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Abstract

Collisions between particles in a low density plasma are described by the Fokker—Planck collision operator. In applications, this
nonlinear integro-differential operator is often approximated by linearised or ad-hoc model operators due to computational cost
and complexity. In this work, we present an implementation of the nonlinear Fokker—Planck collision operator written in terms
of Rosenbluth potentials in the Rosenbluth—-MacDonald-Judd (RMJ) form. The Rosenbluth potentials may be obtained either by
direct integration or by solving partial differential equations (PDEs) similar to Poisson’s equation: we optimise for performance
and scalability by using sparse matrices to solve the relevant PDEs. We represent the distribution function using a tensor-product
continuous-Galerkin finite-element representation and we derive and describe the implementation of the weak form of the collision
operator. We present tests demonstrating a successful implementation using an explicit time integrator and we comment on the
speed and accuracy of the operator. Finally, we speculate on the potential for applications in the current and next generation of

kinetic plasma models.
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1. Introduction

A low density plasma is one that can be accurately described
by the one-point particle distribution function F(r, v, 7). The
distribution function provides us with the number of particles
aur,v,t) = Fyr,v,1) d°rd’v of species s at a time ¢ in the
phase space volume around the phase space position (r, v), with
r the particle position and v the particle velocity. An equa-
tion for the time evolution of the distribution function may be
obtained from the BBGKY hierarchy [1], which converts an
N-body Hamiltonian system describing a plasma or gas into a
statistical description. The resulting equation has the form

OF, Zse OF s

-VF; E B)-
8t+v .+ms(+v><)aV

=) Cw [Fy Fel,

ey

where the left-hand side of the equation is the Vlasov operator,
accounting for the acceleration of particles by the large-scale
electromagnetic fields. The Boltzmann collision operator on
the right-hand side of the equation accounts for the interactions
of particles of species s with local small-scale electromagnetic
fields generated by interactions between particles of species s’
at the same position r. Here, m; is the species mass, Z; is the
species charge number, e is the unit charge, and E and B are
the electric and magnetic fields, respectively. Equation (I) is
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solved with the boundary condition that F(v) — 0 as [v] = oo
and an appropriate boundary condition in r.

If the interaction cross section is chosen to be the 1/r elec-
trostatic potential, then the collision operator becomes the well-
known Fokker—Planck collision operator [2} 3,4} 5], which we
introduce here using the form due to Landau:

Css’ [FS’FS’] =
Yss O g [Fy(V)OF, Fyv)0Fy Py (2)
my OV Ovov m; OV my OV ’
where
_2nZ2Zy%e* InAy 3)
Vs = ( 47r60)2 ,
with In Ay the Coulomb logarithm [2} 31 14} 5]],
g=Iv-v )

and f d*v' denotes a definite integral over all v'. Note that it is
common to write §2g/0vov = (Ig> —gg)/g>, withg = v—v and
I the identity matrix. The operator (2) is widely used in plasma
physics and magnetic confinement fusion studies [4} I5]. De-
spite the complex integro-differential structure of the operator,
the Landau form of the Fokker-Planck operator (2) possesses
four key properties that we note. First, the collision operator
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conserves particle density, i.e.,

fcxs' [Fy, Fyl d3V =0. 5)

Second, the collision operator conserves the total momentum in
a collision, i.e.,

f (myv Cy [Fy, Fyl+mgv Cys [Fy , FDd’v=0.  (6)
The same is true for the total energy:

1 2 1 2 3
—m|V|" Cyg [Fs, Fgl+ =mg|v|” Cys[Fy, Fs]|ld’v
f(z sIvl [ ] > vl [ ] o

=0.

Finally, Boltzmann’s H-theorem applied to same-species colli-
sions [5] proves that the entropy production

So=- [mF culr R dvz0, ®)
with equality if and only if F is a Maxwellian distribution de-

scribed by the local density ny, mean velocity ug, and tempera-
ture T, i.e.,

2
FstMszL’Sexp —(V us) R ©)]
w32 Vi Ve, s

with v s = V2T /m;.

Implementing the nonlinear Fokker—Planck collision oper-
ator numerically is challenging because of the nonlinear and
integro-differential nature of the operator. For a given distri-
bution function F;, we must carry out a series of difficult in-
tegrals to find the coefficients of the operator. Whilst previous
authors have implemented the nonlinear Fokker—Planck colli-
sion operator, see, e.g., [0, [7, 18, 9 [10} (11} 12} [13]], including
implementations of the underlying Boltzmann operator [14],
it is more typical to either (i) write down an ad-hoc diffusive
model operator which may be solved rapidly, yet still has the
conservation or H-theorem properties desired for the physics of
interest [15} [16} [17| [18]]; or (ii) use asymptotic expansions in
physics parameters to linearise the kinetic equation (including
both the collision operator and the convective left hand side)
around a known Maxwellian distribution function for use in
a specific application (e.g., transport theory or collisional clo-
sures [4) |5, [19, 20]]). Such a linearised model that solves for
small perturbations to F is often referred to as a 6F model, in
contrast to full-F models that aim to solve for the entire distri-
bution function without linearisations.

In applications relating to hot plasma turbulence on closed
magnetic field lines, collisional relaxation timescales are typi-
cally long compared to the nonlinear turnover time of the tur-
bulent eddies: energy is injected into the turbulence at velocity
scales comparable to the thermal speed, and energy is dissi-
pated at much smaller velocity scales set by velocity diffusion
via inter-particle collisions. When the dissipation scale is well
separated from the injection scale — near-collisionless plasma

turbulence — details of the velocity-space dissipation mecha-
nism do not affect the large-scale turbulent transport of interest.
In these situations, a linearised Fokker—Planck operator or an
ad-hoc model operator is an appropriate and relatively inexpen-
sive operator that captures the dissipation of fine velocity-space
structure [[16}[17]].

Systems with closed magnetic field lines are known to be
approximately in thermal equilibrium because the system is ap-
proximately closed [20} 21]], meaning that the distribution func-
tion is never far from the Maxwellian around which the colli-
sion operator is usually linearised. However, in certain applica-
tions, the distribution function of the plasma may be far from
Maxwellian: for example, in beam-driven plasmas [22l [23]], or
in the scrape-off layer of a tokamak plasma [24} 25} 261 277} 28]].
In the latter example, this is due to the presence of the diver-
tor plate or limiter [29], which intercepts the field lines at the
edge of the plasma and so makes the system open, preventing
local thermal equilibrium. In addition, hot particles may transit
rapidly from the hot, closed-magnetic-field-line region of the
plasma to the open magnetic field lines at the edge where the
plasma is expected to be cooler, potentially resulting in a bi-
modal distribution of particle energies: the steady state distri-
bution is not known. Therefore, it is not clear whether or not a
model or linearised collision operator is adequate for modelling
the plasma on open field lines. The only rigorous choice is the
nonlinear Fokker—Planck operator.

In this paper we describe the implementation of the non-
linear Fokker—Planck operator appropriate for use in a drift-
kinetic [30] model of a magnetised plasma. We will choose
a higher-order continuous-Galerkin (C°) finite-element repre-
sentation for the distribution function to permit a spectrally-
accurate polynomial representation whilst retaining the ability
to describe boundary layers in velocity space. This representa-
tion does not attempt to guarantee positivity of F;. The special-
isation to drift-kinetics allows us to consider only gyrotropic
distribution functions, which, due to rapid gyromotion around
the field line, are independent of the gyrophase angle ¢ that
measures the position of the particle in the plane perpendicu-
lar to the magnetic field. We support F = F (v, v, ), with the
cylindrical velocity space coordinates (v, v, , %) defined by
V-€

tand = — s (10)
V.

VHZV'b, e
1

v, = |V - V||b|,

or equivalently,
V=VHb+VleL, (11)

with e, = (cose; — sine,). The basis vector b = B/|B| is the
unit vector in the direction of the magnetic field. The vectors e;
and e; are orthogonal to b and satisfy
b-elxezzl, el-b=0, e2-b=0. (12)
The numerical implementation described in this paper en-
sures the near-exact satisfaction of the conservation proper-
ties (3)-(7) by achieving high accuracy with the weak formula-
tions and adequate numerical resolution. To avoid carrying out
costly numerical integration in v’ in the whole of the velocity



space, as required by the definition (Z), we use the Rosenbluth—
MacDonald-Judd (RMJ) form of the collision operator [3],
given in the next section, where the velocity integrals are rewrit-
ten as Rosenbluth potentials: the Rosenbluth potentials may be
obtained by solving elliptic PDEs using the higher-order finite-
element method, with boundary conditions obtained by direct
integration using the formal definitions of the Rosenbluth po-
tentials at the limits of the velocity space. This numerical strat-
egy optimises the scheme for scalability.

We emphasise that the novel contribution of this work is
the demonstration that higher-order finite-elment methods such
as those used by mature computational fluid dynamics frame-
works, e.g., [31]], can achieve a scalable, conservative imple-
mentation of the nonlinear Fokker—Planck collision operator.
Higher-order finite-element methods which can achieve accu-
racy by refinement of both element size and polynomial order,
h-p refinement, should be considered as numerical methods for
models within plasma physics [32]. The remainder of this pa-
per is structured as follows. In the next section, we write the
collision operator in the RMJ form. In section [3] we obtain the
weak-form representation of the problem that we will imple-
ment numerically. In section ] we prescribe numerical-error-
correcting terms to ensure that conservative properties (3)-(7)
are satisfied to machine precision in the time advance. In sec-
tion[5]we provide results from numerical tests of our implemen-
tation. In section [6] we discuss the outlook for the use of the
operator in a production code. [Appendix Al [Appendix B|and
contain useful results pertaining to the calculation

of the Rosenbluth potentials.

2. RMJ] form of the collision operator

The operator in the RMJ form [3] in (v, v,) coordinates is
most usefully written in terms of collisional fluxes:

o, 1 a
Co [Fs,Fyl= a_ + ———.I), (13)
v vy ovy

where the fluxes are defined by

. (0F; Gy OF, 8*Gy . OHy
F||=7‘%(6°6G§ OF, 0Gs _yMsp? ) (14)
nmy 6v|| 6VH (9VJ_ BvLav“ mg (9\/”
and
Yss (0OFs 0*°Gy  O0F;0*°Gy . mg _ OHy
r, = + -2—F, , (15
T om? (6\1 ovdv, vy v,? my =~ Ovy (15)
and the Rosenbluth potentials are
Go¥) = f Fe(V)g &V (16)
and Py
HAV)szV) S (17)
8

In the drift-kinetic limit the largest piece of the distribution
functions are independent of gyroangle [4], i.e., Fs = Fs(v,vy)

and Fy = Fy(v),vy). In terms of (v, v,) coordinates, for gy-
rotropic distributions the Rosenbluth potentials simplify to

Gy = fw jo‘w 4U1/2E(m)FS/(v|'|,v’l)v’l av' dvy, (18)
and
Hy = f ) fo ) 4UTPK(m)F o (v, vV, dvidv),  (19)
where
U=U@,ve,v,v)) = (VH —v"|)2+(m +V))%, (20)

and
, 4v V',
m = mV Vi,V Vi) = Uy, v, v, v’ @l

and we have used the definitions of the complete elliptic integral
of the first and second kinds,

/2 1
K(m) = f — df (22)
0 1—msin®6
and »
T
E(m) = f V1 — msin® 6 d6, (23)
0
respectively.

2.1. Finding elliptic problems for the Rosenbluth potentials

As noted in the original derivation by Rosenbluth, MacDon-
ald, and Judd [3]}, the potentials defined by equations (I6) and
may also be defined as the solutions of the elliptic prob-
lems

*G 1 0 oG
77 2 v, &) =2m, 24
6v||2+vL6vL (vLévl) (24
and 5
0°H 1 0 o0H
S (Wil PP} 25
6v||2+vl6vl (”am) T (25)

Given a known F, we recognise the Poisson’s equation for the
Rosenbluth potential H, and the biharmonic equation for G.
Obtaining the Rosenbluth potentials through an elliptic solve
is potentially numerically advantageous compared to evaluat-
ing the formal definitions directly, see, e.g., and (I7). This
is because several algorithms with O (Nz) orO <N2 In N2) com-
plexity for solving Poisson equations are known [33| [34, 35|
36], where N is of order the number of points in the array
that represents one of the velocity dimensions, whereas a direct
evaluation of the formal definition leads to a scaling of O (N4)
due to the need to evaluate an integral with a kernel function
that is a function of (v, v_, vﬂ, V).

In practice, for a finite simulation domain, boundary condi-
tions for the elliptic solve must be supplied on the bounding
surfaces where vy = £V} and v, = V,, with V}; the maximum
[vyl on grid, and V, the maximum v, on grid. This necessi-
tates O (N 3 ) operations to obtain the boundary data through di-
rect integration using the formal definition of the appropriate



Rosenbluth potential. Parallelisation over many processes may
be able to alleviate the cost of obtaining boundary data, as this
part of the calculation is embarrassingly parallel.

Having motivated the use of sparse elliptic solvers to find
the Rosenbluth potentials, it remains to formulate the appro-
priate PDEs for the derivatives of the Rosenbluth potentials
appearing in the fluxes (I4) and (I5). We choose to solve
for the derivatives of the Rosenbluth potentials directly: this
avoids derivatives in the scheme higher than second order,
which improves numerical accuracy. Henceforth, we will also
refer to the derivatives of the Rosenbluth potentials as Rosen-
bluth potentials. First, we introduce the shorthand notation
Gz() = 82G/8v||2, G()2 = 82G/6VL2, G]] = 62G/6v“6vl,
Hyy = 0H/0v|, and Hy; = 0H/dv,. Direct differentiation of
equations (24) and (23) yields the required differential defini-
tions of the Rosenbluth potentials. Taking care to write the re-
sults in forms that are easy to integrate by parts through the
identity
1 0G

-, 26
v, ov, (26)

0*G 1 0 oG
2 - 7 |y =
.2 v v, \ “ov,
and making liberal use of equations (24) and (23)), we find that
useful equations for the Rosenbluth potentials derived from G

are

2 1 2
0 G;o 1 0 ( 6G20) 6 , 27
6VH Vi [)vL 6vl 6v||2
62611 1 0 oG, G O*H
— 2|y ZZU) 2L s , 28
av? " v, v,y ( T v, v Ovovy (28)
and
82G02 1 9 ( 8G()2) 4G,
w2 vidvi\ Tav. ) W2
V|| vV, 0vy Vi vy (29)
2 9 ( OH\ 20H 4H 2G
v, ovy VLBVL vidvy v v

Note that we must obtain H via (23) to make use of equations

and (28). Equation (29) also requires the solution to (27).
For the derivatives of H, we similarly obtain the PDEs

PHy 1 0 0H, OF
-2 = —4n, 30
o2 - v, Ov, ( o, "avu (30)
and
0’Hy, 1 0 O0Hy '\ Hy OF
SR Vi U B R 31
2 * v, Ov, (Vl ov, v ﬂBvL S

Note that we have written the elliptic equations 27), (28),
(29), (30), and (3T), in a form that will be amenable to integra-
tion by parts in the test-function analysis required for a weak-
form implementation. The numerical implementation of these
equations first uses equations (23), (30) and (31) to find H and
its derivatives from F. Then, equations (Z7), 28), and (29) may
be solved for the derivatives of G.

2.2. Evaluating the Rosenbluth potential boundary data
To obtain the boundary data required to solve the elliptic

problems (27), 28), 29), (30), and (3I), we must obtain for-
mal definitions for each of the required Rosenbluth potentials
by differentiating the formal definitions (I6) and (T7). We use
integration by parts to obtain formal definitions where the inte-
gration kernels are very similar to those appearing in the inte-
grals (T6) and (T7), which can be carried out with known meth-
ods once they are expressed in the forms (I8) and (19).
We start by computing

9Gy _ f F‘Y/(v’)% &PV = - f F‘Yr(v’)a—g &IV, (32
ov ov ov’

where we have used that dg/0v = —dg/0dv’. Using integration
by parts, and that Fy(v') — 0 as |[v/| = oo, we find that

Gy oFy 5,
v —f v gd’v. (33)
We can use the same method to find that
O0H, OF, 1
= = - dV 34
ov ov' g (34

Direct differentiation of equation [33]shows that

0*Gy OF g v—V
= = V. 35
ovov ov g v (33)

Equations (33) and (34) are vector equations and (33) is a
tensor equation. We extract the required results by taking dot
products with the unit vectors b and e, , noting that

0 0 0 e, xb 0

— —bh— —_ = 36
R T T (36)

Assuming that Fy = Fy(v)
Gy (v, vy), we find that

azF 4 4 4
f f o av, o ler Vidvidvy, (37

v "), which implies that Gy =

aVHavL
O0H,
o = an f o —Ino vidv,dv, (38)
GHS/
OHy o f f Gl Vv, 69)
62GS/ a ’ ’ 4 ’
=2 , (v” V”)IH() VLdVLdV”, (40)
6\)”
and
6v¢ - f f (vLIHl Vi) vidv dvy, (41)
where 1 -
I = by j:,,g (e, -€))dY, (42)
1 |
Ino = — — 4y, 43)

21 ) 58



‘l T . /
= f Sl gy (44)
). &
and

2
Iy = — f I el) av'. (45)

The main advantage of this formulation is that the integrands
have rather simple numerators and denominators. Note that
inspection of the integral (19) reveals that the integrand there
diverges logarithmically as m — 1 since K — In(4/ V1 —m)
as m — 1. The kernels {@3)-(@3) also diverge logarithmically
where v = vj and v}, = v,: this kind of divergence can be
handled numerically by a change of variables in the affected el-
ements [37]]. The functions Iy, Ixo, g1, and Iy, are evaluated

explicitly in|Appendix Al

3. Obtaining the weak formulation of the problem

We consider the collisional relaxation problem

oF _ ar 1
E = v, + w.Iy). (46)

v, c?v n

iny € [-V), VI, v € [0,V.] and ¢, where V| and V, are the
maximum values of vy and v, on the grid, respectively. The
solution F' = F(v,v,,t), and the fluxes I} = Ij(v, vy, 1) =
FH[F(V”, vi,H]land '}, = FJ_(V”, vy,t) = I'y [F(v”, vy,1)] are
functionals of F. We note that the fluxes in velocity space are
defined explicitly by equations and (I5). As we only con-
sider the self-collision operator in what follows, we neglect the
species index s in the following analysis where it is convenient
to do so.

We divide the domain into a rectangular grid of N,, = NyN,.
elements. We use N 1D elements in the vy direction and N,
1D elements in the v, direction. Each 2D element is a tensor
product of two 1D elements. On each 1D element we represent
the function with Lagrange polynomials of order N, using the
Ngr = N;p + 1 (normalised) grid points within the elements

Xj € {X0, X115 eer XNp—1> XNp s (C))]
with xp = —1 and xy, = 1 (Gauss—-Legendre—Lobatto quadra-
ture points [38]]) on elements that do not include v, = 0. On the
element including v, = 0, we take xy, = 1 but we use Gauss—
Legendre—Radau quadrature points to ensure that xy > —1 [38]].

The transformation between (vj, v, ) and the local coordinate
x") in the " 1D element is

() 4 (r)

V| =8,°X

| ” , v, = S(V)x(r) () (48)

where 5", cﬁr), s7 and ¢? are constants in each element

(labelled here by r) which may vary between elements, and
X" e [-1,1] for all r, except in the element that includes the
origin of v, , which has x” € (-1, 1].

3.1. The basis functions

We introduce tensor-product 2D basis functions

4 (v, v) = ¢ (g ), (49)

where the 1D basis functions are

DO () -). o0

with [; the j™ Lagrange polynomial on the element, v a place-
holder for either v or v, , and ® (v) the Heaviside function. Ex-
panding the solution in these basis functions, we write

F(v,vy) = Z Z Frp‘l)(rp)(vu’ Vi)

np ik

@7 ) = 1;(x” ) O (v -

) 1)
= Z Z F]kso( e (v.),
np ik
with
T r )
ij = F(v”( ()) Vi (x;{p )) (52)
Note that the basis functions have the cardinality property
(r) (2]
QOJ- < (xkp )) 6Jk6rp’ (53)

with 6 = 1if j = kand O if j # k. This choice of basis
functions does not guarantee positivity of the distribution func-
tion F — this scheme relies on spectral accuracy implied by the
higher-order polynomial representation to obtain convergence
to physical solutions. In particular, note that the interpolant for
F may be negative even if F' r{: are positive, due to oscillations
in the Lagrange polynomial basis functions.

3.2. The projection onto the polynomial basis

To project equation (46) onto the basis functions
CD(ij ) (v, v.), we multiply by the basis function @ (v, v,),
and integrate over velocity space corresponding to a single

2D element. The limits of this element are Vﬁ@ =y (xﬁg;)

V|(|[£) =V (Xz)q)), W=, (ng,)) and v\") = v, (xi)y)) respec-

tively. The strong-form equation (46) is then replaced by the
weak-form equation

@ W)

W a9 9
(I)m,, — vldvldvu
e

ViL (54)

()

(x>
or 1
fuuf (qs)( I ——(VLFL)) vidv,dv,
) V(A) 6VH Vi (9vl

Vi

valid for each of the 2D basis functions retained in the scheme.

3.3. The mass matrix

The left hand side of equation (54) takes the form

\(\({/) a F‘IS
Ol — @) qps) __Jk
ﬁ f‘(\) vldvldv“ Z MIImJMjnk ot ’ (55)

Vi




where we have defined the 1D parallel and perpendicular mass
matrices

o

My, = fm e e v dv
i (56)

(‘” f L (X)1; (%) dx,

and
2
M, = ﬁ) e () vidv,
Vir (57)

1
= s(j) f L, (x) I (%) (s(j)x + c(j)) dx,
-1

respectively. In equations (56) and (57) we have indicated for
completeness how to evaluate these matrix elements in terms of
Lagrange polynomials.

3.4. The nonlinear stiffness matrices for the collision operator

The form of the right hand side of equation (34) and the
forms of the fluxes, given by equations (T4) and (T3)), respec-
tively, suggest that we should integrate by parts to bring all
derivatives down to first order. Carrying out this step, we find
that for the parallel flux term

(11)

(_S)
1w (D(zm _
o vJ_va_dv” =
o

Vie

SmNe fv“’) (I)fg;;)(vﬁg,VJ_)FH(V”U,VJ_) vidv,
1L (5 8)

(t/)

o f e T v vadv,s

L’ lL>

o RO

n 8(1)(615)
f " f ’ [y vidv,dy.
@ Jw, o

ViL

Similarly, for the perpendicular flux term, we have that

(@)

e o
f( f — (vLI“L) vidv,dv) =

VL

(q)

I s A S
= Onnp L) D (v VO WL V0
e (59)

(@)

LH A S )
~ 60 f R R A UG

(@) (v)

W U 6(1)(115)
f f mn FJ_ VJ_dVJ_dV”

s

The boundary flux terms in equations (58) and (59) will cancel
identically at the assembly stage, vanish at v, = 0, or vanish at
v, =V,,v ==V, and v = V| by the boundary conditions that
F — Qas|v| — oo.

We are now in a position to write down the matrix row for
an arbitrary polynomial. We use the expansion (51) for both

the distribution function F and the Rosenbluth potentials. With
these choices, recalling the definitions of the fluxes I'j and I, ,
equations (T4) and (T3], respectively, the result is

OF?
@ (9 jk
ZMIIijLnk ot -
ik
2 (g5)
_ FYSs’ ZFqS ([3 GX':| ((/) Y(-‘)
jk 2mjl " L0nk,
m% I J (')VHZ i (12m;I™" LOnkr
2 (g5) 5)
OO [Ty oy s |OHe [T
6vl6v” . [[1mjl™ L3nkr my av” } [[lmlj* 10nkr
* r
2 @ 2 (g5)
+| ZGs (@ p(s) 0Gy @ ps)
aVJ_aV” [13m jl Linkr T 3“2 ; [l0mjl~ L2nkr
r

OHy @ o
_2 [ N L YIIOmjlYLlnkr >
(60)

where we have neglected the interior boundary terms as vanish-
ing at the assembly stage, and we have neglected the extreme
boundary terms to impose the natural boundary condition on F
that F||(v|| = iVH,VJ_) = 0 and FJ_(V“,VJ_ = V,) = 0. This is
equivalent to imposing ' = 0 as V), V, — oco. In equation @),
the stiffness matrices with three indices are

@

)
(@ _ (9) (q) q)
YHOmjl ﬁ‘l) Prm 90 dV\»
Hl
@ i 3‘Pm PG
Y”lm/l V@ (9V|| dv
Vi
61
”U (q) (91,0(q) (o)
Y(q) (q)dv
|\2m11 @ 8V|I 0V|I @ II>
ViL
e (q)
y@ o <q> %
HSmJl f 9"1 dvy,
and
® LI
s — () (8) (s)
YL011kr_ﬁJ) bn ‘P $r VL dVJ_
Vie
e (s)
®  _ [0
YLlnkr_fvm v, P Prve dv,,
VJ.L
) (s) (62)
¥ - f L og)) o6 Wi o,
12nkr o r ’
W v, L Ovy

) (s)
g,

(s)  _ (s) ()

Y sk = f() #n E g v dvy.

ViL

Note that the stiffness matrices in (60) are all 1D integrals of 1D
basis functions as a result of the choice to use the representa-
tion where the 2D basis function CD (v”, v, ) is a product
of two 1D Lagrange polynomials — one for the v dimension,
and one for the v, dimension.

The assembly step is carried out using the usual element-
wise finite-element assembly algorithm, by defining a com-



pound index that indexes over the nonzero entries in the as-
sembled matrix equation. We use continuity of F' to demand
that F ;1]5 Fi ¢.5+1 qu\/}fk F2™ and remove the duplicated
points at mterlor element boundaries by summing the matrix

rows there.

3.5. The weak form of the equations for the Rosenbluth poten-
tials

We need to determine the coefficients derived from the
Rosenbluth potentials. We start by considering the solution of
Poisson’s equation, equation (23)). Multiplying by the 2D basis
function d)( P = t,D(r) ) go(p ) (v,) and integrating over velocity
space, 1ntegrat1ng by parts on the left-hand side and neglecting
the boundary terms we have that

(r) l)l
1%

8@(’17) 6H 6(D( rp) 8H
6\/” aV” (')vl Bvl

V,

] vy dvy dvyy
e v(l’)
2 1L (63)

NG »
R o)
= —4r . Fv, dv, dy.
v(ﬁ) Jjk
1L

We can neglect boundary terms because the assembly step will
cancel all terms due to interior boundaries, whereas exterior
boundary terms only appear in rows that will be replaced by
a Dirichlet boundary condition. Defining the matrices

e (s)
iU [) (S) 6

KO = _f L2 S (64)
(s

Lnk VL)L 8V_L 8V_L
and .
v 890(3) 6(,0 s
K9 =— d 65
|Ink j‘;) aV“ aV“ V|| ( )

12
and expanding

F = Z Z q)(rp)F;/f’
p

we find that the row of the unassembled matrix is

Z (K(") M(I’) + K(l’) M(”) _ _47TZ M(") M(I’)

|ljm™" Lkn Lkn H/m |l jm J_kn

H= ZZ(D(”’)H;}:, (66)

rp  jk

mn

(67)
We impose Dirichlet boundary conditions on the assembled ma-
trices using the values of the required functions computed nu-
merically by direct integration, as outlined in section Once
the coeflicients H]r.f are known then the same matrices can be
used in an identical fashion to solve for Gr” A similar matrix

20,k and Hl()jk’ the

components of Gyg = 8°G/dvj* and Hyy = OH/dv), respec-
tively, with the only difference being in the source terms on the
right-hand side. Explicitly, these results are

(r) pg(P) (p) () — (r) ()
DUk MY+ KD MO VG = 2ZK’M"

equation can be written down to solve for G

[ljm™~"" Lkn Lkn |ljm™"" Lkn m”’
mn
(68)
and
) A g(P) (P) pq(r) (r) p4(P) F'P
Z (KH]mMJ_kn KJ_anlljm) HlOmn = —4n Z PllijJ_kn mn*
mn mn
(69)

where we have defined

Viu 3(,0
PO = f o) V-’I dv). (70)
ViL

[lm j

To improve numerical accuracy, we choose to find H/dv| by a
separate Poisson solve rather than by differentiating H.

To find the equations for the other Rosenbluth potentials in
the fluxes, we must repeat the exercise above. The PDE defin-
ing G| = 8°G/dvdv, is distinct from Poisson’s equation and
will require different matrix elements. We follow identical steps
as used to derive the matrix row equation for H]r]f . First, we in-
tegrate over velocity space to obtain the weak form equation

(r)

p (rp) (rp)
f\luf ” 6(I)jkp G, +V aq) % G,
(r) ( L BVH BVH L 8vL 8vL

Vi

oG
v, O o & <1><"’)G11) dv, dv (71)

(p)
2
o o'P
Y v(”) ]k Ov”(?v

YL

dvl dVH,

and we use this to define the unassembled matrix row equation:

(r) p(p) r) 1(p) " pp) () a7(p)
Z (I(H]mRJ_kn + MlljmJJ_kn MllijJ_kn MH]mNJ_kn) Gllmn
_ (r) (p)
=2 Z PH]mULkn mn’
mn
(72)
where we have defined the matrix elements
(5) iy )
Ry = f L, eo0g ) vidvy,
ViL
®) iy 9
Njnk = pﬁj) (S)(VL)‘pk i) dvy,
1L
v (s)
dgy 0,
JO = —f Vdv,, (73)
Lk v(jl v, v, idve

Similarly, the PDE for Hy; = dH/dv,, equation (3I)), has the
weak form

(1) pp)
Z (KIIJmRLkn

mn

= x> MO U F

[[jm ™~ Lkn mn

M(r ) N(P)

" 1) " pp)
+M.J -M..P |ljm Lkn) Olmn

[ljm* Lkn [ljm~ Lkn

mn

(74)

To complete the set of Rosenbluth potentials, we solve the
elliptic problem for Go, = 9*G/dv,%. Following steps



similar to those above, we obtain the weak-form equation

W) WP

Sy L

ViL

(rp) (rp)
B(D P 3G, L) 6(1) P 9Go,
6vH 6v|| + 6vL 6vL

rp) 0G .
—v, @7 0\102 40" ”)Goz) dv, dv|
(75)
it 005 oy o OH
=-2 f f V2 + 20, @ —
W S ov, 8vL K Qv

+2q);2p)H - CD(j;Cp)Gzo) dVJ_dV”.

The corresponding row of the unassembled matrix therefore be-
comes

() p) " (1) (P )
Z (K”JmRJ{k” + M”jm(JJ_[;cn Pfkn 4NJ_I;<n)) GOZmn
") () » P gy
=2 Z Mlljm chn - ZPipkn - 2kan)HmI:: (76)

+2 Z M(”) N(P)

[[jm™ " Lkn 20mn

3.6. Velocity space integration in the spectral element scheme

To compute the boundary data for the elliptic problems ob-
tained in the last section, we need to integrate a function F' =
F (v”, V') multiplied by a kernel function G = G(v,v., VI,I’ Vs
we wish to compute

= f f GO v, v, VOFW), VY dV dv). a7n
—0 Jo

We expand F in the Lagrange polynomial basis functions using
equation (51)) and thus obtain that

= Z Z FrLy (78)

rp  jk
with the integration over local elements

(rp) ‘(‘2 il (r) Dy vy Ay A
Ijk = y g(V”, Vi, V”» VJ_)‘;D (V||)<P (vl)vldvldvu.

r) (]
Vi ViL
(79)
When assembling the integral over elements, one must recall
that the nodal value of F' at element boundaries has an inter-
polating polynomial that contributes to the quadrature in two
elements.

4. Numerical-error-correcting terms

The numerical scheme for evolving the distribution func-
tion due to the Fokker—Planck collision operator is chosen here
for performance and scalability, rather than for exact machine-
precision satisfaction of the conservative properties (3)-(7). To
ensure that the numerical scheme for the collision operator can
also preserve the density, parallel velocity and total energy at
each time step to machine precision, for time-evolving sim-
ulations we introduce ad-hoc conserving terms which make a

correction which is at most of order of the discretisation error.
Noting the definitions of the plasma density n, and parallel flow

u”,S’
ng = fst 2nv,dv, dvy, (80)
sl = fvaFS 2nv, dvy dvy, 81

respectively, we define

and

Css [FS9 Fs] :Czs [Fsa Fs]

- (zo +2(y —us) + 22 ((Vu - “ll,s)2 + "zi)) Fy,
(82)

where C;, [Fs, F] denotes the numerically calculated finite-
element collision operator given by dF/dt in equation (60), and
the coefficients zg, z; and z; are determined by the requirements
that (B)-(7) are exactly satisfied. Instead of formulating the
equations for {z;} in terms of total energy

= % ff(vﬁ +V1)F, 2 dv, dy, 83)

we write them in terms of pressure p;, using the deﬁnition & =
3ps/2 + mgng u” /2. Then, the conservation laws lead to
the matrix equation

mghg 0 3]35 20 mgAng
0 Pl.s qll,s 21 = ms(nsAuH,s - uII,.rAns) B
3px q),s Rs‘ 22 3Apg

(84)
where the vector components on the right hand side are the mo-
ments of C;, [Fs, F] that should vanish up to discretisation er-
ror, i.e.,

ffC [Fy, Fg] 2nv dv,dv,

Ay = — ffv”Czs [F, Fy] 2nv,dv,dv,
ng

mg *
Aps 3 ff((v“ - u”,s)2 + vi) Ci[Fy, Fyl 2nv dv, dvy,

(85)
and the compoments of the matrix on the left-hand side are
given by the moments of F;. We have that the total pressure

ps = 2p1s + py.s)/3 with the parallel and perpendicular pres-
sures given by

Plls = My f f vy = uy)*Fy 2nv dv, dvy, (86)

= % ffviFs 2rv,dv, dvy, (87)

respectively. The parallel heat flux is given by

and

qi.s = My f f V=)V =ty )* +V2)F 27tv dv, dvy, (88)



and the higher-order moment

R, = my ff((v” - uH,s)2 + vi)zFS 2rv,dv, dvy. (89)

We will demonstrate in the next section that Ang, Ay s, and Ap,
defined in equation (83) are indeed bounded by the discretisa-
tion error.

We note the similarity of these error-correcting terms to those
employed for similar reasons where the density, parallel flow,
and pressure are required to be conserved exactly [13},[39].

5. Numerical implementation and results

We have implemented an explicit form of the weak-form
collision operator in Julia [40], in the drift-kinetic ver-
sion of the pre-sheath plasma code “moment kinetics” [41,
42| 143]), using shared-memory parallelism implemented with
MPI using features introduced in MPI-3 [44], in particular
MPI Win allocate_shared [45]]. Specifically, we have im-
plemented the assembled weak-form problems defined by equa-
tions (60), (67), (€8], ©9)., (72). (74), (7€), using sparse matri-
ces [46], and with appropriate calculations of the Rosenbluth
potential boundary data using equations (I9) and (37)-@I)
with integration weights defined by (79). The basic quadra-
ture used to calculate these weights is a tensor product of two
1D Gauss—Legendre quadratures, except near logarithmic di-
vergences, where Gauss—Laguerre quadratures are employed
with changes of variables. We use Gauss—Legendre polyno-
mials to define the Lobatto and Radau collocation grid points.
We have implemented the scheme for arbitrary positive order of
polynomials.

The source code for the implementation is available and doc-
umented [47]]. The test and simulation results that are presented
in the remainder of this section are supported by publicly avail-
able data [48]).

5.1. Evaluation tests

We wish to test the three properties of the collision operator
(B)-(7). To facilitate this test we define three quantities which
measure the change in the moments of the distribution function
due to the collision operator, given by equation (85). We test in
a grid resolution scan whether or not the collision operator van-
ishes on a prescribed Maxwellian distribution up to expected
discretisation error, i.e., whether or not the operator well satis-
fies

Cys [Fus, Fusl = 0. (90

We now proceed to describe the details of the test. In figure
[[jwe carry out the resolution test for varying Ny, = N, = Ny/2
at fixed Nz = 5, corresponding to 4" order polynomials, al-
though we support any Ngz > 2. Here Ny is the number of
elements in the v, dimension and half the number of elements
in the v dimension. The quantity N is the number of points
per 1D element, in both the parallel and perpendicular dimen-
sions. We take the maximum velocity to be Vj = V| = 6c¢rr,

with cref = V2T ref/Myer, Where Tror and myo¢ are the reference

Quantity | Normalisation

ng Nyef

Uy,s Cref

Ps MyefC fef

V|| Cref

Vi Cref

F, Mot [7C3
Gy NrefCref

H; Tref [ Cref

Table 1: List of normalisations used in the numerical implementation of the
self-collision operator.

temperature and reference mass, respectively. Note that reduc-
ing Vj and V, for a fixed integrand reduces the accuracy of the
numerical integration because the true velocity integrals should
extend to infinite velocities. We choose to carry out the test
for a species of mass mg/m,s = 1 with a Maxwellian with
a normalised density ns/nes = 1, a normalised parallel flow
uys/cret = 1, and a normalised temperature T'/Trer = 1. In
figure[I] and in the remainder of the paper, we plot normalised
quantities, with the normalisations given in table
In figure |1} we plot both the infinity norm of the error &, and
the L, norm of the error €, of calculating the collision operator
with respect to the expected value (which is zero). Here, the in-
finity norm of the error in a normalised distribution F is defined
by
€o(F) = maxy|F — Fixacrl, ©On

with Fiycor the normalised, exact, analytically computed value.
The L, norm of the error is defined by

f(F - FEXACT)ZVJ_dVJ_dVH

e(F) =
2(F) vadedV”

, 92)

where the integration is carried out numerically over the finite
range of velocities on the grid. We see that the infinity norm
gives a larger value than the L, norm in all cases by a factor
of an order of magnitude. This is due to numerical oscillations
near v, = 0 where the differential equations become singular.
The error in computing the collision operator decreases accord-
ing to expected scaling for error in differentiation

1 \Nor-!
(N_) . 93)

The quantities An,, Ay, and Apg approach zero rapidly at (or
better than) the expected scaling for numerical integration er-

Tors
1 Ngr+1
— . 94
() o4

We have carried out this test using multiple other values of N
and demonstrated the same results. To demonstrate the at-
tained performance of the explicit collision operator, in figure
[l we plot the timing data (in milliseconds) for completing the
initialisation and evaluation of the collision operator on 2 cores.
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Figure 1: The numerical error for a test carried out with Ngg = 5 points per
element. The infinity norm of the error (€, see @) and L, norm of the error
(e, see @) of evaluating the collision operator are shown and compared to the
expected scalings for differentiation and integration @ and @) respectively.
This test does not use the numerical-error-correcting terms that are introduced
in section @ in order to show the numerical errors in the conserved moments
native to the finite-element scheme.
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Figure 2: For the test shown in ﬁgurecarn'ed out on 2 cores, timing data for
the initialisation (init) and a single evaluation of the collision operator (step) is
given in milliseconds.
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Figure 3: The infinity norm of the error €, in computing the Rosenbluth poten-
tials for a shifted Maxwellian distribution, for Ngg = 5.
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Figure 4: The L, norm of the error & in computing the Rosenbluth potentials
for a shifted Maxwellian distribution, for Ngg = 5.

The expected scaling for the initialisation is N2 , by virtue of
the calculation of the integration weights for the boundary data.
The expected scaling for the evaluation of the collision opera-
tor depends on which operation dominates the calculation. If it
is the computation of the boundary data (using equations (37)-
@) with integration weights defined by ) itis N2, whereas
if it is the elliptic solve or the assembly of the right hand side of
equation then the scaling would be expected to be N2 due
to the sparse nature of these operations. We see that a scaling
close to N2 is achieved for the evaluation step.

To understand the dominant source of the numerical error
in the collision operator, we find it useful to plot the infin-
ity and L, norm error measures of the numerically calculated
Rosenbluth potentials dH/dvy, dH/dv,, &*G|dvj*, dG|dv,,
62G/6v||(9v ., and 8*G/dv, 2. The exact values are known for
shifted Maxwellian distributions, see, e.g., We
plot the error in our numerical calculation of the potentials data
for Ngx = 5 in figures 3and ] The L, norm error is smaller
by one or two orders of magnitude than the infinity norm error.
This is due to numerical oscillations near v, = 0. However,
in both cases the errors decay to zero approximately at the rate
given by (94). Note that our numerical calculation of the bound-
ary data does involve a numerical differentiation of F, see equa-



Simulation #1 #2 #3
VII/Cref =V, /cer | 2.25 3 4
Ny =N, =Ny/2 4 8 16

.Y; 1073 | 1073 | 0.25x 1073
time/step (ms) 7 21 89
# cores 4 16 64

Table 2: List of resolution parameters used in the numerical simulation of the
self-collision operator, time per step in the simulation in milliseconds, and the
number of cores used in the simulation.

tions (37)-(@1I), which may explain why the rate of convergence
is slower for some Rosenbluth potentials. For completeness, in
[Appendix_C|we show the numerical error resulting from com-
puting the potentials from direct integration.

We take the results in figures [3] and [] to indicate that the
dominant source of numerical error in evaluating the collision
operator comes from numerical differentiation, rather than from
the errors in obtaining the Rosenbluth potentials. Indeed, com-
parable levels of error to that seen in computing the collision
operator may be obtained by simply using the weak method to
differentiate F to find the second derivatives in vj and v, .

5.2. Relaxation to a Maxwellian distribution

It is important to test whether or not the numerical self-
collision operator can provide a stable, steady-state numeri-
cal solution which is close to a Maxwellian distribution, with
positive-definite entropy production, equation (). In this sec-
tion we show tests where we integrate in time the collisional
relaxation problem (6], in weak form (60}, both with and with-
out the numerical-error-correcting terms (82). We show that the
numerical-error-correcting terms are only necessary to ensure
that we can obtain a stable solution for low numerical resolu-
tion. We impose only natural boundary conditions on F by ne-
glecting the boundary terms introduced by integration by parts
in the projection onto the weak basis. For explicit expressions
for these terms, see equations and (59).

For the time evolving tests, we initialise the normalised dis-
tribution function F to

with ny a dimensionless factor calculated to ensure that the
density of F satisfies n 1 (see equation (80)). The form
in equation (95) was chosen to provide a substantially non-
Maxwellian initial distribution function. The time integration
scheme is the Runge—Kutta strong-stability-preserving 4-stage
method [49] 150, 51]. We use a collision frequency vy, =
yssnref/mgcfef, and we run for a time of 200/v,,. We use the
resolutions detailed in table 2] to generate three different sim-
ulations with increasing resolution and maximum velocity on
grid, keeping N = 5 and varying V| = V, and Ny .

Vﬁ + (v - Cref)2

Crar/4 )

F = npexp {—
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5.2.1. Collisional  evolution  without  numerical-error-
correcting terms

In figure 5] we show time traces of the change in the den-
sity, parallel flow and pressure over the course of a simulation
where the numerical-error-correcting terms are not employed.
The pressure is not well conserved at long times for low res-
olution. This is to be anticipated from the results in figure
[[] where the change in the pressure was not as small as the
change in the density. The velocity remains well conserved

here because the simulation is symmetric in v. Despite the lack

N R —
1075 4
10-8 — |An(t)] #1 — |An(t)] #2 — |An(t)] #3

J = |Duy(t)] #1 — |Auy(t)] #2 — |Auy(t)| #3
10-11 - |Ap(t)| #1 -- |Bp(t)] #2 -- |Ap(t)| #3

107141 [~

50 75 100

Vst

125 150 175 200

Figure 5: The changes in the first three moments of the distribution function
ng, Uj,s, and ps as a result of time evolution with the Fokker—Planck collision
operator defined by equation (60), i.e., without the numerical-error-correcting
terms. The pressure moment is not well conserved at low resolution, as would
be expected from figure[I] The resolutions for simulations #1, #2, and #3 are
provided in table 2]

of exact numerical conservation of the moments, the collision
operator without numerical-error-correcting terms still pushes
the distribution towards a Maxwellian distribution, as shown
in figure [6] where we show the infinity norm of F — Fy (1),
Lo, (F — Fy(t)) = maxy |F — F(t)|, where the Maxwellian dis-
tribution is constructed with the time-evolving values of the mo-
ments. The maximum in the infinity norm is taken over the
set of nodal values of F, F r.]f . Simulations with increasing nu-
merical resolution have a smaller L., (F — Fj), suggesting a
strong convergence. These results show that numerical-error-
correcting terms are thus only required to fix the solution to a
Maxwellian distribution with the exact same density, mean ve-
locity and pressure as the initial condition.

5.2.2. Collisional evolution with numerical-error-correcting
terms

We now show the result of evolving equation (60) with the
numerical-error-correcting terms (82). In figure [7] we show
time traces of the change in the density, parallel flow and pres-
sure over the course of the simulation. The small errors in the
moments increase with increasing resolution, suggesting con-
servation accurate to machine precision, with the error coming
from round-off errors.

In figure [§] we show the infinity norm Lo (F — F(t)),
demonstrating a strong convergence, with very similar values
for the infinity norm as in figure [f] This suggests that the
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Figure 6: The infinity norm of F — Fy(t), Leo (F — F (1)) = maxy [F — Fy (9],

where the Maxwellian is computed at each timestep with the updated values of
the pressure, velocity and density moments. Despite the loss of pressure con-
servation shown in ﬁgureEl this figure indicates that 'y becomes increasingly

Figure 8: The infinity norm of F — Fyy, Lo (F — Fyy) = maxy |F — Fyl, for
close to a Maxwellian distribution. The resolutions for simulations #1, #2, and
#3 are provided in table[Z}

the test including numerical-error-correcting terms. This figure indicates that F
becomes increasingly close to Fjs before converging on a steady-state numeri-
cal Maxwellian distribution. The resolutions for simulations #1, #2, and #3 are
provided in table 2]
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Figure 7: The changes in the first three moments of the distribution function

ng, u),s, and ps as a result of time evolution with the Fokker—Planck collision
operator defined by equations (60) and (82) (i.e., with the numerical conserving
terms). The moments are well conserved, despite the low resolution used. The

Figure 9: The entropy production §, for the test including numerical-error-
correcting terms. The entropy production S is defined in equation , where
In F is calculated using an approximation, equation (96). Note that S remains

positive and tends to 0*. The resolutions for simulations #1, #2, and #3 are
provided in table E
resolutions for simulations #1, #2, and #3 are provided in tableg

6. Discussion
numerical-error-correcting terms act to conserve the moments

In this paper we have investigated a particular finite-element,
to machine-precision without a detrimental effect on the shape continuous-Galerkin, weak-form representation of the explicit
of the distribution function. nonlinear Fokker—Planck collision operator. We choose to use
the Rosenbluth—-MacDonald—Judd form of the Fokker—Planck
operator to permit the use of sparse elliptic solves for deter-
mining the Rosenbluth potentials of the nonlinear operator. We
have demonstrated that this choice can lead to an optimal scal-
ing of the cost of evaluating the operator for a single time step
o NEZL, with N the number of elements in a single velocity
space dimension, vy or v, . We have implemented and tested the

Finally, in figure 0] we show the entropy production for the
simulation using numerical-error-correcting terms, calculated

using the definition (8) and using the following approximation
for the logarithm of the distribution function

InF = Z Z In(|F7) +€) @7

jk >
rpoij

(96)

where € = 10~1°, The approximation is adequate if the so-
lution is converging with increasing resolution in a strong sense.

Figure [0 shows positive-definite entropy production, although

there is no guarantee that S should be a positive-definite quan-
tity in our numerical scheme.
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method for arbitrary number of points per element N, > 2, but
we only present results for Ng; = 5 for brevity. We also demon-
strated a successful time-evolving simulation with low resolu-
tion, demonstrating that the self-collision operator can success-
fully relax the distribution function to a stable steady state that
is close to a Maxwellian distribution.

Table 2] indicates that the time per step of the collision opera-



tor is potentially small enough to be of the correct order of mag-
nitude to permit the use of the collision operator in drift-kinetic
turbulence simulations where the spatial domain is fully dis-
tributed in memory. In future work, the time evolving “moment
kinetics” framework will be leveraged to include the Fokker—
Planck collision operator in 1, 2, and 3 dimensional simulations
of plasma on open field lines. The extension of the operator
here to include cross-species collisions is readily achievable by
adding further contributions to the Rosenbluth potentials.

To help permit the collision operator to be routinely used
alongside other physics features we could further optimise
the implementation for speed to accommodate larger problem
sizes. This might be achieved with an extension from shared-
memory-only parallelism to allow for distributed-memory par-
allelisation across nodes. The use of distributed memory to par-
allelise the collision operator calculation is motivated by the ob-
servation that the dominant costs which contribute to the time
taken to evaluate the operator are the calculation of the bound-
ary data and the assembly of the right-hand side of equation
(60). Both of these steps are embarrassingly parallel.

Alternatively, we might consider potential optimisations of
the numerical method. First, the boundary data for the elliptic
solves may be determined using a multipole expansion of the
formal definition of G and H, equations (I6) and (I7), respec-
tively. This method may permit the evaluation of the boundary
data using only an order unity number of velocity integrals, pro-
viding the maximum value of v and v, on the grid, Vyand V,,
respectively, are sufficiently large. Second, the boundary data
may be evaluated at fewer locations and a larger-scale interpo-
lation of the Rosenbluth potentials on the boundary might be
constructed. This might save computation time without sacri-
ficing significant accuracy, if V| and V, are large enough for the
Rosenbluth potentials to have a simple functional form on the
boundary. Third, one could choose to use a different interpola-
tion scheme defining the right-hand side of equation (60). One
could consider using the quadrature rules commonly employed
in spectral element codes that yield diagonal mass matrices [|52]]
to reduce the number of operations due to the nonlinear stiff-
ness matrices defined by equations (6I) and (62). Fourth, to
enable stable solutions with timestep sizes not limited by dif-
fusion in v and v, , one could consider replacing the explicit
time-integration method presented here with an implicit time
integrator, see, e.g., [S3].

Finally, it is useful to consider the benefits and limitations
of the finite-element method presented here for Fokker—Planck
collisions, to assess the suitability of the method for integration
with a solver that treats the Vlasov part of the kinetic equation
and the large-scale electric and magnetic fields. The primary
benefit of the higher-order finite element method is the poten-
tial for spectrally accurate solutions in the presence of boundary
layers in velocity space. However, the method does not guaran-
tee positivity of the solution. The structure of the finite-element
mass and stiffness matrices means that sparse matrices can be
used. To store the matrices needed for the 2D Poisson solvers
for the Rosenbluth potentials, we only require O (NEZLNQR) ma-
trix entries, and for each spatial point we will require to store an
order unity number of arrays of the size of the 2D distribution
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function F, i.e., O (NSLNCZ,R) values. Had we chosen to use ve-
locity coordinates with explicit spatial variation (e.g., magnetic
moment y = vi/ 2|BJ), then the coeflicients in the equations for
the Rosenbluth potentials would depend on spatial position and
we would need to store a matrix of size O (NEZLN(‘.J‘R) for each lo-
cation in the spatial grid. Compared to a linear advection opera-
tor, the nonlinear collision operator in two velocity coordinates
is more expensive to evaluate. As a result, a model which com-
bines both nonlinear collisions and linear advection will likely
be limited by the cost of evaluating the Fokker—Planck operator,
unless care is taken to design methods where the Fokker—Planck
operator is evaluated infrequently.
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Appendix A. Evaluating the gyroaveraged functions

To see how to evaluate the required gyroaveraged functions
I61, Ino, In, and Iy, defined in equations {@2)-(@3)), consider

l T
Igo = — dd’.
GO " Iﬂg

Expanding g, we have that

(A1)

4 /
Loy, v, v vy) =

1 (" 1/2
o f ((v” - vl’l)z +v2 v, =2, cos (& — 19)) dd'.
(A2)

Here we can recognise an elliptic integral. Suitable rearrange-
ment and relabeling gives us
’r 2 1/2
Lo, vi, v, vy = 7_rU E(m) (A.3)
with U and m functions of (v, v, Vl/\’ V') defined by equations
(20) and (21), respectively, and the elliptic integral of the sec-

ond kind is defined by equation (23). Noting that e, - €/
cos(¥ — @), the integral for I/, evaluates to

’ ’
Ii(v), vi, v v)) =

_%Ul/z
b

_ _ Ad
(2 mE(m)_g(l m) (A4)

3m

K(m)|,

with the elliptic integral of the first kind defined by equation
(22), and we have used the identity

T/2
f (1 =2sin?6) V1 —msin®> 0 do =
0

2 2(1-m) (&.3)
—m m
= _"Em-= K
e (m) 3 (m)
The remaining integrals are
2
Ino = ~U™'2K(m), (A.6)
2 -2 2
Ly = 202 (=2 km) + ZE(m) (A7)
T m m
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and

K(m) +

2 (3m2—8m+8

4dm — 8
— Zy-12
Iy = ﬂU e ey E(m)). (A.8)

Here we have used that

fm(l ~25in6) (1 - msin0) " do
0

, , (A.9)
2= ZKm) + = Em),
m m
and
/2 _
f (1-2sin*0) (1= msin>0) " do =
' 3m® — 8m + 8 4m—8 (A-10)
m- —om+ m —

Appendix B. Rosenbluth potentials for shifted-Maxwellian
distributions

For the shifted Maxwellian distribution of species s, given
by equation (9), the Rosenbluth potential G (v) is given by [4]
(Chpt. 5, Sec. 5.2, eqn. (5.49))

RgVhs [ 27
Gyv) = =5 = (ﬁ exp[-n*| + (1 + 2%) erf(r])), (B.1)
and ;
Hy(v) = 2o S0 (B.2)
Vth,s n

with n = |v — u,|/vns. The results for derivatives of G and
H; may be obtained analytically by direct differentiation. In the
drift-kinetic limit u; = ) sb.

Appendix C. Computing the Rosenbluth potentials by di-
rect integration

A more direct, but less efficient, method for computing the
Rosenbluth potentials is to use the integral expressions (37)-
(1) for all (v, v, ) rather than just the boundary values. Here
we show the results of such a calculation to demonstrate the
correct implementation of (37)-(1)) and the results in[Appendix]
[Al

In figure we plot the infinity-norm errors on the calcu-
lation by direct integration of the derivatives of the Rosenbluth
potentials for a Maxwellian input, for which the results are
known analytically [4] (see, e.g.,[Appendix B). We see that the
integration error becomes small for increasing resolution, indi-
cating that the definitions of the integrands are correct. How-
ever, the errors eventually deviate from the expected scaling.
This is due to problems carrying out the integral accurately in
the region on the integrand where v’ is such that F((v') ~ O (1).
This problem might be addressed with an improved integration
quadrature, or by using higher than double precision to compute
the integrand. Note that this difficulty does not affect the inte-
gration of the potentials in the far-field region at the velocity
space boundary — meaning that near-machine-precision accu-
racy can be achieved in the numerical method presented in the
main text. This is evident from figures [3|and 4}
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Figure C.10: The infinity norm of the errors € of the potentials 0H/dvy, dH/0v .,
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tion, compared to the expected scalings for differentiation and integration, equa-

tions @ and @), respectively.
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