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, Jan S. Wrébel? & Duc Nguyen-Manh®*

Despite great efforts to study magnetic properties of 3d-transition metals from both fundamental and
applied interest, there exists no modelling approach that would be able to describe magnetic and
structural phase stability of all these elements on a unified formalism. In this work, we propose a
qualitative improvement of the Generalisation of the Universal Equation of States (GUES) that we
presented recently in a previous work developed and tested for cubic structures in Fe. The GUES is
now extended to other 3d-transition magnetic elements and crystal lattices, where now magnetic Co,
Cr, Mn, and Ni are considered, including both cubic and hexagonal structures, and also covering
ferromagnetic (FM) and antiferromagnetic (AFM) configurations. An extensive database has been
developed and used to fit all parameters and functions for all considered elements. The current GUES
unifies the two previous separate approaches for FM and AFM configurations, allowing for non-
collinear calculations, which are tested for Co, Cr, Fe, Mn and Ni. The approach is consistent with the
Stoner model of band magnetism and the Ginzburg-Landau approximation used in the magnetic
cluster expansion method, as well as with non-collinear magnetism described in the Heisenberg-
Landau Hamiltonians. Importantly, it also includes magneto-volume effects, which are important for
understanding defect properties in magnetic materials. This work permits considering the
development of a new class of magnetic interatomic potentials for non-collinear simulations based on
the approach proposed by the GUES. (The figures shown in this article can be seenin colour only in the

electronic version).

The presence of magnetism has a strong implication for structural stability
in a large variety of materials such as single-element magnetic transition
metals, steels and numerous other classes of functional materials and high-
entropy alloys for nuclear energy applications. Despite the crucial role of
magnetism in the aforementioned materials, modeling efforts to provide a
quantitative theory of the interplaying between magnetic and structural
properties have been notably lacking. In a pioneering work by Hasegawa
and Pettifor, the authors showed that the presence of magnetism stabilizes
the bee phase of iron. A theoretical treatment of itinerant electron mag-
netism that highlighted the importance of quantum mechanical description
of spin associated with electronic band structure from density functional

theory (DFT) calculations has been reviewed by Kubler’ within Stoner
formalism®. Using DFT calculations, the magnetic cluster expansion
method has been developed to parametrize the adiabatic magnetic energy
and investigate complex multi-interactions from electron spins*’ as well as
structural phase transition between BCC (Body Centered Cubic) and FCC
(Face Centered Cubic) phases of Fe’. A constrained non-collinear mag-
netism approach developed within DFT formulation has been employed by
Nguyen-Manh and co-workers to investigate the effect electron spin
orientation on irradiated defect configurations and structural phase tran-
sition in Fe and Fe-Cr disordered alloys™. A first ab-initio model con-
sidering the change in magnitude of magnetic moments in terms of
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temperature-induced longitudinal spin fluctuation for the exchange inter-
action parameters of the Hamiltonian for BCC-Fe and FCC-Ni has been
proposed by Ruban et al” and further investigated by Ma et al.*"’. A com-
bined Landau model with Heisenberg Hamiltonian has also been used for
magnetic cluster expansion spanning a broad range of alloy compositions,
and a large variety of chemical and magnetic configurations has been
developed for FCC Fe-Ni alloys''. Most recently, a great interest has been
paid for developing magnetic machine learning potentials using spin-
polarized ab-initio database'*"* with Heisenberg Hamiltonian to model
magnetic properties of Fe'’, extended deep learning DFT Hamiltonian for
magnetic superstructures'®"’, and using the Materials Project database to
study Mn-based stable magnetic materials'’. Therefore, the key motivation
of this paper is to propose a generalized formalism for investigating all
important magnetic 3 d transition elements (Co, Cr, Fe, Mn, Ni) from the
large constrained magnetic calculations DFT data base, and to propose an
approach which could systematically study magnetic properties for such 3 d
transition elements considering structural stability, non-collinear magnet-
ism, longitudinal spin fluctuation and magneto-volume effects on equal

footing.

In the scope of developing interatomic potentials for Molecular
Dynamic (MD) simulations with magnetic contribution, a novel approach
for magnetic interatomic potential for ferromagnetic Fe was proposed
recently"’ which was tested on transformation paths, vacancies, stresses, A15
and C15 lattices, elastic properties, dumbbell configurations and y-surfaces,
as well as predicting correctly the volume-magnetic moment relationship,
including low-spin configuration for low volumes and high-spin config-
uration for larger volumes in FCC, demonstrating the existence of such
functions and their predictability. The formulation makes use of the Gen-
eralized Universal Equation of States (GUES), which is based on the Uni-
versal Equation of States (UES) proposed by Rosé and Vinet™'.

The approach follows a different viewpoint as compared to other
attempts and formulations to simulate magnetism in molecular dynamics,
since it does not follow the classical embedded atom method (EAM)** or
some of their modifications via additional terms”** in line with the Stoner
model of band magnetism and the Ginzburg-Landau model. Neither the
many-body force potentials™”’ share the formulation with the GUES,
although it has some similarities with the non-collinear magnetic many-
body potentials based on the Heisenberg-Landau Hamiltonians® and the
inter-site magnetic interaction parameters. Some works have used Machine
Learning (ML) tools, showing the capability of this technique to incorporate
collinear magnetic configurations for atomistic simulations'**’, while others
opted for adding some neural network correction terms to the EAM
method'“. More recently, non-collinear magnetic atomic cluster expansions
were trained with collinear and non-collinear magnetic configurations for
iron, showing good predictability and transferability'”.

As stated in our previous work'”, the original UES established that there
a unique function E(V) that describes the evolution of the energy for all
solids with respect to volume variations:

e Y
E(V)=Ege ™ (1 + g) M

K,

where Egis the ground state energy, V, is the volume at the ground state, and
K, the corresponding volume scaling function. Such a result has been
extensively validated in the literature and widely applied to predict material
properties related to volume™ . Nevertheless, the UES is understood and
generally applied for the ground state, as well as logically its experimental
validation. The proposed GUES is more general and applies to any state,
including different magnetic configurations. In other words, the results
obtained in ref. 19 demonstrated, in the case Fe, that any crystal lattice in
non-magnetic (NM) configuration as well as in ferromagnetic (FM) or
antiferromagnetic (AFM) configurations, follows Eq. (1) if the crystal lattice
and magnetic configuration are maintained. As an illustrative example, a
deformed Body-centered cubic (BCC) lattice with dissimilar cell parameters

(a,b,c) (not strictly BCC as it is not cubic anymore) and a constant
magnetic moment M in ferromagnetic configuration, will follow Eq. (1) for
volume variations (therefore, with constant (b/a, c/a) ratios) with certain
Eg V,, and K, values. Such E, V,, and K, values are not the global ground
state, but they refer to metastable configurations (i.e. local ground states) of
such lattice and magnetic configuration. That means that for such a BCC
with constant (b/a, ¢/a) ratios and magnetic moment M in ferromagnetic
configuration, Eg is its minimum energy, which occurs at the volume Ve
Again, such E, and V, are not the (global) ground state energy and ground
state volume, but the local ones for such (b/a, ¢/a) structure.

The variables Eg, V,, and K, are therefore dependent on the magnetic
moment, magnetic configuration, and the lattice. Nevertheless, in view of
the development of an interatomic potential, a distance-dependent function
p (scaled distance) was proposed in ref. 19 to substitute the “lattice” for
“interatomic distances”:

=i )

where 7;; is the distance between atoms i and j and V is the atomic volume of
atom i according to the system volume. This variable p;; describes then the
set of distances of a certain lattice. Such a set of scaled distances between
atoms is different from one lattice to another, but the same for a certain
lattice under different volumes. Therefore, it can be used as a descriptive
variable of different configurations.

Finally, in this work, the expression of the energy E of the system with N
atoms as a function of volume V of such a system is expressed as:

N N V_ZNZI Vé(p.M) B N ;
E— ZE; (p,M)e Z,zlké(p.M) (1 I \4 Z%:i:l.‘(/g (p;\l)) (3)
=1 Kg (p, M

i=1
where V is the volume of the system, the p = (Pits PiPizs - - > Pings - - - and
M= (M,M,,M;,....,My,...), being p,; the scaled distance between
atom iand j (as defined in Eq. (2)) and M, the magnetic moment of atom j,
respectively. It is worth noting that the calculation of the energy E is now
more general than in our previous publication'’, which was defined to
provide the idea of the contribution to the energy of each individual atom, as
it occurs on MD simulations for the EAM approach. In a certain system,
these energy contributions were equal for an undistorted lattice under FM
configuration, and therefore the energy was correctly computed for the
analysed cases in ref. 19. Nevertheless, under the DFT approach, there is not
a sum of energy-per-atom, but only the total energy of the system is cal-
culated. Thus, in order to be more general in the current GUES, the equation
of the energy of the system is now revised. Additionally, with this functional
form, the energy dependence of the volume will always fulfill the UES as
shown in Eq. (1) for any atomic arrangement, including those with atomic
coordinates moving from ideal positions, as well as for different magnetic
moments and spin orientations.

In our previously published paper'’, even though a magnetic intera-
tomic potential for ferromagnetic configurations was developed, two main
aspects of that approach needed to be revisited in order to obtain a robust
approach for magnetism:

1) The GUES was proposed differently for ferromagnetic and anti-
ferromagnetic. In other words, the functions describing E,, V,, and K,
were different for different magnetic configurations. In this work, we
have unified the GUES, where the same formulation is applied for non-
magnetic, ferromagnetic, and antiferromagnetic configurations, where
the difference is the existence of different contributions in the same
formulation, rather than different parameters. This opens the door to
propose a formulation for non-collinear molecular dynamic
simulations.

2) The GUES was proved only for Fe in cubic structures, and a more
complete analysis in other elements needs to be carried out. In this case,
in addition to completing Fe for the hexagonal lattices, we have selected
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Cr, Mn, Co and Ni (all for cubic and hexagonal lattices), which cor-
respond to the previous and posterior atomic numbers in the periodic
table, also with a variety of ground states which corresponded to
magnetic configurations including non-magnetic, ferromagnetic and
antiferromagnetic in different BCC, FCC (Face Centered Cubic) and
HCP (Hexagonal Close Packed) lattices. Therefore, the unified
approach does not only refer to the magnetic state, as stated in the
previous point, but also to the crystal lattice in different elements, since
HCP structures are also validated under this approach, making the
GUES now applicable to hexagonal lattices.

Therefore, it is not the scope of this work to propose a new interatomic
potential, but to modify the GUES to include a non-collinear term, which
can include FM and AFM, opening the door to unify the formulation for any
magnetic configuration, and at the same time, test this approach with other
elements, in addition to Fe. These results will be the starting point for
developing interatomic potentials for robust magnetic molecular dynamics
simulations.

Results
Unified GUES
The unified formulations for different magnetic configurations are pre-
sented hereinafter, along with the magnetic and distance-dependent func-
tions which are therefore introduced (corresponding to previous point 1),
and the extension of the GUES to other elements is shown afterwards
(corresponding to previous point 2), making use of such unified
formulation.

In", the parameters of Eq. (3) E,, V,, and K, were defined as:

Ey(p, M) = E;(p) + ©p(M)) + % Wy <P,j>‘|’5 (Mi ‘ Mj)

Ve(p, M) = Vi (p) + @y (M) + j%wM (p,»j)\pv <M,- : Mj) )

K (p, M) = Kj(p) + Dy(M,) + ,% Wy (pl.}.) " (Mi . Mj>

where the subscript j#i represents all neighbor atoms of atom i. It is worth
noting that, formally, j = I,...,N with j#i runs over the whole system of N
atoms. An interatomic potential derived from the GUES will consider
logically the closest atoms and not all atoms in the system. In our previous
work, where an interatomic potential was derived only for the ferromagnetic
case in Fe, the cutoff distance was for p;< 40, which according to Eq. (2) is
approximately 7.7 A for the BCC case, corresponding to 10 nearest neigh-
bors or equivalently around 170 atoms. The functions with 0-subscript are
dependent on the distances only, but not on the magnetic moment nor
magnetic configuration. It is worth noting that the E,, Vyand K, parameters
does not include any angular dependency, as for instance the Modified
Embedded Atom Model (MEAM)***, since the predicted energy by using
only distance dependency between pair of atoms in our work provides
enough accuracy as it will be shown later (in subheading “Error analysis of
the GUES”). The ®@-functions are dependent only on the magnetic moment
magnitude M; of the atom being evaluated i. As pointed out, in the original
formulation, these functions were different for the FM and AFM. Similarly
occurred with the y-functions, which were different in the FM and AFM
cases, although in this case, they are multiplied by a function dependent on
the distance between atoms i and j. In this revised GUES, both ®-functions
and y-functions are now the same for FM and AFM cases. Irrespective of the
magnetic function, no orientation was needed as they were different
functions or formulations for FM and AFM, and the parameters M; and M;
were only the magnitude of the magnetic moments M; and M;, respectively,
but not information about the orientation of the magnetic moment was
required. Equation (4) has therefore been reformulated, taking the FM
configuration as a base case, where all magnetic moments are aligned, and
additional terms for non-collinear magnetic moments must be added. In

other words, the formulation in Eq. (4) remains the same for FM, to be
consistent with the original results, and the additional terms should be
dependent on the angle between different magnetic moments, with the only
condition that such terms become 0 for angles equal to 0 (i.e., the FM case).
The following formulation responds to such requirements and replaces Eq.
(4) to account for any magnetic configuration, rather than only the FM
configuration :

Ei(p, M) = Ej(p) + (M) + ,Xi: wu(py e (M- M) + e (py)©: (M, M) (sin(%)’

j#i

(M,» . Mj) + 12:; W, (p,,])@V (M, . Mj) (sin())’
(

. N
Ve (PvM) =V (P) +®y(M) + Y wy (P,‘j)\l’v
i

o)+ Sy (-0 o)

J#i

N
K, (p. M) = K (p) + (M) + 2wy (Pq)“l"l\’
i

©)
where the parameters Ej, Vi and K} are:
_ N
Ey(p) = €00 + €01 2 @ (Pg)
J¢l
, N
Vo(p) = voo + v Z Wo (sz) (6)
]il
, N
K (P) = Koo T Ko Z Wy (pij>
J#l

and w, and w,, are distance-dependent functions, which is common for the
three parameters functions E), Vi and K/ are as it can be seen in Eqgs. (5) and
(6). The values and physical meaning of the parameters ¢ ¢, & 1, V0> Vo 1>
Ko o and x; , is explained later (in subheading “Non-magnetic contributions
of the GUES”). The new w, in Eq. (5) (as compared to initial GUES
formulation) is another distance-dependent function, which scales the
influence of close atoms, decreasing with the interatomic distance. The
O®-functions, also new in this work, are also dependent on the magnitude of
the magnetic moments M; and M}, of atoms i and j, respectively. The angle
between magnetic moments M; and M; is denoted o, and it is introduced in
the term sin (%) . This term is the simplest function to account for magnetic
angular dependence, allowing also for the transition between the previous
FM and AFM formulations at'"’ and incorporating at the same time non-
collinear contributions. In other words, for the FM case, the collinear
magnetic moments do not contribute to the non-collinear extra terms, as
this term is equal to 0. Therefore, for pure collinear FM configurations, the
formulation is consistent with the previous interatomic potential. Also, in
the AFM configuration, only half of the atoms contribute to the non-
collinear terms, where previous ¥-functions in the AFM case at'’ (which
were initially different in our previous work to the ¥-functions for the FM
case) arise now as the addition of current ¥-functions and ©-functions,
multiplied by the corresponding distance dependence functions wy, and
W, respectively, in their respective atomic neighbors. For the non-collinear
(fully disordered magnetic moments), any atom can actually contribute to
each other in the non-collinear term. With this, the AFM configuration is,
mathematically, a particular case of the non-collinear configuration.

In addition to this, this term can be expressed as
sin(%)2 = %(1 - cos(ocij)), which can be related to the Heisenberg model
description of the angular contribution between different spins'. In such a
model, that contribution of the energy is multiplied by the distance-
dependent exchange interactions (usually denoted as J;;), which can be
related to the distance dependence functions w,,. in Eq. (5). Therefore, the
proposed formulation is consistent with Heisenberg model, but also with the
Ginzburg-Landau approximation’ which describes the FM contribution to
the energy in the form of even polynomials, as the ¥-functions actually
behave in our approach.
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Error analysis of the GUES

For this subheading, it is important to notice the difference between the
GUES and a magnetic interatomic potential (MIP) based on the GUES. The
GUES is a formulation, independent of the MIP, which describes the energy
of a system. The MIP is the set of motion equations that allows for MD
simulations. In the same way that a Heisenberg-Landau Hamiltonian is the
formulation for the energy, and a many-body potential based on the
Heisenberg-Landau Hamiltonian'!, is the actual interatomic potential for
MD simulations. Also, the Embedded Atom Model is the formulation, and
the Finnis-Sinclar potentials are the actual interatomic potentials®.

With this in mind, the distance-dependent functions ‘Uo(Pij)> w M(p,j)
and w,¢ (pl-j) do not need to be described at this point to prove the validity of
the GUES for different elements (they would need to be developed for MD
simulations). The database is constructed in a way that it can be separated in
Eq. (5) to allow for energy calculations in different structures. For a certain
structure, cubic or hexagonal, with lattice parameters (a, b, ¢) and a fixed
and constant magnitude of the magnetic moments with the AFM config-
uration as described in the previous subheading with alternate spin up—
spin down layers in the (0,0,1) or (0,0,0,1) for cubic and hexagonal-based
lattices, respectively, Eq. (5) can be rewritten as:

12
=
~

o

By (P, M) = €50+ €91 Qg + Pp(M) + Qg (M) + Q,cOp (M) (sin (5
V; P, M) = vy + vy, Qg + Py (M) + Qytry (M) + Q60 (M) (sin
K (P, M) = g0 + 16, Qg + Ppe(M,) + Qi (M) + Q004 (M) (Sin(%))z

(7)
where
Qy = % Wy (P,])
Qy = gwM (+)) ®)

Qe = Zjel‘ Wye (P;;)

and I’ denotes the neighbors with different spin orientation to atom i, with
the spin non-collinear angle denoted a. For a spin up atom i, the angle « in
the alternate spin up—spin down layers in the (0,0,1) or (0,0,0,1) for cubic
and hexagonal-based lattices, respectively, will be 0 for all other spin up
atoms, and 180 ° for all spin down atoms. With this, the atoms with the same
spin orientation to atom 7 will not have a contribution to the non-collinear
term, as they are multiplied by (sin(0))*. Therefore, the fitted values of Q,,.
are valid for any magnetic configuration from FM to AFM, as described in
the database (B2-like, L1,-like, and By-like structures for cubic and
hexagonal, respectively) with the « angle rotating between 0 ° and 180 °.

Therefore, the expressions of w,, w,,; and w,, are not the central point
in this paper, since they are actually the functions needed for the molecular
dynamics simulations, and will be considered in subsequent works. The
expression for Q;, Q) Q,- can be then expressed as a function of
(b/a,c/a), without the need of wy, w, and w,,, as well as ®-, - and O-
magnetic functions can be expressed in terms of M;* since for these func-
tions, the magnetic moment magnitudes are constant for each case, being in
that case M = <1\7I,-,]\7I,-,1\7Ii7 . 71\71” .. >

From the original proposal of the GUES in ref. 19, it was proved that, in
the case of Fe, for any fixed lattice and magnetic magnitude and config-

uration, there exist values of <Eg7 Ve K g> which describe the variation of

the energy by means of the atomic volume, following Eq. (1). These values
have been fitted in this work by all the elements considered, namely, Co, Cr,
Fe, Mn and Nij, for all cubic and hexagonal based lattices, with NM, FM and
AFM configurations. The predictions of the GUES by using this fitting are
shown in some specific cases in Fig. 1 for NM, FM, and AFM magnetic
configurations, as indicated in the figure. The figures show the DFT

calculated energies, and the corresponding function in Eq. (1), each of them
calculated after the corresponding fitting of <Eg, Ve K g>. Note that any

other case non-displayed in the figure (for the sake of clarity) has been
checked carefully and follows the same trend, concluding that, for any lattice

and magnetic configuration, there exist values of <Eg7 Vg,Kg> which

capture the variation of the energy by means of the atomic volume.

The complete comparison of the predictions for all data is shown in a
scatter plot with DFT data vs. GUES prediction in Fig. 2 by numerically
fitting individually for each lattice and magnetic moment the corresponding
set of E,, V, and K, parameters (including the data shown in Fig. 1). The
results support the validity of the GUES with an RMSE = 4.22 10~° eV (Root
Mean Squared Error) corresponding to all data considered, showing good
agreement between DFT and GUES prediction.

Non-magnetic contributions of the GUES
Once the reliability of the GUES in predicting energies is proven, it is now

the turn to analyse the <Eg, Vg,Kg> behavior of each case. The non-

magnetic interactions are considered first, which are the simplest case, and
allow constructing the subsequent magnetic contributions. It is expressed
in terms of Q for each of the elements (Eq. (8)), and correspond to the

DFT data with magnetic magnitude equal to 0. The fitted <Eg, Ve K g>

parameters which have been used in Fig. 1 (top illustration) using Eq. (1)
for Co, Cr, Fe, Mn, and Nj, are now displayed as a function of the ratios
(b/a,c/a) for cubic- and hexagonal-base lattices, whenever it corre-
sponds. The results are displayed in Fig. 3 for all elements, where the top
row corresponds to cubic structures and the bottom row corresponds to
hexagonal lattices, as depicted in Fig. 4. The fitted values for Q) are in the
supplementary material for all elements. It is worth noting that Q,
functions are not uniquely defined, since the non-magnetic contribution is
scaled with &g, €9,1, Vo,0- Vo,1> Ko,0 and x, ; parameters, which are shown in
Table 1. In this work, the Q selected so that its value in the FCC lattice
<b/a =1,¢c/a= ﬁ> equals to 0, and in the BCC lattice
(b/a=1,c/a=1) equals to 1. Therefore, the ), is the ground state
energy for non-magnetic configuration of the FCC lattice, whereas ¢; , +
€1 is the ground state energy for non-magnetic configuration of the BCC
lattice. Equivalently, vy o is the ground state volume of BCC, and vo o + vo 1
is the ground state of FCC. On the other hand, «o is related to the bulk
modulus B, ground state' since the following relationship applies:

Ey(p, M)V (p, M)

Bg(P,M) = K (P M)Z
g ’

)

which, for the BCC case, is B, =— %, while for the FCC case its bulk
_ (eo0te0,)(Mo0+Vo)

(Ko0+¥0 1 )2
similar behavior of Co, Fe, Mn, and Ni in the non-magnetic state in both
cubic and hexagonal lattices, where Cr is clearly dissimilar to the other
elements.

modulus ground stateis B, = . Figure 3 shows a relatively

Self-magnetic contribution of the GUES

Following the sequence of functions in Eq. (5), the magnetic functions
Op(M), Oy(M), and Og(M) for all elements are now considered. These
functions account for the contribution to the energy of an atom, irrespective
of the magnetic state of the rest of the atoms or their interaction with such an
atom. Particularly, it represents the nature of the magnetic moment, and not
the magnetic ordering of the system, resembling the on-site energy in the
Heisenberg-Landau Hamiltonian''. In other words, in a simulation cell with
all magnetic moments equal to 0 except for an atom, such an atom would
still induce an effect on E,, Vg, and K,, and therefore on the energy of the
system. Further, this contribution is also independent of the distances p
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e DFT calculated data

Cubic lattices: == (b/a =1,c/a =1)BCC
=== (b/a =0.8,c/a = 1.7)

Hexagonal lattices: == (b/a = 1,c/a = ,/8/3) HCP

— Fitted GUES Eq. (3)

(b/a=1,c/a =V2)FCC == (b/a=0.7,c/a = 1.35)

= (b/a =1.1,c/a = 1.6)
== (b/a =1.3,c/a = 1.4)

=== (b/a=0.6,c/a =1.8)
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Fig. 1 | GUES description of the volume-energy variation of Co, Cr, Fe, Mn, and
Ni for NM, FM, and AFM. Cohesive energy and fitting to the Universal Equation of
States as shown in Eq. (3) for different element, crystal lattices, and magnetic

configurations, as indicated in the figure. Note that x-axis is shifted and overlapped
for different pictures. Legend is common for all illustrations. BCC, FCC, and HCP
corresponding structures are indicated in the legend.

between such an atom and the other atoms, or in other words, the variation
on Eg, V,, and K, induced by the change in magnetic moment of an atom is
the same, irrespective of the crystal lattice and volume, since p and V'are not
part of @-functions.

Figure 5 shows all @-functions for all elements. In Fig. 5a, the
®i(M) function is depicted, showing its clear influence on the ferro-
magnetic behavior of each of the elements. For instance, Co and Fe
display minimum values of ®p(M) around 1.64p, and 2.35py,
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NM, FM, and AFM. DFT calculated cohesive energy vs. GUES predicted cohesive
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The RMSE = 4.22 10 ° eV correspond to all data considered.
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Fig. 3 | Distance dependent 2, functions of the GUES. Q, functions (Eq. (8))
describing the non-magnetic contribution for a Co, b Cr, ¢ Fe, d Mn, and e Ni. Solid
white dots indicate the Q, = 1 value, which correspond to BCC lattice, solid square
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dots indicate the Q= 0 which correspond to FCC lattice, and solid hexagonal dots
corresponds to perfect HPC lattice.

respectively, which is very close to the magnitude of the magnetic
moment providing the minimum energy in ferromagnetic configura-
tion, which occurs at 1.75 y;, and at 2.25 p,, respectively. Note that the
minimum energy (and the corresponding magnitude of the magnetic

moment) may not be calculated in the DFT database since the calcu-
lations are performed in fixed ¢/a and b/a ratios, volumes, and magnetic
moments. Also, Ni shows a minimum value of ®g(M) at 0.57 py,
whereas the minimum energy of the DFT database lies in 0.5 p, for the
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Fig. 4 | Magnetic dependent @-functions of the GUES. Magnetic functions @, Oy,
and @ for Co, Cr, Fe, Mn, and Ni. Note that the legend is common for all figures and
is indicated only in (a), and similarly, the x-axis is common for all figures but is only
indicated in (c).

ferromagnetic case. On the other hand, Mn and Cr show mainly positive
values of @(M), increasing in this way the energy of the system for
magnetic configurations, in agreement with the minimum energy for
ferromagnetic configuration, which occurs for M =0, ie, non-
magnetic. Similarly, ®y(M), which stands for the volume behavior
with magnetic moment, has a very constantly increasing value with
magnetic moment for all elements. This means that the increase of
magnitude of the magnetic moment also increases the volume at which
the minimum energy occurs. This is a common feature in the DFT
database for all elements considered, where indeed the non-magnetic
ground state has a lower volume than magnetic configurations. Other
previous results confirm this tendency*'"*, where volume-dependent
energy shows also larger volumes for FM and AFM configurations, as
compared to NM state. The influence of @ (M) is much more subtle
since it is related to the bulk modulus B, through Eq. (9). It is worth
noting that every lattice (defined by the set of distances p) and magnetic
moment M has a corresponding bulk modulus. Following this equation,
the influence of @k (M) on the bulk modulus is much more complex and
related also to @g(M) and @ (M).

The functional forms of @g, @y, and Pk were described in our previous
paper"”, and are expressed in terms of a Taylor series expansion of an
unknown even function. Therefore, they are even polynomials as a function
of the magnitude of the magnetic moment M. This functional form, share the
functional form of the Ginzburg-Landau approximation which is a sum of a
second-order and fourth-order terms™”, which describes the Stoner model
by relating the order parameter (magnetization) to the microscopic properties
of the Stoner model, such as the band structure and exchange interactions. It
was shown in our previous paper”’ that order 4 may be sufficient for FM BCC
Fe, or small deviations, but it could not cover all the different lattices,
demanding therefore additional terms. In agreement to our initial conclusion,
we observe indeed that at including the extended database in hexagonal
lattices Fe, as well as all cubic and hexagonal lattices in Co, Cr, Mn, and Nj, the
order 2 and order 4 terms cannot fit the DFT calculations, and they need at
least the M® additional term. The magnetic functions proposed here, as well as
the Ginzburg-Landau model, suggest the existence of unknown close func-
tions, whose series expansion coefficients are the actual parameters fitted in
Egs. (10 and 11), as well as the so-called a and f8 parameters, multipliers of M*
and M respectively of Ginzburg-Landau model*"”.

Op(M) = e3,M? + £ ,M* + eg,M°® + O(M°®)
Oy (M) = V5 M> + v{ M* + vg M® + O(M®)
Qi (M) = 15 M + K, M* + K5 M + O(M®)

(10)

The &, v, x parameters for ® for all elements are displayed in Table 2.

Ferromagnetic contribution of the GUES

A corresponding analysis of the one performed for 0, in Fig. 3 can be now
performed for the Q,, distance-dependent function, which, together with
the y- functions, accounts for the contribution of the magnitudes of the

Table 1 | Parameters of the non-magnetic contribution to Ey, V,;, and K for all elements considered, as expressed in Eq. (7)

Parameter Co Cr Fe Mn Ni

g0 (€Y) —5.2424 —3.6559 —5.0637 —3.7822 —4.7602

g4 (€Y) 2.0240-10" —3.3921-107" 3.3743-10" 9.2740-1072 6.5844-1072

Voo (A3 10.2500 11.8260 10.1790 10.6160 10.9150

01 (A3 4.8235-107" —6.5017-10~" 5.8467 - 107" 1.7742-107" 1.6214-107"

Koo (A9 6.1435 5.1831 5.6697 4.8012 6.4211

K04 (A 1.8644-1072 —1.5159-10"" 7.0577-107° 1.9911-1072 —2.0232-1072
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Fig. 5 | Distance dependent 0, functions of the GUES. Q; functions (Eq. (8))
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lattice, solid square dots indicate FCC lattice, and solid hexagonal dots corresponds
to perfect HPC lattice.

Table 2 | Values of the ¢, v, « parameters for @ functions for Co, Cr, Fe, Mn and NiParameter (units)

Co Cr Fe Mn Ni
30 (eV/uy) -1.7858- 107" 1.1071-10"" —-9.6977-107 —4.4597-10°2 —-1.3302-10""
30 @V/upY) 3.0640-102 -1.0951-102 5.0060-10°° 1.9821-1072 2.1430-10""
€20 (6V/HLY) 6.7084-10°* 5.1696-10~* 4.5600-10~* —-1.4126-10°° —-2.1127-1072
20 A%us?) 1.5877-107" 1.1052-107" 1.8237-107" 2.0098-10"" 2.1455-10""
130 B%up?) 1.1469- 107 5.3192-107 3.9790-10°° 4.6078-107° 3.6169-107
2o Bup) —3.5579-10* —4.7307-107° —1.4419-107* 8.4403-107° —8.9006-107*
1o (B/pp?) 1.4354-10°" —9.4567-10°° 1.4100-10°" 1.3117-107" 1.3611-10°"
2o (A/ppY) —1.9952-1072 2.0002- 102 —6.3934-10°° —1.3339-102 —1.4006-10""
2o B%u) 2.6598-10° —1.5605-10° -1.3328-10* 7.9923-10* 1.5588-1072

magnetic moments, corresponding to a ferromagnetic configuration. It is
worth noting that, indeed, the case of ferromagnetism is not defined by only
the contribution of 2, and the y- functions, as explained above, since the
magnitude of the magnetic moment of each atom deeply modifies the
energy of the system, independently of the orientation of the magnetic
moment of the other atoms.

The Q) functions are shown in Fig. 6 for all elements and the fitted
values for Q,, are in the supplementary material for all elements. As in the
case of (2, the Oy, functions are not uniquely defined since they are always
multiplied by y- functions, and therefore they can be scaled accordingly to
the y- functions. We have chosen 0, =1 for the BCC case as in the case of
0. Note that, for the Q,, case, its value in the FCC cannot be scaled to 0 as in
the case of . In this case, Co, Cr, and Fe show similar behavior, which does
not mean that the ferromagnetic behavior must be similar, since this goes in
combination with y- functions. On the other side, Mn and Ni have no
relationship with the other elements. Figure 7 shows the corresponding y-
functions, which together with 2, finally define the ferromagnetic con-
figuration. There are no simple conclusions to extract from these functions,
which show complex and different behaviors. Nevertheless, an analysis of
the contribution of each function is performed later.

The functional forms of ¥, Wy and Wy were described in our previous
paper'’, and are expressed in terms of a Taylor series expansion of an
unknown even function. This proposed formulation is consistent with the
Heisenberg-Landau Hamiltonian used for magnetic cluster expansion
simulations, where the non-magnetic contribution of the GUES is related to
the NM cluster expansion coefficients, while the @-functions correspond to
the Landau coefficients and the -functions, represent the lattice magnetic
configuration described by the interlattice-site Heisenberg magnetic inter-
action parameters''.

Ye(M) = &5 M* + & ,M* + & ;M°® + O(M®)
V(M) = v‘Z‘f’OM2 + vZOM‘* + v;‘fOMs + O(M®)
Y (M) = K;}:OMZ + KZOM4 + ;c‘étOM6 + O(M?®)

(11

The ¢, v, k parameters for ¥ functions for all elements are displayed in
Table 3.
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Fig. 6 | Magnetic dependent ¥-functions of the GUES. Magnetic functions ¥, Vv,
and Y for Co, Cr, Fe, Mn, and Ni. Note that the legend is common for all figures and
is indicated only in (a), and similarly, the x-axis is common for all figures but is only
indicated in (c).

Non-collinear contribution of the GUES

The next Figs. 8 and 9 show the Q,,¢ distance-dependent functions and 6
magnetic-dependent functions, which capture the contribution for non-
collinear magnetic moments, in the same way as previous figures
(Figs. 6 and 7) showed for the collinear magnetic moments. The fitted values
for Q,,c are in the supplementary material for all elements. Similarly, as for
previous omegas, (2,,¢ is always scaled to obtain 2, =1 for the BCC case.
Note that, for the Q,,¢ case, its value in the FCC cannot be scaled to 0 as in the
case of Q. It is worth noting that Q,c and 8 are indeed fitted for AFM
configuration, where the non-collinearity is given by the angle a; between
magnetic moments with different orientations. Although the non-
collinearity is indeed driven by such angle, the magnitude of the non-
collinear contribution is defined Q,,c and 0 functions.

With this, it is easy to see in the case of Cr, when both Figs. 8 and 9
are combined, that Cr has a strong antiferromagnetic contribution for
BCC, since Q,,¢ has its maximum value for BCC whereas O is strongly
negative, explaining in this way the antiferromagnetic behavior of Cr in
its global ground state, which has —4.05 eV at 1.5 .. This contrasts with
the energy of the ferromagnetic configuration of BCC, which is —3.37 eV
of the ferromagnetic contribution due to the positive values of ¥ at the
same magnitude of the magnetic moment. The same effect occurs for
Mn, due to positive values of Vi and negative values of O, providing a
cohesive energy of —3.79¢eV for ferromagnetic configuration and
—3.83 eV for antiferromagnetic configuration in the BCC lattice. The
difference between both magnetic configurations is lower, in con-
cordance with the behavior of ¥ and @ in Mn (see Figs. 7 and 9). For
the same reason, the positive values of @ for Co, Fe, and Ni suggest that
the AFM configuration will not show lower values than the ferromag-
netic configuration, as indeed occurs.

Also, the behavior of Oy (responsible for the volume of anti-
ferromagnetic configuration), shows a lower volume for the BCC lattice for
antiferromagnetic configuration than the non-magnetic configuration for
Cr and Mn, since this occurs for Cr at 11.75 A® for the non-magnetic
configuration and 11.25 A® for the antiferromagnetic configuration. In the
case of Mn, the lower energy of BCC for non-magnetic occurs at 11.25 Al
and 10.75 A® for the antiferromagnetic configuration.

The functional forms of g, 6y and O are expressed in terms of a Taylor
series expansion of an unknown even function and can be seen in Eq. (12).
Therefore, they are even polynomials as a function of the magnitude of the
magnetic moment M. The order 6 of the exponent is selected since addi-
tional terms does not provide significant improvement on the fitting,
avoiding also overfitting of the functions.

0,(M) = egOMZ + el M+ sg,OM"’ + O(M?)

By (M) = 8 (M? + v \M* + 42 M® + O(M®)
B (M) = 1 )M + i )M* + «§ \M® + O(M®)

(12)

The ¢, v, k parameters for O functions for all elements are displayed in
Table 4:

Factor analysis and predictability of the GUES
This previous analysis, and the contribution of each term of Eq. (7) can be
also visualized by means of the factor analysis in Fig. 10. In this figure, it is
shown the values for E,. V, and K, of the non-magnetic term of Eq. (7)
due to ), and the corresponding &, &, 1> Vo,0» Vo,1-K0,0 and ;| Values,
which are shown with black dots at M = 0 for all cubic and hexagonal
lattices. Then, the magnetic term due to @-functions with blue dots, only
dependent on the magnitude of the magnetic momenta and it is insen-
sitive to magnetic ordering, without influence of other atoms, since it is
independent of the lattice, and therefore with the same value of any
lattice, with only variation with respect to magnitude of the magnetic
moment. It is followed by the contribution of the Q,, ¥-functions, which
is dependent on the magnitude of the magnetic moment and the lattice,
which is shown with an area in red color, covering all lattices for each
magnitude of the magnetic moment. Finally, the Q,,-O-functions con-
tribution for the non-collinear configuration, which is shown with a
green colored area, also covers different lattices. In the figure, the images
(a—e) are the E, factor contributions for Co, Cr, Fe, Mn and Ni, the images
(f-k) are the V, factor contributions for Co, Cr, Fe, Mn, and Ni, and
images (1-p) are the K, factor contributions for Co, Cr, Fe, Mn, and Ni,
respectively. Note that the maximum values of the magnetic moments
vary in each element and magnetic configuration, since the DFT con-
vergence fails for lattices and configurations far from equilibrium, and
are discarded from the analysis.

From this factor analysis, it is clear that the energy of a system (through
the values of E,. V,, and K,) is mainly defined by the non-magnetic con-
figuration, and slightly varies by the different magnetic configurations. The
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Fig. 7 | Distance dependent Q,,c functions of the GUES. Q,¢ functions (Eq. (8)) describing the non-collinear magnetic contribution for a Co, b Cr, ¢ Fe,d Mn and e Ni. Solid
white dots indicate the Q,c =1 value, which correspond to BCC lattice, solid square dots FCC lattice, and solid hexagonal dots corresponds to perfect HPC lattice.

Table 3 | Values of the ¢, v, x parameters for ¥ functions for Co, Cr, Fe, Mn, and Ni

Parameter (units Co Cr Fe Mn Ni

£ (eV/up?) —1.7947-102 2.3084-10"" —7.2440-10°2 6.8071-102 6.9126-10°?
€f o (@V/up') 3.0857-10°* —1.9654 102 9.2814-107° —1.0339-1072 —2.6326-1072
el o(eV/ppY) —3.6364-10°° 5.5721-107* —3.5404-10°* 5.4950-10°* 2.9519-10°°
Vo R/ —2.2721-107" 5.1668-10" -1.1556-10"" 8.0046-102 9.8746-1072
Vio R/ 5.7501-10°° —1.4534-10"" 1.7994-1072 —1.1988-10? —3.1587-102
Veo R/upd) —4.4203-197° 1.7560- 102 —9.0400-10°* 7.2805-10°* 3.4671-10°°
K30 A/upd) —1.1007 - 10~" 2.3675-10" 6.0516-10° 1.0087 - 1072 —1.7967-1072
Kxo A% 2.7885-102 —-1.0318-10"" 6.0184-10* —6.3490-10°° 6.3147-107°
Keo A/upd) —1.7647-107° 1.3267-1072 -1.1180-107* 9.1394-107* —5.0565-107*

second term in importance is due to the self-magnetic effect, i.e., the mag-
nitude of the magnetic moment of each atom (shown in blue color), irre-
spective of the lattice and spin orientation of the other atoms. This is
especially true for (M) in Fe and Co atoms, which display negative values
around 1.5-2.5 i, while for Cr, Mn, and Ni, the increase of magnetic
moment increases the @ contribution to energy. That does not mean that
Cr, Mn, and Ni do not display a ground state at magnetic configuration, but
the responsibility of such ground state corresponds to other functions, Vg,
for the case of Ni (FM) and 6 for Cr and Mn atoms, which display AFM
ground state. This may be related to the type of electron itinerancy, more
localized for Fe and Co due to the dominant influence of @, and very
itinerant for Cr, Mn, and Ni where the ¥y and 6y functions gain in
importance”. The direct link to the theory of itinerant-electron magnetism
from these results is not straightforward, and it is not the scope of this paper,
but indeed, the results obtained have indeed some similarities.

It is there clear an increase of volume (see blue line in V functions in
Fig. 10f-k) as the magnetic moment increases. Then, the FM and non-
collinear contribution (in red and green color, respectively), which adds in
general minor values of energy. This is the case, for instance, of Co and Ni,
where this distribution of factors is more evident, as the blue line adds much

more influence. The case of Fe is intermediate, where the ferromagnetic
configuration may have a similar contribution as the ®-functions. The Mn
and Cr, which have the above-mentioned antiferromagnetic behavior, are
clearly seen with the Q,,¢ -O functions, which lower the energy and volume
for such magnetic configuration.

In the subheading “Error analysis of the GUES”, an error analysis can
be seen in Fig. 2 for NM, FM, and AFM configurations using the fitted Eg, V,,
and K, for each <b /a,c/a,M > combination for each element considered. It
is important to note that each fitted energy in that figure uses the numeri-
cally fitted Ey V, and K, individually. This means that, for instance, the
energy-volume relationship of the BCC lattice with M =0 y, gives certain

values of <Eg7 Ve K g>, and a FCC lattice at M =2 y;, provides at fitting

other <Eg, Vg K g> values, independent of each other. The excellent fitting
shown in Fig. 2 indeed showed that for any lattice and magnetic config-
uration, there are three values of <Eg, Ve K g> which predict the energy-
volume relationship. The added value of the GUES is the description of
interrelationships between such (a priori independent) <Eg, Vg, K g>
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Fig. 8 | Magnetic dependent 6-functions of the GUES. Magnetic functions 6, 6y,
and 0 for Co, Cr, Fe, Mn, and Ni. Note that the legend is common for all figures and
is indicated only in (a), and similarly, the x-axis is common for all figures but is only
indicated in (c).

parameters for different lattices and magnetic configurations. This has been
explained in above, describing each contribution and the functional form of
each of such contributions, allowing to see the interrelationship between all

<Eg, Ve, K g> parameters at different lattices and magnetic configurations.

Therefore, the prediction of the GUES by using Eq. (7) and the proposed Qy,
Qp and Q,, along with @-, V-, and O-functions for each element, is

different from the ones using directly the fitted <Eg7 Ve, K g>. The error in

this case is logically larger (it cannot be better than the numerically fitted for
each case), but provides a deep insight into the different factors contributing
to the energy of the system and allows developing interatomic potentials, as

the one in ref. 19, initially for ferromagnetic configuration, and now with the
unified GUES proposed in this work, for non-collinear simulations, where a
preliminary test is shown in the following subheading.

Figure 11 shows the comparison between the DFT calculated cohesive
energy in the database corresponding to collinear DFT calculations and the
GUES cohesive energy at predicting E,, V,, and K parameters by using the
functions shown in Fig. 3 for Q, (with the parameters of Table 1), Fig. 5 for
®, Fig. 6 for Qyy, Fig. 7 for ¥, Fig. 8 for Q,,¢, and Fig. 9 for 6, with an RMSE of
3.8x10~*eV. This RMSE is indeed higher than the one with the indivi-
dually fitted E,, V,, and K, parameters with a previously reported RMSE of
422 x107°eV as shown in Fig. 2. The errors by different magnetic con-
figurations are reasonably close to each other. In particular, the RMSE for
non-magnetic is 6.23x10™*eV, the RMSE for FM configuration is
4.05x 10™* eV, and the RMS for AFM is 2.59 x 10™* eV. Although there are
some differences at different magnetic configurations, the differences are
small enough to be attributed to the numerical approach, rather than
concluding that the GUES may have incorrect contributions due to different
magnetic configurations. Also, the errors as a function of the magnitude of
the magnetic moment does not follow any trend, being similar in value for
all magnitudes of the magnetic moment, except for the highest values of
AFM for Fe and Mn, which have an RMSE of 7.99 x 10 eV. As pointed out
previously, the DFT calculations may have some convergence issues for
configurations very far from equilibrium, which explains the increase in
error. We conclude then that the predicted energies by the GUES show
reasonably good results for all NM, FM, and AFM for cubic and hexagonal
lattices and for all elements considered, considering especially the under-
standing that the GUES provides via the different contributions men-
tioned above.

Non-collinear calculations of the GUES

The proposed formulation for the GUES is intended in this work to unify the
previously GUES formulation'’, which had different functions for FM and
AFM configurations, making it impossible to transition between both
configurations, nor perform non-collinear calculations. In this work, the Eq.
(7) can be used to perform an initial check on the possibility of performing
non-collinear calculations with the GUES, without the need of using Eq. (5),
where the use of wy, wyp, and w,,c is formally needed. This is performed by
keeping the lattice configuration fixed for the non-collinearity as explained
in the subheading “Error analysis of the GUES”, where different magnetic
moment orientations are located in alternate (0,0,1) plane for cubic and
(0,0,0,1) plane for hexagonal lattices, with the «;; angle rotating between 0°
and 180°. A similar lattice geometry with rotating magnetic moment in Fe
for BCC (B2-like magnetic structures) was used in ref. 46, where a con-
strained density functional for non-collinear magnetism is proposed and in
ref. 15 where a non-collinear magnetic atomic cluster expansion for iron is
proposed.

As stated before, in this work, the distance-dependent functions w,,
wyy, and w,,c are not determined here, since additional work must be per-
formed in order to know their applicability for atomic coordinates outside
ideal positions. Such ideal positions are understood in this case for all lattices
considered, with fixed positions for all (b/a, c/a) cases for both cubic and
hexagonal lattices. In our previous work, w,, wss were indeed successfully
determined for Fe, where an extensive analysis was performed on trans-
formation paths, vacancies, stresses, A15 and C15 lattices, elastic properties,
dumbbell configurations, and y-surfaces, demonstrating the existence of
such functions and their predictability. With this in mind, the values of ,,
Qyp, and Q,,c are known since they were fitted for any lattice considered, and
it is kept constant if rotations of magnetic moments are the only variable.

The non-collinear behavior in the case of Fe has special interest since a
comparison can be performed with other approaches dealing with non-
collinear simulations. The potential energy surface of the FM to AFM
magnetic transformation, which is calculated as the ground state energy for
spin rotation of the central atom in B2-like magnetic structure, ie., alter-
nating (0,0,1) planes, is displayed in Fig. 12a and the corresponding mag-
netic rotation energy barriers at constant magnetic moment is shown in
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indicated only in (a), and similarly, the x-axis is common for all figures but is only
indicated in the bottom images.

Table 4 | Values of the ¢, v, « parameters for 6 functions for Co, Cr, Fe, Mn and Ni

Parameter (units Co Cr Fe Mn Ni

PGS 1.7746-107" -4.3157-107" 1.0062-107" —-3.9894-102 1.8388-10°"
€4 o @V/up') —2.0576-10°° 6.0322-10°° 2.8541-10°° —3.7965-10°° —7.6768-10°
€2 o(eV/pp?) 7.0767-10* -3.3319:10°° —7.8403-10* 6.1270-10°* 1.4894-1072
Ao (A2 1.0893-10" —3.0320-10°? —5.7402-10°* —2.4103-10°° 1.7092-10"
Vg o (B’ —4.3423-10°2 —6.1457-102 3.1727-10°° —9.6617-10"* —4.5446-102
e (A%up?) 1.0806-102 8.6899-10°° —2.5282-10°° 3.5872-10°° 4.0124-10°°
1§ o (A%up?) 6.7681-10°2 4.9001-10°? —7.8558-102 —1.4016-10°° —7.1282-10°2
19 o Ay —6.8881-10°2 —-1.3026-102 —2.3531-10°° 4.3749-10°° 3.4764-10°°
2o AR 1.3164-1072 1.5704-10°° 5.7457-10* —5.6377-10* —9.1676-10°°

Fig. 12b. Such energy barrier is seen to be quite dependent on the angle
between magnetic moments, as well as on their magnitudes. The results are
similar to those obtained in ref. 15. A relationship between the ground state
energy and corresponding magnetic moment for BCC can also be calculated
for the ground state cell parameter, and analyze the variation of the magnetic
behavior from FM to AFM, as depicted in Fig. 12c. The ground state energy

increases from FM to AFM, while the magnetic moment accordingly. The
results are consistent with the results shown in ref. 46.

In order to fully analyse the behavior of non-collinear calculations in all
elements considered in this work, a set of non-collinear simulations con-
cerning Co, Cr, Fe, Mn, and Ni have performed DFT calculations with B2-
likd lattices for BCC Crand Fe, L1,-like magnetic configuration for FCC Mn
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Fig. 10 | GUES predictions of the energy by using the fitted functions. DFT
calculated cohesive energy vs. GUES predicted cohesive energy with predicted Eg, Vg,
and K, for Co, Cr, Fe, Mn, and Nj, in non-magnetic, ferromagnetic, and

antiferromagnetic for all cubic- and hexagonal-based lattices. The RMSE = 3.8 x 10 * eV
corresponds to all data considered.

and Ni, and be a By-like magnetic configuration for HCP Co. The same
AFM configuration described in the Methods heading is also applied here
where the spins rotate in different angles (30°, 45°, 90°, 120° 135° and 150°)
in alternate (0,0,1) planes for the cubic-based lattices and (0,0,0,1) base plane
for the hexagonal-based lattices, keeping the same magnitude of the mag-
netic moments in the cell. Note that the angles 0° and 180° correspond to
pure FM and AFM, respectively, and are already considered in the Results
heading.

The DFT vs. GUES calculations are shown in Fig. 13, where a rea-
sonably good fit is observed at varying the misorientation angles. The colors
correspond to different angles, where in this figure, the magnitude of the
magnetic moment is not explicitly indicated, but they actually vary from
0.4, to 2.7 p, approximately. The lattices and the type of rotation are
indicated in each image. The comparison of the DFT vs. GUES includes the
complete database created for the GUES fitting (depicted with black dots), in
order to visualize the performance of the GUES in non-collinear calcula-
tions as compared to the complete GUES predictive capability.

There are indeed some differences between the DFT and GUES cal-
culations, but the trends at varying the angle and magnitude of the magnetic
moments are indeed correct and display an error of similar magnitude to the
one for pure FM and AFM calculations. This is especially relevant in this
work since this is the first data that is not used for the Q-, @-, Y-, and ©-
functions fitting, and they represent the first check that the formulation
proposed, so far, captures the non-collinear behavior, which needs to be
confirmed in future steps for other lattices and mixtures of magnetic
moments. More precisely, the RMSE of each case between the DFT and
GUES in the non-collinear calculations is 5.9 - 107 eV for Co, 3.7 - 107> eV
forCr,1.1- 102 eV for Fe, 8.6 - 10 eV for Mn, and 6.0 - 10 eV for Ni. The
errors are indeed one order of magnitude larger than the RMSE predicted
for the whole database reported previously of 3.8 - 107* eV in the previous
subheading “Factor Analysis and predictability of the GUES” for the NM,
EM, and AFM cases. This comes from the fact that the non-collinear DFT

calculations are not included in the development of the Qy, Qns, 2, and ©-,
V-, and ©-functions, but still the approach shows good predictability and
transferability between the initial FM and AFM cases to non-collinear case.
Additionally, the case of Cr shows alarger error compared to other elements.
An analysis on the errors of the fited GUES (FM and AFM data) for Cr
around BCC shows larger errors as compared to other structures, which
explains such larger difference, and further investigation is required in this
element.

It is clear that further research is needed to improve the non-collinear
calculations, either considering additional exponents of M in the @-, -, and
O-functions (up to M®, M"°, or further) or in the angle dependence of the ©-
functions, which controls the non-collinearity contribution, adding for
instance up to (sin (%) )4 or further terms.

Discussion

This work represents a qualitative improvement of the initial proposed GUES
inref. 19, where a new magnetic interatomic potential was presented, based on
ageneralization of the universal equation of states able to predict the magnetic-
dependent energy of the magnetic 3 d transition elements. Such a magnetic
interatomic potential was developed only for FM configurations, while the
initial formulation did not allow for other forms of magnetism. Specifically,
the AFM configuration, also included in the GUES, was not described in the
magnetic interatomic potential developed for FM. In this work, the GUES has
been modified in a way that both FM and AFM can be described under the
same formulation. This is actually done by including the non-collinear con-
figuration by adding the angles between different magnetic moments, which
indeed includes the AFM and any other magnetic configuration. With this, a
paramount improvement has been possible, since now the formulation allows
for ferromagnetic, ferrimagnetic, antiferromagnetic, paramagnetic, or any
non-collinear magnetic configuration. Additionally, the GUES was postulated
only for Fe, where additional work for other elements had to be performed to
guarantee the applicability of this approach to other elements.
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Therefore, two main advances have been carried out in this work.
Firstly, the application of the GUES with other elements, namely the rest of
the magnetic 3 d transition metals Co, Cr, Mn, and Ni for cubic and hex-
agonal lattices, in addition to the extension of the case of Fe for hexagonal
lattices, which was not included initially. The results indicate that the GUES
indeed describes the energy of such elements, while the approach is con-
sistent within the Stoner model of band magnetism, the Ginzburg-Landau
approximation used in the magnetic cluster expansion method, as well as
the non-collinear magnetism within the Heisenberg-Landau Hamiltonians.
Although the GUES is not confirmed to other elements, the results suggest
that it can be applicable to other elements, especially metals, which share
similar characteristics with Co, Cr, Fe, Mn, and Ni. Secondly, the unification
of all magnetic configurations in one formulation is demonstrated for FM
and AFM in all cases: a large variety of cubic and hexagonal (with all possible
deformations), and for all elements considered here. A preliminary
exploration of the possibility of predicting non-collinear simulations has
been performed for all elements. In order to carry out this, some restrictions
are imposed on the magnitude of the magnetic moments considered (with
different angles between them), which allowed to use the GUES using the
Qp, OQpp, and Q,¢ functions, without the need to develop formally the
interatomic potential. This must be done in order to run non-collinear
simulations and needs the description of the w,, wyy, and w,,c distance-
dependent functions, which provide Qo, Qx4 and Q,,c when they are eval-
uated for the set of distances of each lattice.

Additional work must be performed in order to confirm the possibility
of running non-collinear simulations at finite temperature, which is the
ultimate goal of this potential, but the preliminary results are very moti-
vating and encourage to continue analysing this formulation as an alter-
native to other formulations where the non-collinear simulations are still
elusive.

Methods

DFT calculations and database

In order to analyse the existence of functions for the proposed unified
formulation, a non-collinear term has been introduced, describing therefore
both FM and AFM configurations, in both cubic and hexagonal lattices. The
existence of such functions for Co, Cr, Mn, and Ni has been demonstrated
before, proving the robustness of the proposed formulation. Here, a
description of the database employed is presented.

A large database of DFT calculations on Cr, Co, Fe, Mn and Ni systems
has been performed using Vienna Ab initio Simulation escribes the large
DFT database employed on Cr, Co, Fe, Mn and Ni systems has been per-
formed using Vienna Ab initio Simulation Package (VASP)"* using the
projector augmented-wave (PAW) method” and the Perdew-Burke-
Ernzerhof generalized gradient functional® with collinear spin polariza-
tion. The core configuration for the PAW potentials used in this paper was
[Ar]3d%s’ for Co, [Ar]3d°4s' for Cr, [Ar]3d’4s’ for Fe, [Ar]3d%4s’ for Mn,
and [Ar]3d’4s' for Ni. The calculations utilized a plane-wave cutoff energy
of 400 eV. Total energies were computed using a I'-centered Monkhorst-
Pack mesh®" of k-points with a spacing of 0.16 A”, corresponding to a
14 x 14 x 14 k-point grid for a two-atom BCC unit cell with a lattice para-
meter of 2.831 A. Therefore, these calculations were performed similarly as
the ones in ref. 19 where additional calculations with larger k-mesh (mesh
spacing of 0.16 A™') were performed to check the accuracy for Fe. It is
assumed that good accuracy is reached in this work also for Co, Cr, Mn, and
Ni. In this regard, the computational parameters were selected based on
convergence tests performed for Fe in our previous study'’, where a finer
k-mesh was tested to ensure sufficient accuracy. To maintain consistency
and allow direct comparison, the same settings were applied to Co, Cr, Mn,
and Ni. Given the similar electronic and magnetic properties of these
transition metals, the chosen parameters are expected to provide a com-
parable level of accuracy. Furthermore, a detailed convergence study using
similar computational parameters was conducted in our previous work on
high-entropy alloys from the Fe-Cr-Mn-Ni system™ which includes the
same elements studied here. Since these settings provided reliable results for
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Fig. 13 | Illustration of the lattices employed for
the DFT calculations. Illustration of the cubic-
based (left) and hexagonal-based (right) structures
and their respective cell parameters.

complex multicomponent systems, they can be considered well-suited for
the pure elements investigated in this study.

In order to know the energies of cubic-based structures, rectangular
cuboids corresponding to the relative positions (0,0,0) and (0.5,0.5,0.5) of
the cubic cell, and different b/a and c/a ratios, being a, b, and c are the three
lattice magnitudes of the corresponding body-centered orthorhombic
structure as seen in Fig. 4 (left-hand side). Similarly, for the hexagonal-based
structures, the relative positions (1/3,2/3,1/4) and (2/3,1/3,3/4) of the con-
sidered hexagonal cell, and different b/a and ¢/a ratios, being a, b, and c are
the three lattice magnitudes of the corresponding hexagonal close-packed
structure as seen in Fig. 4 (right-hand side). Note that a, b, and ¢ will
correspond to lattice parameters of both cubic and hexagonal lattices, and
they will be referred accordingly.

The database then contains all combinations where ¢/a and b/a vary
independently, taking the values 0.7, 0.8, 0.9, 0.95, 1, 1.05, 1.1, 1.2, 1.3, 1.35,
/2,145, 1.5,1.6 and 1.7 in the cubic case, while on the hexagonal case b/a
can take the values 0.6, 0.7, 0.8,0.9, 1, 1.1, 1.2, 1.3 and 1.4 and c/a takes 1.4,
1.45, 1.5, 1.55, 1.6, \/8/‘3, 1.65, 1.7, 1.75, 1.8 and 1.85. In the case of the
hexagonal deformations, all possible <b/ a,c/ a> combinations are con-
sidered, but for the case of cubic deformations, due to the symmetry, only
half of them are considered (for instance, <b /a=09,c/a= 1.45> is the
same lattice as (b/a = 1.45,c/a = 0.9)). Note that, in the cubic-based
structures (b/a=1,c/a=1) corresponds to pure BCC, while
(b/a=1,c/a = «/2) is the FCC structure. Also, a perfect HCP is while

<b/ a=1,c/a=+/8/ 3> for the hexagonal-based structures. With this,

the number of different cubic lattices is 120, while the number of different
hexagonal lattices is 99. There is indeed a large variability of lattices and
interatomic distances covering ground states as well as structures very far
from ground state or the most common structures.

In addition to this, each of these 219 different lattices is calculated in 8
different volumes, namely 9.25 A% 9.75 A%, 10.25 A% 10.75 A%, 11.25 A,
11.75 A% 12.25 A%, and 11.75 A%, covering in general all ground states for the
considered elements and crystal lattices. This represents 1752 different
altogether atomic configurations. Again, every of this 1752 atomic config-
urations is calculated in NM (with M =0,), FM configuration at
M=0.5pp, 1y 15[y, 175 fp, 2 Hby 2.25 f, 2.5 W, 2.75 My, 3.25 pp, and
AFM configuration (constrained magnetic calculations) with 9 magnitudes
of the magnetic moment spacing between 0.5y, and 3.5 y,. The AFM
configuration will be (1 (0,0,0), | (,1,1)) of the cubic cell, where the
arrows indicate the spin orientation, and the numbers are the relative
positions of the rectangular cuboids. For the hexagonal-based structures, the
AFM configuration will be (1 (1,2,1),] (2,1,3)). With this, the struc-
tures alternate spin-up—spin-down layers in the (0,0,1) plane for the cubic-
based lattices and (0,0,0,1) base plane for the hexagonal-based lattices.
Therefore, the BCC AFM would be a B2-like magnetic configuration, the
FCC would be a L1,-like magnetic configuration, and the HCP would be a
By-like magnetic configuration.

In the AFM case, the magnitudes of the magnetic moments are not
strictly fixed due to the way VASP handles constrained calculations; how-
ever, the variation of energy as a function of magnetic moment is well
captured. To assess the effect of constraint strength, different penalty
parameters (denoted A parameter in ref. 46) were tested, and while varia-
tions in total energy and magnetic moments were observed, the corrected
energy (total energy minus penalty energy) as function of A between 1 and
5eV/p,” remained a reliable measure of the system’s energy relative to its
magnetic moment in all cases. Therefore, in all constrained calculations, the
penalty parameter was set to 1 eV/p,”. With this 33288 DFT calculations,
varying structure, volume, magnetic configuration, and magnetic moment
for each element have been performed, representing 166440 DFT calcula-
tions. Some of the calculations have convergence difficulties for combina-
tions of (b/a, c/a, V, M) very far from the ground state (especially in the
case of AFM configuration). Therefore, some of them are discarded, and
replaced with others closer to equilibrium, especially in the case of Ni, whose
cohesive energy increase very rapidly with increasing magnetic moment.

Data availability
The D.E.T. dataset used for the GUES fitting can be available from the
corresponding author on reasonable request
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