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Despite great efforts to study magnetic properties of 3d-transition metals from both fundamental and
applied interest, there exists no modelling approach that would be able to describe magnetic and
structural phase stability of all these elements on a unified formalism. In this work, we propose a
qualitative improvement of the Generalisation of the Universal Equation of States (GUES) that we
presented recently in a previous work developed and tested for cubic structures in Fe. The GUES is
now extended to other 3d-transition magnetic elements and crystal lattices, where nowmagnetic Co,
Cr, Mn, and Ni are considered, including both cubic and hexagonal structures, and also covering
ferromagnetic (FM) and antiferromagnetic (AFM) configurations. An extensive database has been
developed and used to fit all parameters and functions for all considered elements. The current GUES
unifies the two previous separate approaches for FM and AFM configurations, allowing for non-
collinear calculations, which are tested for Co, Cr, Fe, Mn and Ni. The approach is consistent with the
Stoner model of band magnetism and the Ginzburg-Landau approximation used in the magnetic
cluster expansion method, as well as with non-collinear magnetism described in the Heisenberg-
Landau Hamiltonians. Importantly, it also includes magneto-volume effects, which are important for
understanding defect properties in magnetic materials. This work permits considering the
development of a new class of magnetic interatomic potentials for non-collinear simulations based on
the approachproposed by theGUES. (The figures shown in this article can be seen in colour only in the
electronic version).

The presence of magnetism has a strong implication for structural stability
in a large variety of materials such as single-element magnetic transition
metals, steels and numerous other classes of functional materials and high-
entropy alloys for nuclear energy applications. Despite the crucial role of
magnetism in the aforementioned materials, modeling efforts to provide a
quantitative theory of the interplaying between magnetic and structural
properties have been notably lacking. In a pioneering work by Hasegawa
and Pettifor1, the authors showed that the presence of magnetism stabilizes
the bcc phase of iron. A theoretical treatment of itinerant electron mag-
netism that highlighted the importance of quantummechanical description
of spin associated with electronic band structure from density functional

theory (DFT) calculations has been reviewed by Kubler2 within Stoner
formalism3. Using DFT calculations, the magnetic cluster expansion
method has been developed to parametrize the adiabatic magnetic energy
and investigate complex multi-interactions from electron spins4,5 as well as
structural phase transition between BCC (Body Centered Cubic) and FCC
(Face Centered Cubic) phases of Fe6. A constrained non-collinear mag-
netism approach developed within DFT formulation has been employed by
Nguyen-Manh and co-workers to investigate the effect electron spin
orientation on irradiated defect configurations and structural phase tran-
sition in Fe and Fe-Cr disordered alloys7,8. A first ab-initio model con-
sidering the change in magnitude of magnetic moments in terms of
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temperature-induced longitudinal spin fluctuation for the exchange inter-
action parameters of the Hamiltonian for BCC-Fe and FCC-Ni has been
proposed by Ruban et al.9 and further investigated by Ma et al.8,10. A com-
bined Landau model with Heisenberg Hamiltonian has also been used for
magnetic cluster expansion spanning a broad range of alloy compositions,
and a large variety of chemical and magnetic configurations has been
developed for FCC Fe–Ni alloys11. Most recently, a great interest has been
paid for developing magnetic machine learning potentials using spin-
polarized ab-initio database12–14 with Heisenberg Hamiltonian to model
magnetic properties of Fe15, extended deep learning DFT Hamiltonian for
magnetic superstructures16,17, and using the Materials Project database to
study Mn-based stable magnetic materials18. Therefore, the key motivation
of this paper is to propose a generalized formalism for investigating all
important magnetic 3 d transition elements (Co, Cr, Fe, Mn, Ni) from the
large constrained magnetic calculations DFT data base, and to propose an
approachwhich could systematically studymagnetic properties for such 3 d
transition elements considering structural stability, non-collinear magnet-
ism, longitudinal spin fluctuation and magneto-volume effects on equal
footing.Q1Q1 �Q2�Q2�Q3�Q3�Q4�Q4�Q5�Q5

In the scope of developing interatomic potentials for Molecular
Dynamic (MD) simulations with magnetic contribution, a novel approach
for magnetic interatomic potential for ferromagnetic Fe was proposed
recently19whichwas testedon transformationpaths, vacancies, stresses,A15
and C15 lattices, elastic properties, dumbbell configurations and γ-surfaces,
as well as predicting correctly the volume-magnetic moment relationship,
including low-spin configuration for low volumes and high-spin config-
uration for larger volumes in FCC, demonstrating the existence of such
functions and their predictability. The formulation makes use of the Gen-
eralized Universal Equation of States (GUES), which is based on the Uni-
versal Equation of States (UES) proposed by Rosé and Vinet20,21.

The approach follows a different viewpoint as compared to other
attempts and formulations to simulate magnetism in molecular dynamics,
since it does not follow the classical embedded atom method (EAM)22,23 or
some of their modifications via additional terms24,25 in line with the Stoner
model of band magnetism and the Ginzburg-Landau model. Neither the
many-body force potentials26,27 share the formulation with the GUES,
although it has some similarities with the non-collinear magnetic many-
body potentials based on the Heisenberg-Landau Hamiltonians8 and the
inter-site magnetic interaction parameters. Someworks have usedMachine
Learning (ML) tools, showing the capability of this technique to incorporate
collinearmagnetic configurations for atomistic simulations13,28, while others
opted for adding some neural network correction terms to the EAM
method14.More recently, non-collinearmagnetic atomic cluster expansions
were trained with collinear and non-collinear magnetic configurations for
iron, showing good predictability and transferability15.

As stated inourpreviouswork19, the originalUES established that there
a unique function E(V) that describes the evolution of the energy for all
solids with respect to volume variations:

EðVÞ ¼ Ege
�V�Vg

Kg 1þ V � Vg

Kg

 !
ð1Þ

whereEg is the ground state energy,Vg is the volume at the ground state, and
Kg the corresponding volume scaling function. Such a result has been
extensively validated in the literature and widely applied to predict material
properties related to volume29–35. Nevertheless, the UES is understood and
generally applied for the ground state, as well as logically its experimental
validation. The proposed GUES is more general and applies to any state,
including different magnetic configurations. In other words, the results
obtained in ref. 19 demonstrated, in the case Fe, that any crystal lattice in
non-magnetic (NM) configuration as well as in ferromagnetic (FM) or
antiferromagnetic (AFM) configurations, follows Eq. (1) if the crystal lattice
and magnetic configuration are maintained. As an illustrative example, a
deformedBody-centered cubic (BCC) lattice with dissimilar cell parameters

a; b; ch i (not strictly BCC as it is not cubic anymore) and a constant
magnetic momentM in ferromagnetic configuration, will follow Eq. (1) for
volume variations (therefore, with constant b=a; c=a

� �
ratios) with certain

Eg, Vg, and Kg values. Such Eg, Vg, and Kg values are not the global ground
state, but they refer to metastable configurations (i.e. local ground states) of
such lattice and magnetic configuration. That means that for such a BCC
with constant b=a; c=a

� �
ratios andmagnetic momentM in ferromagnetic

configuration, Eg is its minimum energy, which occurs at the volume Vg.
Again, such Eg and Vg are not the (global) ground state energy and ground
state volume, but the local ones for such b=a; c=a

� �
structure.

The variables Eg, Vg, and Kg are therefore dependent on the magnetic
moment, magnetic configuration, and the lattice. Nevertheless, in view of
the development of an interatomic potential, a distance-dependent function
ρ (scaled distance) was proposed in ref. 19 to substitute the “lattice” for
“interatomic distances”:

ρij ¼
rij

3

V
ð2Þ

where rij is the distance between atoms i and j andV is the atomic volume of
atom i according to the system volume. This variable ρij describes then the
set of distances of a certain lattice. Such a set of scaled distances between
atoms is different from one lattice to another, but the same for a certain
lattice under different volumes. Therefore, it can be used as a descriptive
variable of different configurations.

Finally, in thiswork, the expressionof the energyEof the systemwithN
atoms as a function of volume V of such a system is expressed as:

E ¼
XN
i¼1

Ei
g ρ;M
� �

e
�

V�
PN

i¼1
Vi
g ρ;Mð ÞPN

i¼1
Kig ρ;Mð Þ 1þ

V �PN
i¼1V

i
g ρ;M
� �

PN
i¼1K

i
g ρ;M
� �

 !
ð3Þ

whereV is the volume of the system, the ρ ¼ ρi1; ρi2ρi3; . . . ; ρiN ; . . .
� �

and
M ¼ ~M1; ~M2; ~M3; . . . ; ~MN ; . . .

� �
, being ρij the scaled distance between

atom i and j (as defined in Eq. (2)) and ~Mj the magnetic moment of atom j,
respectively. It is worth noting that the calculation of the energy E is now
more general than in our previous publication19, which was defined to
provide the ideaof the contribution to the energy of each individual atom, as
it occurs on MD simulations for the EAM approach. In a certain system,
these energy contributions were equal for an undistorted lattice under FM
configuration, and therefore the energy was correctly computed for the
analysed cases in ref. 19. Nevertheless, under theDFT approach, there is not
a sum of energy-per-atom, but only the total energy of the system is cal-
culated. Thus, in order tobemore general in the currentGUES, the equation
of the energy of the system is now revised. Additionally, with this functional
form, the energy dependence of the volume will always fulfill the UES as
shown in Eq. (1) for any atomic arrangement, including those with atomic
coordinates moving from ideal positions, as well as for different magnetic
moments and spin orientations.

In our previously published paper19, even though a magnetic intera-
tomic potential for ferromagnetic configurations was developed, two main
aspects of that approach needed to be revisited in order to obtain a robust
approach for magnetism:
1) The GUES was proposed differently for ferromagnetic and anti-

ferromagnetic. In other words, the functions describing Eg, Vg, and Kg

were different for different magnetic configurations. In this work, we
have unified theGUES,where the same formulation is applied for non-
magnetic, ferromagnetic, and antiferromagnetic configurations, where
the difference is the existence of different contributions in the same
formulation, rather than different parameters. This opens the door to
propose a formulation for non-collinear molecular dynamic
simulations.

2) The GUES was proved only for Fe in cubic structures, and a more
complete analysis in other elementsneeds to be carried out. In this case,
in addition to completingFe for thehexagonal lattices, wehave selected
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Cr, Mn, Co and Ni (all for cubic and hexagonal lattices), which cor-
respond to the previous and posterior atomic numbers in the periodic
table, also with a variety of ground states which corresponded to
magnetic configurations including non-magnetic, ferromagnetic and
antiferromagnetic in different BCC, FCC (Face Centered Cubic) and
HCP (Hexagonal Close Packed) lattices. Therefore, the unified
approach does not only refer to the magnetic state, as stated in the
previous point, but also to the crystal lattice in different elements, since
HCP structures are also validated under this approach, making the
GUES now applicable to hexagonal lattices.

Therefore, it is not the scope of this work to propose a new interatomic
potential, but to modify the GUES to include a non-collinear term, which
can includeFMandAFM,opening thedoor tounify the formulation for any
magnetic configuration, and at the same time, test this approach with other
elements, in addition to Fe. These results will be the starting point for
developing interatomic potentials for robust magnetic molecular dynamics
simulations.

Results
Unified GUES
The unified formulations for different magnetic configurations are pre-
sented hereinafter, along with the magnetic and distance-dependent func-
tions which are therefore introduced (corresponding to previous point 1),
and the extension of the GUES to other elements is shown afterwards
(corresponding to previous point 2), making use of such unified
formulation.

In19, the parameters of Eq. (3) Eg, Vg, and Kg were defined as:

Ei
g ρ;M
� � ¼ Ei

0 ρ
� �þΦEðMiÞ þ

PN
j≠i

ωM ρij

� �
ψE Mi �Mj

� �

Vi
g ρ;M
� � ¼ Vi

0 ρ
� �þΦV ðMiÞ þ

PN
j≠i

ωM ρij

� �
ψV Mi �Mj

� �

Ki
g ρ;M
� � ¼ Ki

0 ρ
� �þΦK ðMiÞ þ

PN
j≠i

ωM ρij

� �
ψK Mi �Mj

� �

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where the subscript j≠i represents all neighbor atoms of atom i. It is worth
noting that, formally, j = 1,…,N with j≠i runs over the whole system of N
atoms. An interatomic potential derived from the GUES will consider
logically the closest atoms and not all atoms in the system. In our previous
work,where an interatomicpotentialwas derivedonly for the ferromagnetic
case in Fe, the cutoff distance was for ρij < 40, which according to Eq. (2) is
approximately 7.7Å for the BCC case, corresponding to 10 nearest neigh-
bors or equivalently around 170 atoms. The functions with 0-subscript are
dependent on the distances only, but not on the magnetic moment nor
magnetic configuration. It is worth noting that theE0,V0 andK0 parameters
does not include any angular dependency, as for instance the Modified
Embedded AtomModel (MEAM)36–38, since the predicted energy by using
only distance dependency between pair of atoms in our work provides
enough accuracy as it will be shown later (in subheading “Error analysis of
the GUES”). TheΦ-functions are dependent only on themagneticmoment
magnitudeMi of the atom being evaluated i. As pointed out, in the original
formulation, these functions were different for the FM and AFM. Similarly
occurred with the ψ-functions, which were different in the FM and AFM
cases, although in this case, they are multiplied by a function dependent on
the distance between atoms i and j. In this revised GUES, bothΦ-functions
andψ-functions arenowthe same forFMandAFMcases. Irrespective of the
magnetic function, no orientation was needed as they were different
functions or formulations for FM and AFM, and the parametersMi andMj

were only themagnitude of themagneticmoments ~Mi and ~Mj, respectively,
but not information about the orientation of the magnetic moment was
required. Equation (4) has therefore been reformulated, taking the FM
configuration as a base case, where all magnetic moments are aligned, and
additional terms for non-collinear magnetic moments must be added. In

other words, the formulation in Eq. (4) remains the same for FM, to be
consistent with the original results, and the additional terms should be
dependent on the angle between differentmagneticmoments, with the only
condition that such terms become 0 for angles equal to 0 (i.e., the FM case).
The following formulation responds to such requirements and replaces Eq.
(4) to account for any magnetic configuration, rather than only the FM
configuration :

Ei
g ρ;M
� � ¼ Ei

0 ρ
� �þΦEðMiÞ þ

PN
j≠i

ωM ρij

� �
ψE Mi �Mj

� �
þPN

j≠i
ωnC ρij

� �
ΘE Mi �Mj

� �
sin

αij
2

� �� �2
Vi

g ρ;M
� � ¼ Vi

0 ρ
� �þΦV ðMiÞ þ

PN
j≠i

ωM ρij

� �
ψV Mi �Mj

� �
þPN

j≠i
ωnC ρij

� �
ΘV Mi �Mj

� �
sin

αij
2

� �� �2
Ki

g ρ;M
� � ¼ Ki

0 ρ
� �þΦKðMiÞ þ

PN
j≠i

ωM ρij

� �
ψK Mi �Mj

� �
þPN

j≠i
ωnC ρij

� �
ΘK Mi �Mj

� �
sin

αij
2

� �� �2

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

where the parameters Ei
0, V

i
0 and Ki

0 are:

Ei
0 ρ
� � ¼ ε0;0 þ ε0;1

PN
j≠i

ω0 ρij

� �

Vi
0 ρ
� � ¼ ν0;0 þ ν0;1

PN
j≠i

ω0 ρij

� �

Ki
0 ρ
� � ¼ κ0;0 þ κ0;1

PN
j≠i

ω0 ρij

� �

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

andω0 andωM are distance-dependent functions, which is common for the
three parameters functionsEi

0,V
i
0 andK

i
0 are as it canbe seen inEqs. (5) and

(6). The values and physical meaning of the parameters ε0;0, ε0;1, ν0;0, ν0;1,
κ0;0 and κ0;1 is explained later (in subheading “Non-magnetic contributions
of the GUES”). The new ωnC in Eq. (5) (as compared to initial GUES
formulation) is another distance-dependent function, which scales the
influence of close atoms, decreasing with the interatomic distance. The
Θ-functions, also new in this work, are also dependent on the magnitude of
the magnetic momentsMi andMj, of atoms i and j, respectively. The angle
betweenmagneticmoments ~Mi and ~Mj is denotedαij, and it is introduced in
the term sin

αij
2

� �2
. This term is the simplest function to account formagnetic

angular dependence, allowing also for the transition between the previous
FM and AFM formulations at19 and incorporating at the same time non-
collinear contributions. In other words, for the FM case, the collinear
magnetic moments do not contribute to the non-collinear extra terms, as
this term is equal to 0. Therefore, for pure collinear FM configurations, the
formulation is consistent with the previous interatomic potential. Also, in
the AFM configuration, only half of the atoms contribute to the non-
collinear terms, where previous Ψ-functions in the AFM case at19 (which
were initially different in our previous work to the Ψ-functions for the FM
case) arise now as the addition of current Ψ-functions and Θ-functions,
multiplied by the corresponding distance dependence functions ωM and
ωnC, respectively, in their respective atomic neighbors. For the non-collinear
(fully disordered magnetic moments), any atom can actually contribute to
each other in the non-collinear term. With this, the AFM configuration is,
mathematically, a particular case of the non-collinear configuration.

In addition to this, this term can be expressed as

sinðαij2 Þ
2 ¼ 1

2 ð1� cosðαijÞÞ, which can be related to the Heisenberg model
description of the angular contribution between different spins15. In such a
model, that contribution of the energy is multiplied by the distance-
dependent exchange interactions (usually denoted as Jij), which can be
related to the distance dependence functions ωnC in Eq. (5). Therefore, the
proposed formulation is consistentwithHeisenbergmodel, but alsowith the
Ginzburg-Landau approximation39 which describes the FM contribution to
the energy in the form of even polynomials, as the Ψ-functions actually
behave in our approach.
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Error analysis of the GUES
For this subheading, it is important to notice the difference between the
GUES and amagnetic interatomic potential (MIP) based on theGUES. The
GUES is a formulation, independent of theMIP,which describes the energy
of a system. The MIP is the set of motion equations that allows for MD
simulations. In the same way that a Heisenberg-Landau Hamiltonian is the
formulation for the energy, and a many-body potential based on the
Heisenberg-Landau Hamiltonian11, is the actual interatomic potentialQ6Q6 for
MD simulations. Also, the Embedded AtomModel is the formulation, and
the Finnis-Sinclar potentials are the actual interatomic potentials40.

With this in mind, the distance-dependent functions ω0ðρijÞ, ωMðρijÞ
andωnCðρijÞ do not need to be described at this point to prove the validity of
the GUES for different elements (they would need to be developed for MD
simulations). The database is constructed in away that it can be separated in
Eq. (5) to allow for energy calculations in different structures. For a certain
structure, cubic or hexagonal, with lattice parameters a; b; ch i and a fixed
and constant magnitude of the magnetic moments with the AFM config-
uration as described in the previous subheading with alternate spin up—
spin down layers in the (0,0,1) or (0,0,0,1) for cubic and hexagonal-based
lattices, respectively, Eq. (5) can be rewritten as:

Ei
g ρ;M
� � ¼ ε0;0 þ ε0;1Ω0 þΦEðMiÞ þΩMψE Mi

2
� �þΩnCΘE Mi

2
� �

sin α
2

� �� �2
Vi

g ρ;M
� � ¼ ν0;0 þ ν0;1Ω0 þΦV ðMiÞ þΩMψV Mi

2
� �þΩnCΘV Mi

2
� �

sin α
2

� �� �2
Ki

g ρ;M
� � ¼ κ0;0 þ κ0;1Ω0 þΦK ðMiÞ þΩMψK Mi

2
� �þΩnCΘK Mi

2
� �

sin α
2

� �� �2

8>>><
>>>:

ð7Þ

where

Ω0 ¼
PN
j≠i

ω0 ρij

� �

ΩM ¼PN
j≠i

ωM ρij

� �

ΩnC ¼Pj2Γ ωnC ρij

� �

8>>>>>>><
>>>>>>>:

ð8Þ

and Γ denotes the neighbors with different spin orientation to atom i, with
the spin non-collinear angle denoted α. For a spin up atom i, the angle α in
the alternate spin up—spin down layers in the (0,0,1) or (0,0,0,1) for cubic
and hexagonal-based lattices, respectively, will be 0 for all other spin up
atoms, and180 ° for all spin downatoms.With this, the atomswith the same
spin orientation to atom i will not have a contribution to the non-collinear
term, as they are multiplied by sin 0ð Þð Þ2. Therefore, the fitted values ofΩnc

are valid for any magnetic configuration from FM to AFM, as described in
the database (B2-like, L10-like, and Bh-like structures for cubic and
hexagonal, respectively) with the α angle rotating between 0 ° and 180 °.

Therefore, the expressions ofω0,ωM andωnC are not the central point
in this paper, since they are actually the functions needed for the molecular
dynamics simulations, and will be considered in subsequent works. The
expression for Ω0, ΩM , ΩnC can be then expressed as a function of
b=a; c=a
� �

, without the need of ω0, ωM and ωnC , as well as Φ-, ψ- and Θ-
magnetic functions can be expressed in terms ofMi

2 since for these func-
tions, themagneticmomentmagnitudes are constant for each case, being in
that caseM ¼ ~Mi; ~Mi; ~Mi; . . . ; ~Mi; . . .

� �
.

From the original proposal of theGUES in ref. 19, it was proved that, in
the case of Fe, for any fixed lattice and magnetic magnitude and config-

uration, there exist values of Eg ;Vg ;Kg

D E
which describe the variation of

the energy by means of the atomic volume, following Eq. (1). These values
have been fitted in this work by all the elements considered, namely, Co, Cr,
Fe,Mn andNi, for all cubic and hexagonal based lattices, withNM, FM and
AFM configurations. The predictions of the GUES by using this fitting are
shown in some specific cases in Fig. 1 for NM, FM, and AFM magnetic
configurations, as indicated in the figure. The figures show the DFT

calculated energies, and the corresponding function in Eq. (1), each of them

calculated after the corresponding fitting of Eg ;Vg ;Kg

D E
. Note that any

other case non-displayed in the figure (for the sake of clarity) has been
checked carefully and follows the same trend, concluding that, for any lattice

and magnetic configuration, there exist values of Eg ;Vg ;Kg

D E
which

capture the variation of the energy by means of the atomic volume.

The complete comparison of the predictions for all data is shown in a
scatter plot with DFT data vs. GUES prediction in Fig. 2 by numerically
fitting individually for each lattice andmagneticmoment the corresponding
set of Eg, Vg and Kg parameters (including the data shown in Fig. 1). The
results support the validity of theGUESwith anRMSE = 4.22 10−6 eV (Root
Mean Squared Error) corresponding to all data considered, showing good
agreement between DFT and GUES prediction.

Non-magnetic contributions of the GUES
Once the reliability of the GUES in predicting energies is proven, it is now

the turn to analyse the Eg ;Vg ;Kg

D E
behavior of each case. The non-

magnetic interactions are consideredfirst, which are the simplest case, and
allow constructing the subsequent magnetic contributions. It is expressed
in terms of Ω0 for each of the elements (Eq. (8)), and correspond to the

DFT data with magnetic magnitude equal to 0. The fitted Eg ;Vg ;Kg

D E
parameters which have been used in Fig. 1 (top illustration) using Eq. (1)
for Co, Cr, Fe, Mn, and Ni, are now displayed as a function of the ratios
b=a; c=a
� �

for cubic- and hexagonal-base lattices, whenever it corre-
sponds. The results are displayed in Fig. 3 for all elements, where the top
row corresponds to cubic structures and the bottom Q7Q7row corresponds to
hexagonal lattices, as depicted in Fig. 4. The fitted values forΩ0 are in the
supplementary material for all elements. It is worth noting that Ω0
functions arenotuniquely defined, since thenon-magnetic contribution is
scaled with ε0,0, ε0,1, ν0,0, ν0,1, κ0,0, and κ0,1 parameters, which are shown in
Table 1. In this work, the Ω0 selected so that its value in the FCC lattice
b=a ¼ 1; c=a ¼ ffiffiffi

2
p� �

equals to 0, and in the BCC lattice
b=a ¼ 1; c=a ¼ 1
� �

equals to 1. Therefore, the ε0;0 is the ground state
energy for non-magnetic configuration of the FCC lattice, whereas ε0;0 þ
ε0;1 is the ground state energy for non-magnetic configuration of the BCC
lattice. Equivalently, ν0,0 is the ground state volume of BCC, and ν0,0+ ν0,1
is the ground state of FCC. On the other hand, κ0,0 is related to the bulk
modulus Bg ground state19 since the following relationship applies:

Bg ðρ;MÞ ¼ � Eg ðρ;MÞVg ðρ;MÞ
Kg ðρ;MÞ2 ð9Þ

which, for the BCC case, is Bg ¼ � ε0;0ν0;0
κ0;0

2 , while for the FCC case its bulk

modulus ground state isBg ¼ � ðε0;0þε0;1Þðν0;0þν0;1Þ
ðκ0;0þκ0;1Þ2

. Figure 3 shows a relatively

similar behavior of Co, Fe, Mn, and Ni in the non-magnetic state in both
cubic and hexagonal lattices, where Cr is clearly dissimilar to the other
elements.

Self-magnetic contribution of the GUES
Following the sequence of functions in Eq. (5), the magnetic functions
ΦE(M), ΦV(M), and ΦK(M) for all elements are now considered. These
functions account for the contribution to the energy of an atom, irrespective
of themagnetic stateof the rest of the atomsor their interactionwith such an
atom. Particularly, it represents the nature of themagneticmoment, andnot
the magnetic ordering of the system, resembling the on-site energy in the
Heisenberg-LandauHamiltonian11. In otherwords, in a simulation cell with
all magnetic moments equal to 0 except for an atom, such an atom would
still induce an effect on Eg, Vg, and Kg, and therefore on the energy of the
system. Further, this contribution is also independent of the distances ρ
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between such an atom and the other atoms, or in other words, the variation
on Eg,Vg, and Kg induced by the change in magnetic moment of an atom is
the same, irrespective of the crystal lattice and volume, since ρ andV are not
part of Φ-functions.

Figure 5 shows all Φ-functions for all elements. In Fig. 5a, the
ΦE(M) function is depicted, showing its clear influence on the ferro-
magnetic behavior of each of the elements. For instance, Co and Fe
display minimum values of ΦE(M) around 1.64 μb and 2.35 μb,

Fig. 1 | GUES description of the volume-energy variation of Co, Cr, Fe, Mn, and
Ni for NM, FM, andAFM.Cohesive energy and fitting to the Universal Equation of
States as shown in Eq. (3) for different element, crystal lattices, and magnetic

configurations, as indicated in the figure. Note that x-axis is shifted and overlapped
for different pictures. Legend is common for all illustrations. BCC, FCC, and HCP
corresponding structures are indicated in the legend.
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respectively, which is very close to the magnitude of the magnetic
moment providing the minimum energy in ferromagnetic configura-
tion, which occurs at 1.75 μb and at 2.25 μb, respectively. Note that the
minimum energy (and the corresponding magnitude of the magnetic

moment) may not be calculated in the DFT database since the calcu-
lations are performed in fixed c/a and b/a ratios, volumes, andmagnetic
moments. Also, Ni shows a minimum value of ΦE(M) at 0.57 μb,
whereas the minimum energy of the DFT database lies in 0.5 μb for the

Fig. 2 | Prediction of the energy with the GUES for Co, Cr, Fe, Mn, and Ni, for
NM, FM, and AFM. DFT calculated cohesive energy vs. GUES predicted cohesive
energy with fitted Eg, Vg, and Kg, for Co, Cr, Fe, Mn, and Ni, in non-magnetic,

ferromagnetic, and antiferromagnetic for all cubic- and hexagonal-based lattices.
The RMSE = 4.22 10−6 eV correspond to all data considered.

Fig. 3 | Distance dependent Ω0 functions of the GUES. Ω0 functions (Eq. (8))
describing the non-magnetic contribution for a Co, b Cr, c Fe, dMn, and eNi. Solid
white dots indicate the Ω0 = 1 value, which correspond to BCC lattice, solid square

dots indicate the Ω0 = 0 which correspond to FCC lattice, and solid hexagonal dots
corresponds to perfect HPC lattice.
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ferromagnetic case. On the other hand,Mn andCr showmainly positive
values of ΦE(M), increasing in this way the energy of the system for
magnetic configurations, in agreement with the minimum energy for
ferromagnetic configuration, which occurs for M = 0, i.e., non-
magnetic. Similarly, ΦV(M), which stands for the volume behavior
with magnetic moment, has a very constantly increasing value with
magnetic moment for all elements. This means that the increase of
magnitude of the magnetic moment also increases the volume at which
the minimum energy occurs. This is a common feature in the DFT
database for all elements considered, where indeed the non-magnetic
ground state has a lower volume than magnetic configurations. Other
previous results confirm this tendency41–45, where volume-dependent
energy shows also larger volumes for FM and AFM configurations, as
compared to NM state. The influence of ΦK(M) is much more subtle
since it is related to the bulk modulus Bg through Eq. (9). It is worth
noting that every lattice (defined by the set of distances ρ) andmagnetic
momentM has a corresponding bulkmodulus. Following this equation,
the influence ofΦK(M) on the bulkmodulus is muchmore complex and
related also to ΦE(M) and ΦV(M).

The functional forms ofΦE,ΦV, andΦK were described in our previous
paper19, and are expressed in terms of a Taylor series expansion of an
unknown even function. Therefore, they are even polynomials as a function
of themagnitude of themagneticmomentM. This functional form, share the
functional form of the Ginzburg-Landau approximation which is a sum of a
second-order and fourth-order terms25,39, which describes the Stoner model
by relating theorderparameter (magnetization) to themicroscopicproperties
of the Stonermodel, such as the band structure and exchange interactions. It
was shown in our previous paper19 that order 4maybe sufficient for FMBCC
Fe, or small deviations, but it could not cover all the different lattices,
demanding therefore additional terms. In agreement toour initial conclusion,
we observe indeed that at including the extended database in hexagonal
lattices Fe, aswell as all cubic andhexagonal lattices inCo,Cr,Mn, andNi, the
order 2 and order 4 terms cannot fit the DFT calculations, and they need at
least theM6 additional term.Themagnetic functionsproposedhere, aswell as
the Ginzburg–Landau model, suggest the existence of unknown close func-
tions, whose series expansion coefficients are the actual parameters fitted in
Eqs. (10 and 11), aswell as the so-calledα and βparameters,multipliers ofM2

andM4 respectively of Ginzburg–Landau model24,39.

ΦE Mð Þ ¼ εΦ2;0M
2 þ εΦ4;0M

4 þ εΦ6;0M
6 þ OðM8Þ

ΦV ðMÞ ¼ νΦ2;0M
2 þ νΦ4;0M

4 þ νΦ6;0M
6 þ OðM8Þ

ΦK ðMÞ ¼ κΦ2;0M
2 þ κΦ4;0M

4 þ κΦ6;0M
6 þ OðM8Þ

8><
>: ð10Þ

The ε, ν, κ parameters for Φ for all elements are displayed in Table 2.

Ferromagnetic contribution of the GUES
A corresponding analysis of the one performed forΩ0 in Fig. 3 can be now
performed for the ΩM distance-dependent function, which, together with
the ψ- functions, accounts for the contribution of the magnitudes of the

Fig. 4 |Magnetic dependentΦ-functions of theGUES.Magnetic
Q8Q8

functionsΦE,ΦV,
andΦK for Co, Cr, Fe,Mn, andNi. Note that the legend is common for all figures and
is indicated only in (a), and similarly, the x-axis is common for all figures but is only
indicated in (c).

Table 1 | Parameters of the non-magnetic contribution to Eg, Vg, and Kg for all elements considered, as expressed in Eq. (7)

Parameter Co Cr Fe Mn Ni

ε0;0 (eV) −5.2424 −3.6559 −5.0637 −3.7822 −4.7602

ε0;1 (eV) 2.0240 ∙ 10−1 −3.3921 ∙ 10−1 3.3743 ∙ 10−1 9.2740 ∙ 10−2 6.5844 ∙ 10−2

ν0;0 (Å
3) 10.2500 11.8260 10.1790 10.6160 10.9150

ν0;1 (Å
3) 4.8235 ∙ 10−1 −6.5017 ∙ 10−1 5.8467 ∙ 10−1 1.7742 ∙ 10−1 1.6214 ∙ 10−1

κ0;0 (Å
3) 6.1435 5.1831 5.6697 4.8012 6.4211

κ0;1 (Å
3) 1.8644 ∙ 10−2 −1.5159 ∙ 10−1 7.0577 ∙ 10−3 1.9911 ∙ 10−2 −2.0232 ∙ 10−2
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magnetic moments, corresponding to a ferromagnetic configuration. It is
worth noting that, indeed, the case of ferromagnetism is not defined by only
the contribution of ΩM and the ψ- functions, as explained above, since the
magnitude of the magnetic moment of each atom deeply modifies the
energy of the system, independently of the orientation of the magnetic
moment of the other atoms.

The ΩM functions are shown in Fig. 6 for all elements and the fitted
values for ΩM are in the supplementary material for all elements. As in the
case ofΩ0, theΩM functions are not uniquely defined since they are always
multiplied by ψ- functions, and therefore they can be scaled accordingly to
the ψ- functions. We have chosenΩM = 1 for the BCC case as in the case of
Ω0. Note that, for theΩM case, its value in the FCCcannot be scaled to 0 as in
the case ofΩ0. In this case, Co, Cr, andFe show similar behavior, which does
notmean that the ferromagnetic behaviormust be similar, since this goes in
combination with ψ- functions. On the other side, Mn and Ni have no
relationship with the other elements. Figure 7 shows the corresponding ψ-
functions, which together with ΩM finally define the ferromagnetic con-
figuration. There are no simple conclusions to extract from these functions,
which show complex and different behaviors. Nevertheless, an analysis of
the contribution of each function is performed later.

The functional forms ofΨE,ΨV andΨKwere described in our previous
paper19, and are expressed in terms of a Taylor series expansion of an
unknown even function. This proposed formulation is consistent with the
Heisenberg-Landau Hamiltonian used for magnetic cluster expansion
simulations, where the non-magnetic contribution of theGUES is related to
the NM cluster expansion coefficients, while theΦ-functions correspond to
the Landau coefficients and the Ψ-functions, represent the lattice magnetic
configuration described by the interlattice-site Heisenberg magnetic inter-
action parameters11.

ΨE Mð Þ ¼ εΨ2;0M
2 þ εΨ4;0M

4 þ εΨ6;0M
6 þ OðM8Þ

ΨV ðMÞ ¼ νΨ2;0M
2 þ νΨ4;0M

4 þ νΨ6;0M
6 þ OðM8Þ

ΨK ðMÞ ¼ κΨ2;0M
2 þ κΨ4;0M

4 þ κΨ6;0M
6 þ OðM8Þ

8><
>: ð11Þ

The ε, ν, κ parameters forΨ functions for all elements are displayed in
Table 3.

Fig. 5 | Distance dependent ΩM functions of the GUES. ΩM functions (Eq. (8))
describing the magnitude of the magnetic contribution for a Co, b Cr, c Fe, dMn,
and e Ni. Solid white dots indicate the ΩM = 1 value which correspond to BCC

lattice, solid square dots indicate FCC lattice, and solid hexagonal dots corresponds
to perfect HPC lattice.

Table 2 | Values of the ε, ν, κ parameters for Φ functions for Co, Cr, Fe, Mn and NiParameter (units)

Co Cr Fe Mn Ni

εΦ2;0 (eV/μb
2) −1.7858 ∙ 10−1 1.1071 ∙ 10−1 −9.6977 ∙ 10−2 −4.4597 ∙ 10−2 −1.3302 ∙ 10−1

εΦ4;0 (eV/μb
4) 3.0640 ∙ 10−2 −1.0951 ∙ 10−2 5.0060 ∙ 10−3 1.9821 ∙ 10−2 2.1430 ∙ 10−1

εΦ6;0(eV/μb
6) 6.7084 ∙ 10−4 5.1696 ∙ 10−4 4.5600 ∙ 10−4 −1.4126∙10−3 −2.1127 ∙ 10−2

νΦ2;0 (Å
3/μb

2) 1.5877 ∙ 10−1 1.1052 ∙ 10−1 1.8237 ∙ 10−1 2.0098 ∙ 10−1 2.1455 ∙ 10−1

νΦ4;0 (Å
3/μb

4) 1.1469 ∙ 10−2 5.3192 ∙ 10−2 3.9790 ∙ 10−3 4.6078 ∙ 10−3 3.6169 ∙ 10−2

νΦ6;0 (Å
3/μb

6) −3.5579 ∙ 10−4 −4.7307 ∙ 10−3 −1.4419 ∙ 10−4 8.4403 ∙ 10−5 −8.9006 ∙ 10−4

κΦ2;0 (Å
3/μb

2) 1.4354 ∙ 10−1 −9.4567 ∙ 10−3 1.4100 ∙ 10−1 1.3117 ∙ 10−1 1.3611 ∙ 10−1

κΦ4;0 (Å
3/μb

4) −1.9952 ∙ 10−2 2.0002 ∙ 10−2 −6.3934 ∙ 10−3 −1.3339 ∙ 10−2 −1.4006 ∙ 10−1

κΦ6;0 (Å
3/μb

6) 2.6598 ∙ 10−5 −1.5605 ∙ 10−3 −1.3328 ∙ 10−4 7.9923 ∙ 10−4 1.5588 ∙ 10−2
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Non-collinear contribution of the GUES
The next Figs. 8 and 9 show the ΩnC distance-dependent functions and θ
magnetic-dependent functions, which capture the contribution for non-
collinear magnetic moments, in the same way as previous figures
(Figs. 6 and 7) showed for the collinearmagneticmoments. Thefitted values
forΩnC are in the supplementary material for all elements. Similarly, as for
previous omegas, ΩnC is always scaled to obtain ΩnC = 1 for the BCC case.
Note that, for theΩnC case, its value in theFCCcannot be scaled to 0 as in the
case of Ω0. It is worth noting that ΩnC and θ are indeed fitted for AFM
configuration, where the non-collinearity is given by the angle αij between
magnetic moments with different orientations. Although the non-
collinearity is indeed driven by such angle, the magnitude of the non-
collinear contribution is defined ΩnC and θ functions.

With this, it is easy to see in the case of Cr, when both Figs. 8 and 9
are combined, that Cr has a strong antiferromagnetic contribution for
BCC, since ΩnC has its maximum value for BCC whereas ΘE is strongly
negative, explaining in this way the antiferromagnetic behavior of Cr in
its global ground state, which has−4.05 eV at 1.5 μb. This contrasts with
the energy of the ferromagnetic configuration of BCC, which is−3.37 eV
of the ferromagnetic contribution due to the positive values of ΨE at the
same magnitude of the magnetic moment. The same effect occurs for
Mn, due to positive values of ΨE and negative values of ΘE, providing a
cohesive energy of −3.79 eV for ferromagnetic configuration and
−3.83 eV for antiferromagnetic configuration in the BCC lattice. The
difference between both magnetic configurations is lower, in con-
cordance with the behavior of ΨE and ΘE in Mn (see Figs. 7 and 9). For
the same reason, the positive values ofΘE for Co, Fe, and Ni suggest that
the AFM configuration will not show lower values than the ferromag-
netic configuration, as indeed occurs.

Also, the behavior of ΘV (responsible for the volume of anti-
ferromagnetic configuration), shows a lower volume for the BCC lattice for
antiferromagnetic configuration than the non-magnetic configuration for
Cr and Mn, since this occurs for Cr at 11.75Å3 for the non-magnetic
configuration and 11.25Å3 for the antiferromagnetic configuration. In the
case of Mn, the lower energy of BCC for non-magnetic occurs at 11.25Å3

and 10.75Å3 for the antiferromagnetic configuration.
The functional formsofθE,θVandθKare expressed in termsof aTaylor

series expansion of an unknown even function and can be seen in Eq. (12).
Therefore, they are even polynomials as a function of the magnitude of the
magnetic moment M. The order 6 of the exponent is selected since addi-
tional terms does not provide significant improvement on the fitting,
avoiding also overfitting of the functions.

θE Mð Þ ¼ εθ2;0M
2 þ εθ4;0M

4 þ εθ6;0M
6 þ OðM8Þ

θV ðMÞ ¼ νθ2;0M
2 þ νθ4;0M

4 þ νθ6;0M
6 þ OðM8Þ

θK ðMÞ ¼ κθ2;0M
2 þ κθ4;0M

4 þ κθ6;0M
6 þ OðM8Þ

8>><
>>: ð12Þ

The ε, ν, κ parameters for θ functions for all elements are displayed in
Table 4:

Factor analysis and predictability of the GUES
This previous analysis, and the contribution of each term of Eq. (7) can be
also visualized bymeans of the factor analysis in Fig. 10. In this figure, it is
shown the values for Eg. Vg and Kg of the non-magnetic term of Eq. (7)
due to Ω0 and the corresponding ε0;0, ε0;1, ν0;0, ν0;1,κ0;0 and κ0;1 values,
which are shown with black dots at M = 0 for all cubic and hexagonal
lattices. Then, the magnetic term due toΦ-functions with blue dots, only
dependent on the magnitude of the magnetic momenta and it is insen-
sitive to magnetic ordering, without influence of other atoms, since it is
independent of the lattice, and therefore with the same value of any
lattice, with only variation with respect to magnitude of the magnetic
moment. It is followed by the contribution of theΩM·Ψ-functions, which
is dependent on the magnitude of the magnetic moment and the lattice,
which is shown with an area in red color, covering all lattices for each
magnitude of the magnetic moment. Finally, the ΩnC·Θ-functions con-
tribution for the non-collinear configuration, which is shown with a
green colored area, also covers different lattices. In the figure, the images
(a–e) are theEg factor contributions for Co, Cr, Fe,Mn andNi, the images
(f–k) are the Vg factor contributions for Co, Cr, Fe, Mn, and Ni, and
images (l–p) are the Kg factor contributions for Co, Cr, Fe, Mn, and Ni,
respectively. Note that the maximum values of the magnetic moments
vary in each element and magnetic configuration, since the DFT con-
vergence fails for lattices and configurations far from equilibrium, and
are discarded from the analysis.

From this factor analysis, it is clear that the energy of a system (through
the values of Eg. Vg, and Kg) is mainly defined by the non-magnetic con-
figuration, and slightly varies by the different magnetic configurations. The

Fig. 6 |Magnetic dependentΨ-functions of theGUES.Magnetic
Q9Q9

functionsΨE,ΨV,
andΨK for Co, Cr, Fe,Mn, andNi. Note that the legend is common for all figures and
is indicated only in (a), and similarly, the x-axis is common for all figures but is only
indicated in (c).
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second term in importance is due to the self-magnetic effect, i.e., the mag-
nitude of the magnetic moment of each atom (shown in blue color), irre-
spective of the lattice and spin orientation of the other atoms. This is
especially true forΦE(M) in Fe andCo atoms, which display negative values
around 1.5–2.5 μb, while for Cr, Mn, and Ni, the increase of magnetic
moment increases the ΦE contribution to energy. That does not mean that
Cr,Mn, andNi do not display a ground state atmagnetic configuration, but
the responsibility of such ground state corresponds to other functions, ΨE,
for the case of Ni (FM) and θE for Cr and Mn atoms, which display AFM
ground state. This may be related to the type of electron itinerancy, more
localized for Fe and Co due to the dominant influence of ΦE, and very
itinerant for Cr, Mn, and Ni where the ΨE and θE functions gain in
importance2. The direct link to the theory of itinerant-electron magnetism
from these results is not straightforward, and it is not the scope of this paper,
but indeed, the results obtained have indeed some similarities.

It is there clear an increase of volume (see blue line in Vg functions in
Fig. 10f–k) as the magnetic moment increases. Then, the FM and non-
collinear contribution (in red and green color, respectively), which adds in
general minor values of energy. This is the case, for instance, of Co and Ni,
where this distribution of factors ismore evident, as the blue line addsmuch

more influence. The case of Fe is intermediate, where the ferromagnetic
configuration may have a similar contribution as theΦ-functions. The Mn
and Cr, which have the above-mentioned antiferromagnetic behavior, are
clearly seen with theΩnC ·Θ functions, which lower the energy and volume
for such magnetic configuration.

In the subheading “Error analysis of the GUES”, an error analysis can
be seen inFig. 2 forNM,FM, andAFMconfigurationsusing thefittedEg,Vg,
andKg for each b=a; c=a;M

� �
combination for each element considered. It

is important to note that each fitted energy in that figure uses the numeri-
cally fitted Eg, Vg, and Kg individually. This means that, for instance, the
energy-volume relationship of the BCC lattice with M = 0 μb gives certain

values of Eg ;Vg ;Kg

D E
, and a FCC lattice at M = 2 μb provides at fitting

other Eg ;Vg ;Kg

D E
values, independent of each other. The excellent fitting

shown in Fig. 2 indeed showed that for any lattice and magnetic config-

uration, there are three values of Eg ;Vg ;Kg

D E
which predict the energy-

volume relationship. The added value of the GUES is the description of

interrelationships between such (a priori independent) Eg ;Vg ;Kg

D E

Fig. 7 |Distance dependentΩnC functions of theGUES.ΩnC functions (Eq. (8)) describing the non-collinearmagnetic contribution for aCo, bCr, cFe,dMnand eNi. Solid
white dots indicate the ΩnC = 1 value, which correspond to BCC lattice, solid square dots FCC lattice, and solid hexagonal dots corresponds to perfect HPC lattice.

Table 3 | Values of the ε, ν, κ parameters for Ψ functions for Co, Cr, Fe, Mn, and Ni

Parameter (units Co Cr Fe Mn Ni

εΨ2;0 (eV/μb
2) −1.7947 ∙ 10−2 2.3084 ∙ 10−1 −7.2440 ∙ 10−2 6.8071 ∙ 10−2 6.9126 ∙ 10−2

εΨ4;0 (eV/μb
4) 3.0857 ∙ 10−4 −1.9654 ∙ 10−2 9.2814 ∙ 10−3 −1.0339 ∙ 10−2 −2.6326 ∙ 10−2

εΨ6;0(eV/μb
6) −3.6364 ∙ 10−5 5.5721 ∙ 10−4 −3.5404 ∙ 10−4 5.4950 ∙ 10−4 2.9519 ∙ 10−3

νΨ2;0 (Å
3/μb

2) −2.2721 ∙ 10−1 5.1668 ∙ 10−1 −1.1556 ∙ 10−1 8.0046 ∙ 10−2 9.8746 ∙ 10−2

νΨ4;0 (Å
3/μb

4) 5.7501 ∙ 10−2 −1.4534 ∙ 10−1 1.7994 ∙ 10−2 −1.1988 ∙ 10−2 −3.1587 ∙ 10−2

νΨ6;0 (Å
3/μb

6) −4.4203 ∙ 19−3 1.7560 ∙ 10−2 −9.0400 ∙ 10−4 7.2805 ∙ 10−4 3.4671 ∙ 10−3

κΨ2;0 (Å
3/μb

2) −1.1007 ∙ 10−1 2.3675 ∙ 10−1 6.0516 ∙ 10−3 1.0087 ∙ 10−2 −1.7967 ∙ 10−2

κΨ4;0 (Å
3/μb

4) 2.7885 ∙ 10−2 −1.0318 ∙ 10−1 6.0184 ∙ 10−4 −6.3490 ∙ 10−3 6.3147 ∙ 10−3

κΨ6;0 (Å
3/μb

6) −1.7647 ∙ 10−3 1.3267 ∙ 10−2 −1.1180 ∙ 10−4 9.1394 ∙ 10−4 −5.0565 ∙ 10−4
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parameters for different lattices andmagnetic configurations. This has been
explained in above, describing each contribution and the functional form of
each of such contributions, allowing to see the interrelationship between all

Eg ;Vg ;Kg

D E
parameters at different lattices and magnetic configurations.

Therefore, the prediction of theGUESbyusingEq. (7) and the proposedΩ0,
ΩM and ΩnC, along with Φ-, Ψ-, and Θ-functions for each element, is

different from the ones using directly the fitted Eg ;Vg ;Kg

D E
. The error in

this case is logically larger (it cannot be better than the numerically fitted for
each case), but provides a deep insight into the different factors contributing
to the energy of the system and allows developing interatomic potentials, as

the one in ref. 19, initially for ferromagnetic configuration, andnowwith the
unifiedGUES proposed in this work, for non-collinear simulations, where a
preliminary test is shown in the following subheading.

Figure 11 shows the comparison between the DFT calculated cohesive
energy in the database corresponding to collinear DFT calculations and the
GUES cohesive energy at predicting Eg, Vg, and Kg parameters by using the
functions shown in Fig. 3 forΩ0 (with the parameters of Table 1), Fig. 5 for
Φ, Fig. 6 forΩM, Fig. 7 forΨ, Fig. 8 forΩnC, and Fig. 9 for θ, with anRMSEof
3.8 × 10−4 eV. This RMSE is indeed higher than the one with the indivi-
dually fitted Eg, Vg, and Kg parameters with a previously reported RMSE of
4.22 × 10−6 eV as shown in Fig. 2. The errors by different magnetic con-
figurations are reasonably close to each other. In particular, the RMSE for
non-magnetic is 6.23 × 10−4 eV, the RMSE for FM configuration is
4.05 × 10−4 eV, and the RMS for AFM is 2.59 × 10−4 eV. Although there are
some differences at different magnetic configurations, the differences are
small enough to be attributed to the numerical approach, rather than
concluding that theGUESmayhave incorrect contributions due to different
magnetic configurations. Also, the errors as a function of the magnitude of
the magnetic moment does not follow any trend, being similar in value for
all magnitudes of the magnetic moment, except for the highest values of
AFMfor Fe andMn,which have anRMSEof 7.99 × 10−3 eV.As pointed out
previously, the DFT calculations may have some convergence issues for
configurations very far from equilibrium, which explains the increase in
error. We conclude then that the predicted energies by the GUES show
reasonably good results for all NM, FM, and AFM for cubic and hexagonal
lattices and for all elements considered, considering especially the under-
standing that the GUES provides via the different contributions men-
tioned above.

Non-collinear calculations of the GUES
Theproposed formulation for theGUES is intended in thiswork tounify the
previously GUES formulation19, which had different functions for FM and
AFM configurations, making it impossible to transition between both
configurations, nor performnon-collinear calculations. In thiswork, the Eq.
(7) can be used to perform an initial check on the possibility of performing
non-collinear calculationswith theGUES,without the needof using Eq. (5),
where the use of ω0, ωM, and ωnC is formally needed. This is performed by
keeping the lattice configuration fixed for the non-collinearity as explained
in the subheading “Error analysis of the GUES”, where different magnetic
moment orientations are located in alternate (0,0,1) plane for cubic and
(0,0,0,1) plane for hexagonal lattices, with the αij angle rotating between 0°
and 180°. A similar lattice geometry with rotating magnetic moment in Fe
for BCC (B2-like magnetic structures) was used in ref. 46, where a con-
strained density functional for non-collinear magnetism is proposed and in
ref. 15 where a non-collinear magnetic atomic cluster expansion for iron is
proposed.

As stated before, in this work, the distance-dependent functions ω0,
ωM, and ωnC are not determined here, since additional work must be per-
formed in order to know their applicability for atomic coordinates outside
ideal positions. Such ideal positions are understood in this case for all lattices
considered, with fixed positions for all b=a; c=a

� �
cases for both cubic and

hexagonal lattices. In our previous work, ω0, ωM were indeed successfully
determined for Fe, where an extensive analysis was performed on trans-
formation paths, vacancies, stresses, A15 andC15 lattices, elastic properties,
dumbbell configurations, and γ-surfaces, demonstrating the existence of
such functions and their predictability. With this in mind, the values ofΩ0,
ΩM, andΩnC are known since theywerefitted for any lattice considered, and
it is kept constant if rotations of magnetic moments are the only variable.

The non-collinear behavior in the case of Fe has special interest since a
comparison can be performed with other approaches dealing with non-
collinear simulations. The potential energy surface of the FM to AFM
magnetic transformation, which is calculated as the ground state energy for
spin rotation of the central atom in B2-like magnetic structure, i.e., alter-
nating (0,0,1) planes, is displayed in Fig. 12a and the corresponding mag-
netic rotation energy barriers at constant magnetic moment is shown in

Fig. 8 | Magnetic dependent θ-functions of the GUES.Magnetic
Q10Q10

functions θE, θV,
and θK for Co, Cr, Fe, Mn, andNi. Note that the legend is common for all figures and
is indicated only in (a), and similarly, the x-axis is common for all figures but is only
indicated in (c).
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Fig. 12b. Such energy barrier is seen to be quite dependent on the angle
betweenmagnetic moments, as well as on their magnitudes. The results are
similar to those obtained in ref. 15. A relationship between the ground state
energy and correspondingmagneticmoment for BCCcan also be calculated
for the ground state cell parameter, andanalyze the variationof themagnetic
behavior from FM toAFM, as depicted in Fig. 12c. The ground state energy

increases from FM to AFM, while the magnetic moment accordingly. The
results are consistent with the results shown in ref. 46.

In order to fully analyse the behavior of non-collinear calculations in all
elements considered in this work, a set of non-collinear simulations con-
cerning Co, Cr, Fe, Mn, and Ni have performed DFT calculations with B2-
likd lattices for BCCCrandFe, L10-likemagnetic configuration for FCCMn

Fig. 9 | Contribution of each function to the GUES. Contribution
Q11Q11

of the non-
magnetic functions, magnetic, ferromagnetic, and non-collinear into Eg, Vg, and Kg

for Co, Cr, Fe, Mn, and Ni. Note that the legend is common for all figures and is

indicated only in (a), and similarly, the x-axis is common for all figures but is only
indicated in the bottom images.

Table 4 | Values of the ε, ν, κ parameters for θ functions for Co, Cr, Fe, Mn and Ni

Parameter (units Co Cr Fe Mn Ni

εθ2;0 (eV/μb
2) 1.7746 ∙ 10−1 −4.3157 ∙ 10−1 1.0062 ∙ 10−1 −3.9894 ∙ 10−2 1.8388 ∙ 10−1

εθ4;0 (eV/μb
4) −2.0576 ∙ 10−2 6.0322 ∙ 10−2 2.8541 ∙ 10−3 −3.7965 ∙ 10−3 −7.6768 ∙ 10−2

εθ6;0(eV/μb
6) 7.0767 ∙ 10−4 −3.3319 ∙ 10−3 −7.8403 ∙ 10−4 6.1270 ∙ 10−4 1.4894 ∙ 10−2

νθ2;0 (Å
3/μb

2) 1.0893 ∙ 10−1 −3.0320 ∙ 10−2 −5.7402 ∙ 10−2 −2.4103 ∙ 10−2 1.7092 ∙ 10−1

νθ4;0 (Å
3/μb

4) −4.3423 ∙ 10−2 −6.1457 ∙ 10−2 3.1727 ∙ 10−2 −9.6617 ∙ 10−4 −4.5446 ∙ 10−2

νθ6;0 (Å
3/μb

6) 1.0806 ∙ 10−2 8.6899 ∙ 10−3 −2.5282 ∙ 10−3 3.5872 ∙ 10−5 4.0124 ∙ 10−3

κθ2;0 (Å
3/μb

2) 6.7681 ∙ 10−2 4.9001 ∙ 10−2 −7.8558 ∙ 10−2 −1.4016 ∙ 10−2 −7.1282 ∙ 10−2

κθ4;0 (Å
3/μb

4) −6.8881 ∙ 10−2 −1.3026 ∙ 10−2 −2.3531 ∙ 10−3 4.3749 ∙ 10−3 3.4764 ∙ 10−2

κθ6;0 (Å
3/μb

6) 1.3164 ∙ 10−2 1.5704 ∙ 10−3 5.7457 ∙ 10−4 −5.6377 ∙ 10−4 −9.1676 ∙ 10−3
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and Ni, and be a Bh-like magnetic configuration for HCP Co. The same
AFM configuration described in the Methods heading is also applied here
where the spins rotate in different angles (30°, 45°, 90°, 120° 135° and 150°)
in alternate (0,0,1) planes for the cubic-based lattices and (0,0,0,1) base plane
for the hexagonal-based lattices, keeping the same magnitude of the mag-
netic moments in the cell. Note that the angles 0° and 180° correspond to
pure FM and AFM, respectively, and are already considered in the Results
heading.

The DFT vs. GUES calculations are shown in Fig. 13, where a rea-
sonably good fit is observed at varying themisorientation angles. The colors
correspond to different angles, where in this figure, the magnitude of the
magnetic moment is not explicitly indicated, but they actually vary from
0.4 μb to 2.7 μb approximately. The lattices and the type of rotation are
indicated in each image. The comparison of theDFT vs. GUES includes the
complete database created for theGUESfitting (depictedwithblackdots), in
order to visualize the performance of the GUES in non-collinear calcula-
tions as compared to the complete GUES predictive capability.

There are indeed some differences between the DFT and GUES cal-
culations, but the trends at varying the angle andmagnitude of themagnetic
moments are indeed correct anddisplay an error of similarmagnitude to the
one for pure FM and AFM calculations. This is especially relevant in this
work since this is the first data that is not used for the Ω-, Φ-, Ψ-, and Θ-
functions fitting, and they represent the first check that the formulation
proposed, so far, captures the non-collinear behavior, which needs to be
confirmed in future steps for other lattices and mixtures of magnetic
moments. More precisely, the RMSE of each case between the DFT and
GUES in the non-collinear calculations is 5.9 · 10−3 eV for Co, 3.7 · 10−2 eV
forCr, 1.1 · 10−3 eV for Fe, 8.6 · 10−3 eV forMn, and 6.0 · 10−3 eV forNi. The
errors are indeed one order of magnitude larger than the RMSE predicted
for the whole database reported previously of 3.8 · 10−4 eV in the previous
subheading “Factor Analysis and predictability of the GUES” for the NM,
FM, and AFM cases. This comes from the fact that the non-collinear DFT

calculations arenot included in thedevelopmentof theΩ0,ΩM,ΩnC, andΦ-,
Ψ-, and Θ-functions, but still the approach shows good predictability and
transferability between the initial FM and AFM cases to non-collinear case.
Additionally, the caseofCr showsa larger error compared toother elements.
An analysis on the errors of the fitted GUES (FM and AFM data) for Cr
around BCC shows larger errors as compared to other structures, which
explains such larger difference, and further investigation is required in this
element.

It is clear that further research is needed to improve the non-collinear
calculations, either considering additional exponents ofM in theΦ-,Ψ-, and
Θ-functions (up toM8,M10, or further) or in the angle dependence of theΘ-
functions, which controls the non-collinearity contribution, adding for
instance up to sin α

2

� �� �4
or further terms.

Discussion
This work represents a qualitative improvement of the initial proposedGUES
in ref. 19,where anewmagnetic interatomicpotentialwaspresented, basedon
ageneralizationof theuniversal equationof states able topredict themagnetic-
dependent energy of the magnetic 3 d transition elements. Such a magnetic
interatomic potential was developed only for FM configurations, while the
initial formulation did not allow for other forms of magnetism. Specifically,
the AFM configuration, also included in the GUES, was not described in the
magnetic interatomic potential developed for FM. In this work, theGUEShas
been modified in a way that both FM and AFM can be described under the
same formulation. This is actually done by including the non-collinear con-
figuration by adding the angles between different magnetic moments, which
indeed includes the AFM and any other magnetic configuration.With this, a
paramount improvement has beenpossible, since now the formulation allows
for ferromagnetic, ferrimagnetic, antiferromagnetic, paramagnetic, or any
non-collinearmagnetic configuration.Additionally, theGUESwaspostulated
only for Fe, where additional work for other elements had to be performed to
guarantee the applicability of this approach to other elements.

Fig. 10 | GUES predictions of the energy by using the fitted functions. DFT
calculated cohesive energy vs. GUES predicted cohesive energy with predicted Eg, Vg,
and Kg, for Co, Cr, Fe, Mn, and Ni, in non-magnetic, ferromagnetic, and

antiferromagnetic for all cubic- andhexagonal-based lattices. TheRMSE = 3.8 × 10−4 eV
corresponds to all data considered.

https://doi.org/10.1038/s41524-025-01783-3 Article

npj Computational Materials | _#####################_ 13

www.nature.com/npjcompumats


UNCORRECTED P
ROOF

Therefore, two main advances have been carried out in this work.
Firstly, the application of the GUES with other elements, namely the rest of
the magnetic 3 d transition metals Co, Cr, Mn, and Ni for cubic and hex-
agonal lattices, in addition to the extension of the case of Fe for hexagonal
lattices, whichwas not included initially. The results indicate that the GUES
indeed describes the energy of such elements, while the approach is con-
sistent within the Stoner model of band magnetism, the Ginzburg-Landau
approximation used in the magnetic cluster expansion method, as well as
the non-collinearmagnetismwithin theHeisenberg-LandauHamiltonians.
Although the GUES is not confirmed to other elements, the results suggest
that it can be applicable to other elements, especially metals, which share
similar characteristics withCo, Cr, Fe,Mn, andNi. Secondly, the unification
of all magnetic configurations in one formulation is demonstrated for FM
andAFMin all cases: a large variety of cubic andhexagonal (with all possible
deformations), and for all elements considered here. A preliminary
exploration of the possibility of predicting non-collinear simulations has
been performed for all elements. In order to carry out this, some restrictions
are imposed on the magnitude of the magnetic moments considered (with
different angles between them), which allowed to use the GUES using the
Ω0, ΩM, and ΩnC functions, without the need to develop formally the
interatomic potential. This must be done in order to run non-collinear
simulations and needs the description of the ω0, ωM, and ωnC distance-
dependent functions, which provide Ω0, ΩM, and ΩnC when they are eval-
uated for the set of distances of each lattice.

Additional workmust be performed in order to confirm the possibility
of running non-collinear simulations at finite temperature, which is the
ultimate goal of this potential, but the preliminary results are very moti-
vating and encourage to continue analysing this formulation as an alter-
native to other formulations where the non-collinear simulations are still
elusive.

Methods
DFT calculations and database
In order to analyse the existence of functions for the proposed unified
formulation, a non-collinear termhas been introduced, describing therefore
both FMandAFMconfigurations, in both cubic and hexagonal lattices. The
existence of such functions for Co, Cr, Mn, and Ni has been demonstrated
before, proving the robustness of the proposed formulation. Here, a
description of the database employed is presented.

A large database ofDFT calculations onCr, Co, Fe,Mn andNi systems
has been performed using Vienna Ab initio Simulation escribes the large
DFT database employed on Cr, Co, Fe, Mn and Ni systems has been per-
formed using Vienna Ab initio Simulation Package (VASP)47,48 using the
projector augmented-wave (PAW) method49 and the Perdew-Burke-
Ernzerhof generalized gradient functional50 with collinear spin polariza-
tion. The core configuration for the PAW potentials used in this paper was
[Ar]3d84s1 for Co, [Ar]3d54s1 for Cr, [Ar]3d74s1 for Fe, [Ar]3d64s1 for Mn,
and [Ar]3d94s1 for Ni. The calculations utilized a plane-wave cutoff energy
of 400 eV. Total energies were computed using a Γ-centered Monkhorst-
Pack mesh51 of k-points with a spacing of 0.16 Å⁻¹, corresponding to a
14 × 14 × 14 k-point grid for a two-atom BCC unit cell with a lattice para-
meter of 2.831 Å. Therefore, these calculations were performed similarly as
the ones in ref. 19 where additional calculations with larger k-mesh (mesh
spacing of 0.16 Å−1) were performed to check the accuracy for Fe. It is
assumed that good accuracy is reached in this work also for Co, Cr,Mn, and
Ni. In this regard, the computational parameters were selected based on
convergence tests performed for Fe in our previous study19, where a finer
k-mesh was tested to ensure sufficient accuracy. To maintain consistency
and allow direct comparison, the same settings were applied to Co, Cr, Mn,
and Ni. Given the similar electronic and magnetic properties of these
transition metals, the chosen parameters are expected to provide a com-
parable level of accuracy. Furthermore, a detailed convergence study using
similar computational parameters was conducted in our previous work on
high-entropy alloys from the Fe-Cr-Mn-Ni system52 which includes the
same elements studied here. Since these settings provided reliable results for

Fig. 11 | Non-collinear calculations for Fe, energy barriers, and ground states.
aContourplot of the FM toAFMspin rotationwith alternate (0,0,1) planes in B2-like
magnetic structure, b FM to AFM magnetic rotation energy barriers at constant
magnetic moment with alternate (0,0,1) planes in B2-like magnetic structure. In
both figures, α indicates the spin rotation angle from FM (0°) to AFM (180°),
c Ground state energy and corresponding magnitude of the magnetic moments for
FM to AFM transformation in B2-like magnetic structure with ell parameter
2.8561 Å.
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Fig. 12 | Non-collinear calculations for Co, Cr, Fe, Mn, and Ni. Comparison
between the DFT and GUES cohesive energies for the non-collinear configurations,
where the colors indicate the rotation angle as shown in the legend. The rotation
plane is indicated in each image. The complete set of non-magnetic, ferromagnetic,

and antiferromagnetic DFT vs predicted GUES cohesive energies are also displayed
in black dots for comparison purposes, and correspond to the same comparison of
Fig. 12. a Co HCP lattice, b Cr BCC lattice, c Fe BCC lattice, dMn FCC Lattice, and
e Ni FCC lattice.
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complex multicomponent systems, they can be considered well-suited for
the pure elements investigated in this study.

In order to know the energies of cubic-based structures, rectangular
cuboids corresponding to the relative positions (0,0,0) and (0.5,0.5,0.5) of
the cubic cell, and different b/a and c/a ratios, being a, b, and c are the three
lattice magnitudes of the corresponding body-centered orthorhombic
structure as seen in Fig. 4 (left-hand side). Similarly, for the hexagonal-based
structures, the relative positions (1/3,2/3,1/4) and (2/3,1/3,3/4) of the con-
sidered hexagonal cell, and different b/a and c/a ratios, being a, b, and c are
the three lattice magnitudes of the corresponding hexagonal close-packed
structure as seen in Fig. 4 (right-hand side). Note that a, b, and c will
correspond to lattice parameters of both cubic and hexagonal lattices, and
they will be referred accordingly.

The database then contains all combinations where c/a and b/a vary
independently, taking the values 0.7, 0.8, 0.9, 0.95, 1, 1.05, 1.1, 1.2, 1.3, 1.35,ffiffiffi
2

p
, 1.45, 1.5, 1.6 and 1.7 in the cubic case, while on the hexagonal case b/a

can take the values 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3 and 1.4 and c/a takes 1.4,

1.45, 1.5, 1.55, 1.6,
ffiffiffiffiffiffiffi
8=3

p
, 1.65, 1.7, 1.75, 1.8 and 1.85. In the case of the

hexagonal deformations, all possible b=a; c=a
� �

combinations are con-
sidered, but for the case of cubic deformations, due to the symmetry, only
half of them are considered (for instance, b=a ¼ 0:9; c=a ¼ 1:45

� �
is the

same lattice as b=a ¼ 1:45; c=a ¼ 0:9
� �

). Note that, in the cubic-based

structures b=a ¼ 1; c=a ¼ 1
� �

corresponds to pure BCC, while

b=a ¼ 1; c=a ¼ ffiffiffi
2

p� �
is the FCC structure. Also, a perfect HCP is while

b=a ¼ 1; c=a ¼
ffiffiffiffiffiffiffi
8=3

pD E
for the hexagonal-based structures. With this,

the number of different cubic lattices is 120, while the number of different
hexagonal lattices is 99. There is indeed a large variability of lattices and
interatomic distances covering ground states as well as structures very far
from ground state or the most common structures.

In addition to this, each of these 219 different lattices is calculated in 8
different volumes, namely 9.25Å3, 9.75Å3, 10.25Å3, 10.75Å3, 11.25Å3,
11.75Å3, 12.25Å3, and11.75Å3, covering in general all ground states for the
considered elements and crystal lattices. This represents 1752 different
altogether atomic configurations. Again, every of this 1752 atomic config-
urations is calculated in NM (with M = 0 μb), FM configuration at
M = 0.5 μb, 1 μb, 1.5 μb, 1.75 μb, 2 μb, 2.25 μb, 2.5 μb, 2.75 μb, 3.25 μb, and
AFM configuration (constrained magnetic calculations) with 9 magnitudes
of the magnetic moment spacing between 0.5 μb and 3.5 μb. The AFM
configuration will be " 0; 0; 0ð Þ;# ð12 ; 12 ; 12Þ

� �
of the cubic cell, where the

arrows indicate the spin orientation, and the numbers are the relative
positions of the rectangular cuboids. For the hexagonal-based structures, the
AFM configuration will be " 1

3 ;
2
3 ;

1
4

� �
;# ð23 ; 13 ; 34Þ

� �
. With this, the struc-

tures alternate spin-up—spin-down layers in the (0,0,1) plane for the cubic-
based lattices and (0,0,0,1) base plane for the hexagonal-based lattices.
Therefore, the BCC AFM would be a B2-like magnetic configuration, the
FCC would be a L10-like magnetic configuration, and the HCP would be a
Bh-like magnetic configuration.

In the AFM case, the magnitudes of the magnetic moments are not
strictly fixed due to the way VASP handles constrained calculations; how-
ever, the variation of energy as a function of magnetic moment is well
captured. To assess the effect of constraint strength, different penalty
parameters (denoted λ parameter in ref. 46) were tested, and while varia-
tions in total energy and magnetic moments were observed, the corrected
energy (total energy minus penalty energy) as function of λ between 1 and
5 eV/μb² remained a reliable measure of the system’s energy relative to its
magneticmoment in all cases. Therefore, in all constrained calculations, the
penalty parameter was set to 1 eV/μb². With this 33288 DFT calculations,
varying structure, volume, magnetic configuration, and magnetic moment
for each element have been performed, representing 166440 DFT calcula-
tions. Some of the calculations have convergence difficulties for combina-
tions of b=a; c=a;V ;M

� �
very far from the ground state (especially in the

case of AFM configuration). Therefore, some of them are discarded, and
replacedwith others closer to equilibrium, especially in the case ofNi, whose
cohesive energy increase very rapidly with increasing magnetic moment.

Data availability
The D.F.T. dataset used for the GUES fitting can be available from the
corresponding author on reasonable request
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