DA for a real-time forecasting

system of stream water temperature in the Delaware River basin. Observed data were as-

similated into the DL model to predict stream temperature for 7 days into the future. The

ability to capture temporal relations in the data, an LSTM network was used in their method-

ology. The performance of the DL model was assessed with and without data assimilation.
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The ensemble Kalman Filter (EnKF) was employed for data assimilation to adjust LSTM

states according to the observed maximum temperature measurements and reduce bias in

predictions. Results demonstrated that the DL-DA approach improved the forecast perfor-

mance of maximum stream temperature compared to the LSTM model without DA. This

study underscores the significance of ML models, especially RNNs like LSTM, for accurate

and reliable forecasts to support decision-making.

A nonlinear-autoregressive-exogenous recurrent neural network (NARX RNN or NARX)

was proposed to solve IHCPs in one-dimensional domains.66 The authors discussed two

machine learning approaches, NARX and FFNNs based on the digital filter, to estimate

near-time heat flux from internal temperature measurements. NARX is discussed in this

section, and the latter is discussed earlier in this review. NARX network consists of recurrent

connections, and the major difference from the traditional RNNs is the exogenous inputs. To

understand the performance of the proposed models, various cases, including those with and

without a moving boundary, with and without temperature-dependent material properties,

are adopted. Synthetic data generated from COMSOL Multiphysics was used to train and

test the proposed networks. The Location of measurement sensors, time consumption, and

delays associated with proposed DL models were discussed. For cases with constant and

temperature-dependent material properties with fixed boundary, FNNs behave much better

than NARX for triangular and parabolic heat flux profiles, and NARX performed well for

step function heat flux profiles. In cases with moving boundaries, FFNNs outperformed

NARX for almost every type of heat flux profile.

Solving IHCPs for 3D complex structures was investigated by Wang et al.99 Since the

traditional algorithms and iterations for 3D IHCPs are computationally expensive and time

consuming, the authors adopted a new framework founded on a convolution-LSTM (Con-

vLSTM) architecture.100 The objective was to predict transient heat flux for nonlinear 3D

heat conduction problems from measured temperatures. A 3D complex model with non-

linear boundary conditions and temperature-dependent parameters served as the physical
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model. FEM-based software, COMSOL Multiphysics, was used to generate training and

testing datasets. Furthermore, temperature data and geometries at each step were com-

bined to act as the input to the DL network. The proposed model, convolution-LSTM, is

the combination of CNNs and LSTM networks. The ConvLSTM primarily consists of three

layers of ConvLSTM at the beginning, followed by three LSTM layers and a fully connected

network at the end, as shown in Fig.8. Initially, a simple 3D model was tested to assess the

potential of the proposed framework, and the predicted heat flux matched the ground truth.

In cases of complex geometries, the framework performed reasonably well and exhibited ex-

cellent generalization ability to geometric shapes. To reassure confidence in the proposed

framework, additional comparisons are made with traditional methods such as congregate

(CG) and the sequential function specification method (SFSM). This finally concluded that

the fully trained model outperformed the traditional models in terms of time consumption

and accuracy.

FIG. 8: Proposed Convolution- LSTM architecture for solving transient IHCPs (Reprinted
under a Creative Commons Attribution 4.0 International license, Copyright 2022).99

Bielajewa et al. conducted a comparison study between the LSTM model and transform-

ers for transient thermal field reconstruction15. The authors selected four transformer-based

models and an LSTM model for reconstructing the temperature profile of one and two-

dimensional heat conduction problems. Transformers101 represent a class of DNNs that em-

ploy a self-attention mechanism to capture the features within the sequential data effectively.
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Unlike LSTM models, transformers do not have any recurrent connections and perform well

with long dependencies. The absence of recurrent connections helps transformers reduce

their training time and facilitate parallel processing.102. Training, validation, and testing

data were generated using FDM and FEM packages for one and two-dimensional models,

respectively. Transient simulation data obtained for 1000s, where 700s of data were used

for training, 100s for validation, and the remaining 200s of data were used for testing the

models. Temperature values at randomly selected points inside the domain were given to DL

networks, and a fully reconstructed temperature profile was generated. For the case of a one-

dimensional problem, LSTM exhibits the lowest training time and normalized Root Mean

Squared Error (NRMSE) compared to other transformer models. Similarly, in the case of

two-dimensional transient heat conduction, the LSTM model consistently performed better

than transformer models. Fig.9 illustrates the time-averaged prediction error distribution for

the two-dimensional IHTP. The authors emphasized that there was no significant advantage

of using transformers over a simple ML model like LSTM for transient field construction

problems.

The real-time estimation of heat flux is crucial in several industrial applications, includ-

ing cutting processes. During the cutting process, high heat is generated due to the plastic

yielding of the material.103 The heat can be accumulated in the small tool chip interface,

leading to irregular temperature distribution and high-temperature gradients. This can affect

the machining quality, tool life, and production safety. In this context, Han et al.104 pro-

pose an LSTM-based encoder-decoder (ED) technique to estimate the real-time prediction

of heat flux in the tool-chip region during the turning process. The training data was gen-

erated using FEM simulations, and the temperature fields are solved using a preconditioned

conjugate gradient (PCG) solver. Other networks, including MLP, CNN, and LSTM, were

used to compare the performance and efficacy of the LSTM-ED model. The same training

data with normalization was used for all the neural networks. Heat flux and temperatures

estimated from the FEM simulation, which are not included in the training dataset, were
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FIG. 9: Time averaged prediction error distribution (top)and prediction error averaged at
each time step (bottom) for 2D conduction problem. The green crosses indicate the ML
inputs.15

used for the testing of the models. Trained models were input with sensor temperatures to

predict the heat flux. To further understand the efficiency of the proposed model, different

noise levels were introduced into the temperature measurements. The results demonstrated

that the LSTM-ED model outperformed other NN models and was highly immune to noisy

levels ranging from 1K to 20K with reasonable computation time. Authors have tested the

robustness and effectiveness of the proposed LSTM-ED model with numerical analysis and

prediction accuracy through experiments.

In another study, a physics-guided LSTM was presented for predicting the dynamic heat

load of buildings105. In situ measurements and numerical simulations were used to generate

the dataset. Extra data on indoor temperature and heat loads were obtained from numerical

analysis using TRNSYS. Several inputs, including historical data of outdoor meteorological

conditions, indoor-air temperature, heat load, time and date given to the network, and

heat loads for the next seven days of the building, are predicted. Results show that the

proposed method exhibits greater accuracy and robustness for both measured and numerical
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data. Since the simulation set has a larger amount of data than the in-situ data, the model

behaved much better for the simulated data set. It concluded that as the number of data

increased, the accuracy of the proposed model increased.

3.2. Physics-Informed Machine Learning (PIML)

Physics-Informed Neural Networks (PINNs) are a modern scientific approach to solving par-

tial differential equations (PDEs) by combining ML techniques and governing physical laws.

The PINNs show greater potential since the traditional numerical methods, such as finite

element or finite difference methods, face challenges with complex mesh generation, diffi-

culty with noisy experimental data integration, or higher-dimensional parametric PDEs or

ill-posed inverse problems.106 PINNs offer a mesh-free alternative method for solving PDEs

by integrating the physical laws directly into the training process. PINNs approximate PDE

solutions by training the NNs to minimize the loss function that includes the governing

PDE, initial conditions (ICs), and boundary conditions (BCs). It can be considered as an

unsupervised strategy since PINNs do not require labeled data from previous simulations

or experiments.107 Usually, the inputs of the PINNs are the independent variables, such as

spatial coordinates and time, and the outputs are the dependent variables, such as tem-

perature, for a heat conduction problem. The fundamental process of PINNs is shown in

Fig.10. This PINN has two spatial and a temporal input, with two hidden layers, where

{w(1), w(2), w(3)} indicates the weights/parameters of each layer, {a(2), a(3)} are the vector

of activated neurons, and û is the predicted output. The output of the NN is given to the

Automatic differentiation (AD) component to compute the derivative to obtain the residual

and integrated into a loss function to improve the accuracy of the model.108 Another major

difference between PINNs and conventional PDE solvers is that PINNs consider the solution

process as a regression, where the number of data points or equations is greater than that of

unknown parameters. This is in contrast with conventional methods, which typically have

the same number of equations and unknowns.106 This section discusses the applications of
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PINNs to DA and inverse problems in thermal systems.

FIG. 10: Schematic of PINN architecture.106

Recent research shows that PINNs are gaining popularity among researchers for solving

IHTPs. To obtain the heat flux in a 1D IHCP, a PINN was developed.109 The neural network

was trained with physical constraints such as governing laws, boundary conditions, initial

conditions, and temperature data. The performance of the PINN was observed by changing

the activation function, network architecture, and different forms of heat flux. The results

show reasonable performance in predicting different heat flux forms from temperature data

with noise. Furthermore, IHCPs in gas turbines rotating cavities were investigated using

PINNs.110 The objective was to predict the surface heat flux value from the experimentally

captured radial temperature profile. The PINN was trained with synthetic data without

noise generated from 2D FE analysis and noisy experimental data. The predicted heat flux

values were in good agreement with the FE solution. Another application of PINNs to solve

IHTPs within an aluminum wall subjected to heat flux on one side and thermal insulation

on the other side was proposed.46 The objective was to predict the temperature profile as the

forward problem and heat flux and thermal diffusivity as the inverse problem from limited

experimental data. The experimental data of temperature at random points was generated
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using an analytical solution. The network takes spatial and temporal independent variables

as input and estimates the dependent variable, temperature, as the output for each iteration.

At each iteration, a loss function was calculated and optimized using the Adam optimizer.

For the forward problem, the model predicted the temperature with higher accuracy, with

an absolute error of 1.01oC for the no noise case and 1.32oC for the case of 10% noise. In the

case of the inverse problem, the model was able to predict the heat flux and corresponding

temperature with higher accuracy for both noise-free and noisy data.

To address the direct and indirect heat conduction problem, a novel ML framework based

on PINNs is discussed by He et al.43 An improved method was proposed, where the loss func-

tion takes advantage of training data, mean squared error (MSE) of initial and boundary

conditions, and enhances the training convergence. Unlike the normal PINNs, the proposed

method considers an inversion algorithm for the variable parameters. The authors introduced

two network architectures coupled with unknown parameters. Type A is a single network

with two kinds of outputs, temperatures (u) and an unknown parameter (k) of the inverse

problem, and Type B consists of two networks, one for u and the other for k. A schematic of

the proposed models is shown in Fig11. To reduce the complexity and increase the accuracy

in the inversion of the variable parameter, skip connections111 were implemented in both

networks. Skip connections help the model to handle the degradation problem in NN due

to the higher depth of the architecture. The result of the study indicated that the proposed

method exhibits higher accuracy and convergence rate than the conventional PINNs.112 Fur-

ther to analyze the efficacy of the model, random Gaussian noise levels of 5%, 10%, and

15% were added to the raw data, and the model performed with higher accuracy, even when

the noise reached 15% for a problem with one constant inverse parameter. However, the

inversion of a two-parameter problem shows less accuracy than single-parameter inversion.

For the case without noise, both networks achieved similar accuracy, but deteriorated when

noise was introduced. The Type A model exhibits less error growth and higher robustness

under noise compared to the Type B model. This study shows the potential and limitations
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of the proposed study for IHCPs.

(a) Type A

(b) Type B

FIG. 11: Proposed architectures of coupled neural networks (Reprinted with permission
from Elsevier, Copyright 2021).43

Among various approaches to solving the IHCPs, an ensemble physics-informed neu-

ral network (E-PINN) with adversarial training (AT) was explored by Jiang et al.113 This

model was primarily focused on solving and quantifying the uncertainties of space-dependent

IHCPs. An ensemble of PINNs trained with different parameters was used for the predic-

tions and uncertainty estimation. Fig.12 shows the proposed E-PINN model where (a) the

quantity of interest m is represented separately in the neural network, (b) the parameter m

is represented based on the derivatives of the temperature field d, (c) training of PINN, and

(d) predicted statistics from the ensemble of models. Results show that only five models,

M = 5, were sufficient to obtain high-quality uncertainty estimates. For the heat flux in-

version problem, the proposed method exhibits higher accuracy compared to other classical

inversion methods. The model exhibits a relative L2 error of 0.1034 and 0.0810 for a noise

level of 0.05 with and without adversarial training, respectively. Similar performance was

observed in the material diffusivity inversion problem.
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FIG. 12: Components of E-PINN for space-dependent IHCPs (Reprinted with permission
from Elsevier, Copyright 2023).113

Generally, due to extreme thermal conditions and moving boundaries, it is challenging

to predict the temperature and heat flux in ablative materials. To tackle such an IHTP

to find heat flux in ablative materials, a hybrid physics-based method was proposed.114

For this study, a computational domain that changes with time was considered. The left

end of the domain was insulated, and the right boundary was subjected to an unknown

heat flux. And the entire domain was divided into accessible and inaccessible domains as

shown in Fig.13a. The accessible domain corresponds to having fixed sensor data, and

the domain to the right of the starting point from the last sensor was considered as an

inaccessible domain where the temperature data was unknown. Initially, the PINN-based

model was used to predict the temperature, and it behaved well when the boundary data

were available. However, when a lack of boundary data in the training set, the PINN

and ANN were unable to predict the unknown heat flux at the right boundary. It was

noticed that ANN underpredicted and PINN overpredicted the temperature value at the

right boundary. Especially when the heat flux was very large, the PINN model was unable

to converge. To address these shortcomings, a hybrid model was introduced with an ANN

model used in the accessible region and a physics-based numerical solution (PNS) for the
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inaccessible domain, as illustrated in Fig.13b. The trained ANN model was only used to

predict the temperature at the accessible domain (T̂k) and to predict the temperature at

the last sensor location. On the other hand, PNS iteratively obtained the temperature (T̃k)

in the inaccessible region and hence predicted the heat flux on the right boundary until T̃k

approaches T̂k. For the direct problem of predicting temperature distribution with constant

thermal properties and heat flux, the hybrid model demonstrates high accuracy. For the

inverse problem, the hybrid model exhibited higher accuracy in predicting heat flux at the

right boundary. This study demonstrates the potential of integrating numerical results into

a data-driven model to enhance the accuracy and efficiency of IHTPs.

(a) (b)

FIG. 13: (a) Computational domain and (b) Schematic of ANN-PNS algorithm flowchart
(Reprinted under a Creative Commons Attribution 4.0 International license).114

Reconstruction of the temperature field is often challenging in various engineering appli-

cations. Insufficiency of measured data or sparse measurements may result from challenging

in-situ environments, limitations in instrument resolution, cost, and sensor availability. A

recent study by Wang et al.45 addressed this issue and proposed a novel method, the an-

alytical solution-embedded physics-informed neural network (A-PINN), to reconstruct the

temperature field from sparse data. Initially, the Fourier transform was used to simplify

and reduce the degrees of freedom of the ill-posed problem. This helped to reduce the 3D-

continuous temperature field into a series of 2D frequency-domain cross-section distributions
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that vary along the z-axis. The proposed model A-PINN, has similar features to a CNN. The

input has sparse measurements, spatial coordinates, and the corresponding temperature and

initial layer with two channels, which calculates weight functions related to the frequency

and spatial variable. Hidden layers with four channels estimate the solution of temperature

and heat flux in the frequency domain, and later combine these two in two channels; finally,

combining these two channels, the inverse Fourier transform was applied to obtain the tem-

perature field and the heat flux. The results indicated that the A-PINN model achieved a

higher accuracy in 3D temperature field reconstruction with less than 1% of average error

in maximum temperature.

Another study115 addressed a hybrid physics-based DL thermal model of additive man-

ufacturing (AM) using PINNs for estimating the temperature field and unknown material

and process parameters from limited observed temperature data. The main difference be-

tween the PINNs and the proposed method is the addition of a data-based loss term in the

loss function. The authors outlined that the advantages of the added data loss are a) the

labeled data can act as auxiliary data to guide and accelerate the training to solve forward

problems,b) solve inverse problems, and c) create a hybrid-physics-informed model using ar-

bitrary experimental data in governing laws. One numerical and one experimental example

were discussed to show the accuracy and usability of the proposed model. In the numerical

example, the model predicted laser absorptivity, heat capacity, and thermal conductivity

with less than 5% of error from partially observed temperature data. A full-field tempera-

ture was obtained with a root mean squared error (RMSE) of 47.28K from partially observed

data from experiments. These results show a promising avenue for this proposed network to

model thermal problems in additive manufacturing.

The study by Go et al.116 introduced a PINN-based surrogate model for a virtual thermal

sensor (VTS) with real-time simulations. The proposed surrogate model takes limited sensor

measurements from the real simulations and estimates the thermal profile or heat flux in the

areas without the sensors. Initially, a self-adaptive PINN (SA-PINN) was discussed, where
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the loss weight during the training was adjusted adaptively. This strategy offers a flexible

loss weight to each training point rather than the entire loss component. Physical sensor

temperature measurements, along with spatial and temporal data, were used as input to the

PINN-based surrogate model to predict the complete thermal profile. Losses were calculated

similarly to SA-PINN, and when calculating the PDE loss, the gradient based on the input

sensor data was also included. Several examples were discussed, along with a 2D plate with

an unknown body heat flux. In this example, the proposed model was used to estimate

the temperature profile and unknown heat flux from the limited sensor data. Training with

no-noise data, the model predicts the temperature and heat flux with higher accuracy when

compared with the ground truth. However, with 3% noise, the predicted solution on heat

flux obeys the ground truth trend with some oscillations. The proposed model predicted

the solution in 158.746ms compared to 71s by the commercial software Abaqus. However,

152,984s were utilized for the training of the model.

An alternative model was proposed for the reconstruction of temperature response using

a transfer machine learning framework.117 A pre-model was obtained from the simulation and

experimental models and then provided to the transfer learning techniques along with the

experimental model to reconstruct the temperature field and obtain thermophysical param-

eters. Initially, generated data from the matched simulation model from the experimental

model was fed to the DNN, and temperature reconstruction was achieved through forward

propagation. The gradient descent optimization algorithm was used to update the network

parameters by constraining the loss function. Through transfer learning, the final PINN

model was achieved from the pre-model with limited experimental data. A schematic of the

proposed transfer machine learning technique is illustrated in Fig14. Moreover, the authors

introduced three fine-tuning strategies by freezing 0, 2, and 4 network layers of the DNN con-

sisting of one input, six fully connected, and one output layer, respectively. Training time for

these fine-tuning strategies shows that strategy 2 exhibits higher performance with optimal

neuron parameters compared to the other strategies. From several examples discussed, it
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was concluded that the proposed model has significant advantages, such as training efficiency

and accuracy over typical DNNs, due to the physics-driven adaptation of the pre-model and

transfer learning approach.

FIG. 14: Schematic of Transfer Machine learning model (Reprinted with permission from
Elsevier, Copyright 2025).117

A modified PINN is explored for estimating thermal conductivity from noisy and lim-

ited experimental data.118 The proposed model contains multiple dedicated NNs, each with

a specific purpose. The architecture was divided into three segments. In the first step,

normalization of the spatial and temporal data was performed using the maximum scaling

technique. In step 2, the limited dataset was expanded from the initial measured data us-

ing physical equations. In this step, three different NN segments were introduced, named

Pre-NN-A1, Pre-NN-A2, and Pre-NN-B, based on the conventional PINN architecture. The

purpose of Pre-NN-A1 was to augment the labeled data and estimate (dT
dt

) as a parameter

for every time step, and this data was used to train Pre-NN-A2. Next, the temperature

data at every time step obtained from Pre-NN-A2 was subjected to a reality test by check-

ing whether the predicted temperature follows the 1D heat transfer law. Later, Pre-NN-B

was trained with data that passed the reality test. A significantly increased amount of la-

beled data, compared to the initial set, is obtained from this process and later provided to
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the Main-NN, where the unknown physical parameter is predicted. Results show that the

modified PINN significantly outperformed the conventional PINN in terms of accuracy and

computational time for all the validation cases. Even with only three data points for each

time step, the modified PINN produces excellent results consistently.

Tanaka and Nagai119 extended the application of PINN to the thermal management of

spacecraft systems. The objective was to obtain the complete temperature distribution from

limited sensor data and model uncertainties. They proposed a physics-informed machine

learning (PIML) thermal analysis with limited temperature measurements, with Thermal

mathematical model (TMM) constraints. Initially, FFNN was built with nodal coordinates

as inputs and nodal temperature as the outputs. Next, residual loss, observation loss, and

boundary loss were calculated, and the solution was optimized to satisfy the governing law

and observed data (pseudo-observation). This study demonstrates that PIML substantially

improved temperature prediction with higher accuracy. The authors outlined that by us-

ing PIML, it is possible to predict the temperature of an in-orbit spacecraft from limited

sensor data and incomplete TMM. Table 1 presents a detailed summary of the reviewed

papers, highlighting the types of machine learning methods used, problem objectives and

dimensionality, data requirements, and accuracy.

3.3. Digital Twinning of Thermal Systems

In recent years, the Digital Twins (DT) concept has gained significant attention in various fields,

including thermal systems120, healthcare121, automotive industry122, medical field123, and agricul-

ture124. In simple terms, DT is a real-time virtual replica of a physical system that enables real-time

monitoring and optimization.125 Any model that accurately represents the behavior of the physical

system can be used as a digital twin.126 For example, the digital twin can be generated based on

CAD (computer-aided design) models or CAE (computer-aided engineering) simulation. However,

the traditional 2D/3D simulations are far from being able to exchange real-time data with their

physical counterpart.127 To mitigate these challenges, a surrogate model, typically data-driven,

can be developed, which processes information more quickly than any physics-based model and
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TABLE 1: Summary of ML-based inverse heat transfer studies

Reference ML
Method Inverse Problem Data Dimension Accuracy

Tamaddon-
Jahromi et al.41 ANN

Boundary condi-
tions from sparse
temperature mea-
surements in linear
and nonlinear
heat conduc-
tion/convection
problems.

FEM 2D

Linear heat conduc-
tion problem, the
model accuracies of
75%, 98%, and 98%
were achieved to
predict the boundary
temperatures given
three, four, and five
locations inside the
domain geometry,
respectively.

Zhang et al.61 ANN

Thermo-physical
properties (density,
thermal conductiv-
ity, heat capacity)
from thermal probe
measurements.

FEM &
Experiment.

2D-
Axisymmetric

Total 12 validation pa-
rameters, the errors of
ten cases are less than
10%, and the other
two cases are 12.23%
and 13.17%.

Haolong and
Zhanli62 ANN

Identifying the
thermal conductiv-
ity and inner wall
shape of a pipe.

Stochastic
model & FEM 2D

As measurement er-
ror decreases, the in-
version results become
more accurate.

Wang et al.65 Nonlinear
ANN

Estimating hot-
wall surface heat
flux from internal
temperature mea-
surements.

Experiment 1D
Estimated heat flux
agrees with calibrated
values.

Allard and
Najafi66

FFNN and
NARX

Surface heat flux
using internal
temperature mea-
surements (with
and without a mov-
ing boundary, and
with and without
temperature-
dependent material
properties).

FEM 1D

Performed well in
robustness tests and
predicted accurate,
consistent results,
especially when mea-
surements were near
the boundary surface.
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TABLE 1: Continued

Reference ML
Method Inverse problem Data Dimension Accuracy

Najafi and
Woodbury67 ANN

Near-real-time heat
flux using tempera-
ture measurements
for constant and
temperature-
dependent material
properties.

Analytical 1D

Able to capture
various heat flux
profiles for constant
and temperature-
dependent material
properties.

Mirsephai et al.68 ANN

Identifying ab-
sorbed heat
in radiation-
dominated prob-
lems.

Experimental
data 2D

Predicted heat was ac-
curate and consistent
with experimental val-
ues.

Virupaksha et
al.84 CNN

Predicting domain
heterogeneity from
temperature maps.

FEM 2D

3D-CNN with tran-
sient data achieved
greater accuracy and
outperformed 2D-
CNNs.

Lockwood et al.88 CNN

Evaluating build-
ing parameters
(e.g., wall insula-
tion conductivity)
from time series
data.

FDM 3D
Promising perfor-
mance, especially for
smaller periods.

Masrouri and
Tahsini90 CNN

finding heat trans-
fer coefficient and
generated tempera-
ture of an indus-
trial heat gun

DNS 1D

Parameter predictions
were slightly differ-
ent from traditional
methods, but pre-
dicted temperature
profiles matched with
measurements.

Zhu et al.91 CNN-
LSTM

Thermal boundary
parameters for a
transient IHTP.

CFD 3D
Significantly superior
to standalone CNNs
and LSTM models.

Niu et al.92 CNN-
LSTM

Reconstruction
of the 3D flame
temperature field.

Time series data
from light field
tomography.

3D High accuracy.

Zwart et al.98 LSTM
Real-time forecast-
ing of stream water
temperature.

Observed data 3D

Improved forecast per-
formance with DA-
LSTM compared to
a standalone LSTM
model.

Wang et al.99 ConvLSTM
Transient heat flux
from measured
temperatures.

FEM 3D

Higher accuracy with
error of 1.07% for
regular adat set and
6.06% for complex
data set.
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TABLE 1: Continued

Reference ML
Method Inverse problem Data Dimension Accuracy

Bielajewa et al.15
LSTM and
Transform-
ers

Transient thermal
field reconstruc-
tion.

FDM & FEM 1D and 2D

Consistently per-
formed better than
transformer models
for 1D and 2D prob-
lems.

Han et al.104

LSTM-
based
Encoder-
Decoder
(ED)

Real-time predic-
tion of heat flux in
the tool-chip region
during the turning
process.

FEM 3D
Outperformed other
NN models (MLP,
CNN, LSTM).

Wang et al.105
Physics-
guided
LSTM

Predicting the dy-
namic heat load of
buildings.

In-situ
measurements
and numerical
simulations
(TRNSYS).

3D

Greater accuracy, es-
pecially with a larger
dataset from simula-
tions.

Qian et al.109 PINN Prediction of heat
flux.

Sampled
temperature
data.

1D.

Reasonable perfor-
mance in predicting
different heat flux
forms.

Puttock-Brown
et al.110 PINN

Predict surface
heat flux from
radial temperature
profiles.

FEM 2D

Predicted heat flux
values were in good
agreement with the
FE solution.

Billah et al.46 PINN

Predict thermo-
physical parame-
ters such as the
material’s thermal
diffusivity and heat
flux.

Analytical
solution 1D

model predicted the
temperature with
higher accuracy, with
an absolute error of
1.01oC for the no
noise case and 1.32oC
for the case of 10%
noise”

Jiang et al.113

E-PINN
with
adversarial
training
(AT)

Solving and quan-
tifying the un-
certainties of
space-dependent
IHCPs (e.g., heat
flux and material
diffusivity inver-
sion).

FEM 2D

Exhibits higher ac-
curacy compared to
other classical inver-
sion methods.
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TABLE 1: Continued

Reference ML
Method Inverse problem Data Dimension Accuracy

He et al.43
PINN with
skip
connections

Solving direct and
indirect heat con-
duction problems,
and inverting vari-
able parameters.

Training data 1D
Higher accuracy and
convergence rate than
conventional PINNs.

Islam and
Dutta114

ANN +
Physics-
based
Numerical
Solution

Finding heat flux
in ablative mate-
rials with moving
boundaries.

FVM 1D

High accuracy in pre-
dicting heat flux at
the boundary. Out-
performed standalone
ANN and PINN mod-
els.

Wang et al.45

Analytical
solution-
embedded
PINN
(A-PINN)

Reconstructing a
3D temperature
field from sparse
measurements.

Sparse
measurements 3D

Achieved higher accu-
racy with less than 1%
average error in maxi-
mum temperature.

Liao et al.115 PINN

Estimating tem-
perature fields
and unknown
material/process
parameters in addi-
tive manufacturing.

FEM 3D
Predicted parameters
with less than 5% er-
ror.

Go et al.116

Self-
Adaptive
PINN
(SA-PINN)

Surrogate model
for a virtual ther-
mal sensor (VTS)
to estimate thermal
profiles or heat flux
from limited sensor
measurements.

FEM 1D and 2D

High accuracy com-
pared with ground
truth, even with mea-
surement noise.

Chen et al.117

PINN and
Transfer
Learning
techniques

Reconstructing
the temperature
field and obtaining
thermophysical
parameters.

FEM and
experiments 1D High accuracy over

typical DNNs.

Jo et al.118 PINN

Estimating thermal
conductivity from
noisy and limited
experimental data.

FVM and
experimental 1D and 2D

Significantly outper-
formed conventional
PINN in accuracy.
Produced excellent
results consistently.

Tanaka and
Nagai119 PINN Temperature distri-

bution.

Thermal
Mathematical
Model (TMM)
data

3D

Substantially im-
proved temperature
prediction with higher
accuracy.
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efficiently updates the physical state.128

Yang et al.129 proposed a DT framework for optimal control of the continuous casting process.

This framework consists of a high-accuracy fundamental model, coordinate optimization, and dy-

namic control of cooling and stirring. A high-fidelity heat transfer model was used as the surrogate

model and calibrated with a combination of offline and online data with NNs. Metallurgical laws

were incorporated for optimization and solved using the particle swarm optimization algorithm.

The results demonstrated a significant reduction in micro-segregation and improvement in strand

quality using this DT framework. Integration of proper orthogonal decomposition(POD) and ANNs

as digital twins was proposed for thermal stratification in pressurizer surge lines.128 A data-driven

snapshot-based method was used to extract the dominant lower modes of the fluid field and project

the complete field onto these modes to obtain the reduced state coefficients using POD. For rapid

prediction of the system behavior, an ANN is trained to learn a mapping between the inputs and

the POD-reduced state coefficients. The performance of the proposed DT was monitored by its

determination coefficient (R2) and relative error cloud plots. The proposed digital twinning method

successfully reconstructs the temperature and stress variables. Moreover, the computational time

required for the proposed method was significantly lower than that of traditional solvers.

Ma et al.130 discussed a digital twin-assisted deep transfer learning method (DTL) for ther-

mal error modeling of electric spindles. This method was introduced to address the limited or

unavailable thermal error data due to complications in data measurement and variable working

conditions. DT-generated thermal data accounts for the training data in the source domain, and

limited or unavailable data from the physical system corresponds to the transfer learning of the

target domain. They developed a distance-guided domain adversarial network (DGDAN) to reduce

the inconsistency by establishing a connection between the virtual and real data. The performance

of the proposed methods was validated using simulation data and real data under variable operat-

ing conditions from DT models and a physical system. The results show that the combination of

digital twins (DT) and transfer learning is a viable tool to mitigate the challenges in thermal error

modeling, especially when thermal error samples are limited or unavailable.

A digital twinning of a transient heat transfer system in a solid medium was proposed by Di et

al.127 The objective was to identify the heat transfer coefficient to dynamically control the maximum
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temperature below a threshold when transient heat flux is provided to the thermal system. A DNN

was used as the digital counterpart of the physical system, while an FEM model served as the

surrogate physical system. A 2D FE model, as a physical system, with transient heat flux was

applied to the top surface, and a convective heat transfer boundary with an unknown heat transfer

coefficient was applied to the bottom. This unknown heat transfer coefficient was calculated by

the DT (trained model). The two functions of the FEM model was to generate data to train the

neural network and test the DT for its performance. Once the NN was trained, validated and

tested, a coupling between the physical system (FEM) and NN was established as shown in Fig15a.

For the training of the NN, only steady-state data were used, which were sufficient to map the

relationship between the heat flux, heat transfer coefficient, and maximum temperature. In this

proposed method, at certain time intervals, the heat flux and maximum allowed temperature data

are fed to the DT, and the time-dependent heat transfer coefficient is estimated. The flow chart of

the proposed digital twinning is illustrated in Fig.15b. To test the performance of the DT, various

heat flux distributions are provided. Results show that for all cases, DT estimated the appropriate

convective heat transfer coefficient and limited the maximum temperature below the threshold to

keep the system safe. These observations are extended to 3D cases.

3.4. Challenges and Future Outlook

The review of machine learning applications in the inverse problems of heat transfer shows great

potential but also comes with significant challenges and research gaps. Few of these issues are

addressed in this section. A primary issue is the handling of the data, which is an important factor

in all machine learning models. Discussed applications, whether DNNs, CNNs, or RNNs, rely on

large, clean, and labeled datasets, often synthetically generated from computationally expensive

simulations. However, this scenario does not represent the reality, since the experimental data are

inherently sparse and corrupted by noise. Studies show that even small levels of noise could intro-

duce oscillations in their predictions, and machine learning models such as CNN-LSTM or modified

PINN strategies show some degree of robustness to noise and sparsity. This necessitates the devel-

opment of more advanced data augmentation and pre-processing techniques. Future focus must be

on the research of various models that can learn efficiently from heterogeneous data with seamless
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(a)

(b)

FIG. 15: (a) Schematic of FEM-DT coupling (b) Flowchart of ML-based DT.127

integration of sparse experimental measurements. Another critical challenge of machine learning

models is their black-box nature, which can severely impact their interpretability and explainabil-

ity. For most engineering problems, it is important for engineers and scientists to understand the

underlying physical mechanisms and reasons for the model predictions rather than just providing

accurate results. The review discusses some problems where DNN informs the FE model, but the

understanding of how the ML model reaches its conclusion is opaque. However, PINN-based models

offer better transparency and are more interpretable by embedding the governing equations than

purely data-driven models. Future research needs to study methods revealing the black-box nature

of the models for better understanding, transparency, and insights into the physical systems being

modeled.

Another major hurdle observed from this review is the scalability of ML methods for higher

dimensions and complex problems. While some of the ML methods are efficient in 3D applications,
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they often come with higher computational cost during the training phases. The training time

can be very high for problems like iterative design-optimization and real-time inverse problems,

making it difficult to solve without massive computational resources. Reviewed studies show that

the greater computational efficiency during inference is a significant advantage over traditional

models; however, there is very little discussion on the computational resources used during training

and testing. Without the proper discussion on the computational resources at every stage of these

ML models, it is difficult for widespread adoption of these for complex and novel problems. This

challenge is also linked to the problem of generalization. A model trained for specific geometry or

a set of boundary conditions may perform poorly on a new, slightly different problem. Although

the ML models are used to reduce the computational burden, due to a lack of generalization, they

require a computationally intensive training cycle for each new problem. Future efforts should focus

on developing better methodologies that can generalize more effectively across different problems.

Another important observation made from this review is the lack of standardized benchmarks and

comprehensive comparison studies between different ML models. Even though the review provided

a list of different methods and their applications, an in-depth comparison of their performance

on a standard problem is rare. This scenario makes it difficult to make an informed decision

about the true applicability and efficiency of various methodologies and to guide the engineers

and researchers in selecting the most appropriate strategy. Suggestion from the authors to the

community is to agree on a set of various benchmark problems, from linear to non-linear, 1D to 3D,

and different levels of noise and sparsity, to enable an effective comparison. Furthermore, there is

very limited research on the coupling of various methods presents a significant opportunity. Some of

the discussed coupled models show great potential in solving IHTPs. Combining the best features

of the different ML models, for example, using a CNN to extract spatial features and PINN to

enforce governing law and solve the inverse problem, could lead to robust hybrid models. These

next-generation models need to be well documented and assessed against standardized problems to

provide reliable evaluations and comparisons that can lead to widespread adoption in engineering

and scientific applications.
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4.CONCLUSION

This present study provides a detailed review of significant progress and ongoing development in the

field of machine learning techniques in solving inverse problems of thermal systems. Traditionally,

solution strategies for the inverse heat transfer problem have heavily depended on mathematical

and numerical methods such as regularization, sequential estimation, optimization algorithms, or

semi-analytic approaches. These methods have shown great potential to tackle inverse problems for

decades; however, they have often struggled with their sensitivity to noisy data, sparse or limited

data, and unstable or non-unique solutions. Data assimilation techniques such as the Kalman filter

or variational methods further improved the ability to integrate real-time measurements into the

model for enhanced predictions, improved robustness in parameter estimation, or field reconstruc-

tion. Recent advances in machine learning frameworks and deep learning models have provided

a new direction for addressing the limitations of traditional methods. Deep neural networks have

shown strong potential for solving inverse heat transfer problems, especially when a physics-based

model is integrated into the machine learning framework. Hybrid models, such as DNNs for ac-

cessible domains and numerical methods for the inaccessible domains, can outperform standalone

machine learning models. The incorporation of transfer learning and data-based loss functions to

DNNs shows significant improvement in prediction accuracy under limited experimental data. Fur-

thermore, CNN-inspired architecture has demonstrated exceptional accuracy in temperature field

reconstruction from sparse and noisy data. These models leverage the ability to process spatially

distributed data and extract features, allowing efficient transformation of the sparse data into ac-

curate thermal and flux distributions. Incorporating the governing laws into the deep learning

model further provides a new way to solve inverse problems efficiently. In the absence of large

training datasets, PINN-based architecture often helps by using physical laws to minimize loss and

generalization.

Furthermore, research shows that various hybrid methodologies and modifications of vanilla

PINNs can further enhance the prediction accuracy. The synergy between inverse problem-solving

techniques, data assimilation, and a machine-learning framework leads to digital twins. These

digital twins can assimilate the data in real time, update predictions, and optimize the system
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dynamically. These digital twin frameworks represent a transformative step in the practical ap-

plication of inverse and data assimilation techniques. Although these machine learning techniques

show great potential, it is important to address the current limitations and future research direc-

tions. The discussed ML techniques used for the IHTPs are often considered as a surrogate model.

For higher accuracy and prediction capability, it is important to train these models with a large

amount of data, which is usually complex and computationally challenging. The research studies

demonstrated the performance of the proposed models in terms of computational time and provided

little information on the training time. Many data-driven methods or hybrid models have shown

high accuracy for a given dataset, and they may not generalize well to new or different scenarios.

Most articles only explored a single or a couple of methods, and this restricts the adoption of a

suitable method for IHTPs. Furthermore, there is no clarity on whether the proposed methods work

for different types of problems. Some of these challenges and future directions are also discussed.
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