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Abstract

This paper introduces an analytical model for the propagation of collisionless neutral particles in neutral beam injection (NBI)
systems. The model incorporates a novel approach using composite Gaussian basis functions to represent non-Gaussian source dis-
tributions and extends to two-dimensional source configurations under orthogonal separability assumptions. The method efficiently
computes particle velocity and spatial distributions along beam trajectories, accounting for truncation effects due to transmission
losses. The model has been implemented as a computational module in the Minerva framework and interfaced with the ITER
Integrated Modelling & Analysis Suite (IMAS).

A case study of the MAST Upgrade NBI system demonstrates the model’s ability to predict particle distributions from the
source grid to the plasma cavity while accommodating detailed baffle geometries and calculating transmission factors. Compar-
isons reveal that reduced Gaussian basis representations can achieve an order-of-magnitude reduction in computational time with
negligible impact on accuracy. The proposed model provides a fast and rigorous alternative to Monte Carlo simulations, enabling
enhanced diagnostic modelling and efficient integration with Bayesian inference frameworks.

Keywords: neutral beam, NBI, probability, distribution, magnetic confinement fusion, Bayesian,

1. Introduction

High-energy neutral beam systems play a vital role in the current generation of tokamak and stellarator magnetic
confinement devices, serving both as a key mechanism for plasma heating and current drive [1] and as a valuable
diagnostic tool for plasma quantities [2, 3]. In this paper we consider the propagation of a collisionless particle beam
distribution as a precursor to its modification by collisions with populations of neutrals and ions. Here the challenge
lies in achieving a fast and accurate analysis involving integrals over 6-dimensional phase space (i.e. three spatial and
three in velocity) whilst simultaneously including details of a realistic geometrical configuration.

High accuracy codes generally use Monte-Carlo techniques to evolve trajectories of individual particles, for ex-
ample FREYA [4], NFREYA [5], TRANSP [6], NUBEAM [7], MSESIM [8], BBNBI [9] and FIDASIM [10]. These
codes couple the collisionless treatment of the high energy neutrals with collisional models of the beam deposition
in the plasma cavity. The most significant issue with these codes is that execution time tends to be long as a large
number of particles need to be followed to reduce statistical fluctuations. However, through simplifications in the
beam formulation, codes such as PENCIL [11] and SUPERCODE [12] are capable of generating faster approximat-
ing solutions. The SINBAD code [13] offers improvements over these earlier first-generation approximate methods.
Based on a so-called narrow beam model the approach in SINBAD assumes the beam source is planar with a small
cross-sectional area compared to the length of the beam-line. Results from SINBAD provide reasonable matches to
FREYA, TRANSP and to measured NBI data [13]. The NEMO code [14] is a modernised version of the SINBAD
code enabling it to be included in the CRONOS integrated modelling suite [15] and to be used by the European In-
tegrated Tokamak Modelling Task Force (ITM-TF) [16]. The NEBULA code [17] also uses the narrow beam model
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Figure 1. Schematic of the neutral beam system on MAST Upgrade illustrating the salient features of a generic system. (figure is based on [20]).

proposed by SINBAD. A similar but not identical approach has been recently described by Bannmann et al. [18, 19]
to model neutral beam injection and halo formation using a set of Gaussian pencil (Gausscil) beams, formed by divid-
ing the source grid into a set of rectangular areas. The results of the model are shown to be in good agreement with
FIDASIM.

Whilst earlier approaches (for example PENCIL) treated the beam as a single entity, later models provided the
capability of sub-dividing the beam and summing the contributions; it was found that the number of subdivided beams
required is less than the total number of PINI beamlets and as low as 2x5 [18] which is an advantage for computational
speed. The main hypothesis for the application of these simplified approaches is that the plasma conditions are
sufficiently homogeneous across the constituent beamlets in planes parallel to the beam source; this sets a condition
on the minimum number of beamlets and ultimately limits the applicability for using a non Monte-Carlo method.

Figure 1 shows a schematic of the beam system on MAST Upgrade. The first stage is the generation of ions. These
are subsequently accelerated, shaped and focussed via an electric field generated by a cascade of grids held at fixed
potentials. The final grid is at tokamak (or device) earth potential and particles emerge into a neutralisation chamber.
Following this, remaining ions are diverted off to a beam dump with an applied magnetic field, whilst the neutral
particles stream down a duct into the plasma (tokamak or stellarator) cavity. During the final transit a proportion of
the neutral particles may be reionised due to interactions with the background neutral gas. Furthermore, the presence
of baffles or other fixed components may scrape off part of the streaming neutral particle beam; these are collectively
referred to as transmission losses.

The usual approach for computing the neutral beam distribution arriving into the plasma cavity is to start with the
flux of fast ions exiting the final earthed acceleration grid into the neutraliser chamber. The salient features relevant
for determining the downstream beam distribution are as follows:

1. The velocity distribution of the neutralised ions in the neutraliser chamber matches the distribution of the
source ions exiting the final accelerator grid. Evidence to support this is contained in a recently published
computational model for space charge neutralisation of positive ion beams, Holmes and McAdams [21] who
show that for a Deuterium beam of 120 kV, 60 A the role of space charge forces is inconsequential in the beam
transport at least until the bend magnet is reached. Similar evidence is available for ITER negative ion beams
from simulations using the OPERA code [22].

2. The neutraliser efficiency is known. The overall neutraliser efficiency is generally obtained by a combination
of measurements taken within the beamline during dedicated calibration exercises and simulation [23, 24, 25].
Typical values on JET for deuterium injection range from 30-60% depending on precise details of beam species
mix produced by the ion source and acceleration voltage.

3. The transmission factor is known. The beam transmission factor accounts for "baffle losses": particles lost
by interactions with structures at the edge of the beam. The transmission factor cannot be obtained by direct
measurement and thus is estimated. On JET, this is achieved by combining neutral beam test bed data with ray
tracing simulations giving a value of 75% [25]. This factor therefore accounts for one of the largest uncertainties
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in the overall beam power delivered to the plasma which, combined with other uncertainties results in a total
uncertainty of 10% in power delivered to JET. The PINI simulator code [26] takes full account of baffie losses as
do other codes, for example BBNBI which has been used to model JET and AUG tokamaks [9]. Another factor
included in the PINI simulator code is transmission losses due to reionisation of the beam with the background
gas in the duct between the neutraliser chamber and the tokamak plasma cavity.

4. Spatial variations in the beam flux and velocity divergence on the beam source grid are known. For the JET
Positive Ion Neutral Injector (PINI) ion source design, detailed measurements of the ion-source non-uniformity
were made on the NB test-bed(NBTB) [27, 28, 29, 30]. Measurements of the beam profile with high spatial
resolution and accurate electrical measurements at the PINI accelerator grids were then combined with detailed
modelling to infer the beam divergence characteristics. For each JET PINI, following initial construction and
again after any significant engineering work on the PINI, a detailed characterisation exercise was executed on
the NBTB recording the beam profile over a wide range of voltages and perveance values. (These character-
isations are kept as internal reports and are not generally available to the public). Lacking dedicated test-bed
measurements as is the case for JET PINIs, the MAST Upgrade beams rely on the fact that the construction of
the PINIs themselves are very similar to the JET PINIs.

In this paper we describe a new analytical approach to calculate the propagation of a probability density function
(PDF) of collisionless neutral particles with a Maxwellian velocity distribution and arbitrary spatial distribution emit-
ted from a surface towards a fixed focus. In comparison with previous approaches based on the narrow beam model
of SINBAD or the Gaussian pencil beams of Bannmann, the methodology presented in this paper is mathematically
rigorous relating the PDF at the source with the PDF at any point beyond the source. This is achieved by a change
of variables enabling a 1:1 mapping of particles between the source and points beyond. The model takes into account
transmission losses, expressed as a truncation in the velocity component of the PDF. An outcome of the model is that
the PDF at any point both on the source or elsewhere can be expressed as the product of two PDFs for the spatial
and velocity distributions. Furthermore, contrary to the assumption of constant velocity variance employed in other
simplified models, the velocity variance changes with distance from the source.

Section 2 considers the case of a spatially truncated 1-D source with normal distribution, and with a normally
distributed angular velocity (pitch). Expressions for the full distribution at a fixed normal distance from the source are
expressed as the product of two constituent distributions in pitch and in spatial position. Sections 3 compares results
from the new analytic model with the model used in [18] and from 1-D ray-tracing calculations. Section 4 includes
the effects of baffle losses on the particle distribution and obtains the transmission factor. Section 5 considers non-
Gaussian source distributions. This is accomplished by expressing the distribution in terms of a set of overlapping
Gaussian distributions whose magnitude are computed such that on aggregate they match the source distribution.
Section 6 extends the model to a 2-D source distribution. Finally section 7 presents results of the model applied to the
MAST Upgrade tokamak.

2. 1-D source distribution

This section derives an analytical expression for the particle distribution at an arbitrary point ahead of a distributed
particle source. Figure 2 illustrates the geometry, aligned with the right-handed Cartesian coordinates u,v,w and unit
vectors i, ¥, w. The particle source lies on the vertical line through points O and Q extending from g,,;, to gpqx With
peak density at O and is directed towards a focal point . The dashed-dotted line through O and F represents the
locus of peak density. While most of the beam is constrained within the dashed lines, velocity divergence causes some
particles to deviate beyond these boundaries. Point P is situated on line X — X, parallel to the source. The mapping
Q — P represents particles with pitch angle 6 emitted from Q and arriving at P on line X — X.

The positions of points P, Q and F are defined as follows:

P =0 + p,it + p,v (1)
0=0+qgp 2
F =0+fu2+fv12 3)

The PDF of particles at the source based on position g and pitch angle 6 is defined as:
3
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Figure 2. Configuration of problem with a 1-D source.

ny 202 262
0 otherwise

A q* (9—0,)2 .
g(q,H)z{ —exp(———— if Gmin < ¢ < gmaxand =5 <0< % @

where 6, denotes the counter-clockwise angle between the normal to the source (&) and ﬁ while 0 is the counter-
clockwise angle between & and QP. The normalisation constant A and the terms n,, n, are given by:

1
= 5
2noén, ©)
n =c1>(—q’"“) - cb(@) ©)
o o
2-6 -n/2 -6
ny =270 (72 7
1) 1
where ®(x) is the cumulative distribution function (CDF) of the standard normal distribution:
1
O(x) =5 (1 + erf(x/ \/E)) (8)

with erf(-) denoting the error function.

The PDF g(g, 0) characterises the source distribution as a spatially truncated normal distribution centred about the
point O and truncated normal velocity distribution directed towards focus F. In the next section we derive expressions
to map this distribution to the line X-X which is parallel to the source and located a distance p, from it, i.e. g(g,8) —
go(py, 0). To facilitate this mapping, we derive expressions relating the coordinates and angles involved. By computing
the scalar and cross products of vectors FQ and PQ with it we obtain:

. P-0

sinf =—— -V ©

POl ~

-0 .
cosf=——-1 (10)

POl ~

. -0 .
sinf, =——— -V (11

POFQ -

-0 .
cosd, =—— -1 (12)

PUOFQL T

Combining these relations, we find:

(P-Q)-iatan =(P-Q)-p (13)
(F-Q)-atan, =(F - Q) -7 (14)
(15)

Substituting equations 1, 2 and 3 for P, Q and F respectively yields:
q=—-pytanf + p, (16)
tan 6, _fr—d (17)

u
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In the limit f, > f, —q, the small-angle approximation tan §,, ~ 6, holds. Furthermore equation 4 indicates that signif-
icant values of g(q, 6, 6,,) occur when (6 - 6,)/0 ~ 1, implying 6 ~ 6 + 6, if 6 < 1. Combining these approximations
yields tan6 ~ 6. These approximations are satisfied in the JET and ITER neutral beamlines [31, 32]. Under these
conditions, equations 16 and 17 simplify to:

q=—pub+py (18)
fv —q
0, = 19)
YR
Rearranging these equations yields:
0 b4 (20)
pll
ue - Py v
0, :% @1

The following section uses these small-angle approximations as expressed in equations 18 to 21.

2.1. Transformation of PDF
In this section we obtain the mapping g(q,0) — g.(p.,6), expressed in separable form as the product of two
component PDFs:

8o (P, 05 pu) = 81(6; pu> Pv)&2(Pvs Pu) (22)

where the notation a, b; ¢ indicates that a PDF is a function of variables {a, b} and c is an additional parameter (i.e.
f g«(a,b;c)da db = 1). Whereas g, describes the total mapped PDF in an arbitrary position in phase space, the
components g; and g, each express distinct aspects of g,. The PDF g; is the velocity distribution at a single spatial
point (p,, p,) and the PDF g is the spatial distribution evaluated on the section X — X located at p, shown in figure 2.
Substituting equations 18 and 21 into 4 to eliminate ¢ and 6,,, the PDF g, defined in equation 22 can be expressed as:

8a(Py. 0: pu) =AJ exp(=ab® — bf — c) (23)
where
20252 L 2(f Y2
_Pulu o (fu = Pu) 24)
202 f252
ul’v 262"' 2 u— Ju v Jv
b= _ Pulvlu 02(17 fd@y = 1) 25)
o2 f282
20262 L g 2(f, = p,)?
_Pifid” + o (f = py) 26)
202 f2652
and
dq dq
B_pV 2 £ P 1
J= " 20 = 27
apy 9 a0 P

is the Jacobian determinant accounting for the change of variable from {q, 6} to {p,, 8}. Completing the square for 6,
equation 23 can be written as a product of two PDF functions as shown in equation 22 with

1 0 —11.)?
eXp (_( /Jz ) ) Gmin < 9 < Hmax
207z

. — \/ZTO'*HZ
810; pu, pv) = 0 0<6,. (28)
0 0> emax
( v r)2
82(pv; Pu) = Bna(pu, py) €xp (—% (29)
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where
_ -b _ th(hPu - fu) + hfv(fu - pu)
M*(Pu, pv) - 2_ -
a k
1 126
2 _ - _ Ju
U*(pu) - 2(1 k
JoPu
ﬂr(pu) =0
Ju
2 2 (hpu_fu)2 h-1

oip) =0 ( e +

tan_l (pv - Qmax)’ Pu > 0
Pu
Hmin(pu’pv) h _g’ Pu = 0 and dmin < Pv < ¢max
0 otherwise
tan_l (pv - Qmin) , pu> 0
Pu
Omax(Pus Pv) = 4

(Pu> Pv) +§, Pu =Oandein < Pv < gmax
0 otherwise
Hm X = Mx Hmin — M

12(Pus Py) =<I>( m_F )—cb( a )
* o-*
B(p,) = AN2r0.
in which
62 2
h=1+ ];“
(oa

k(pu) =(hpu = fu)* + (h = Df?
In the limits |p, — guin| < py and |py — Gmax| < pu, equations 34 and 35 become:

Pv—4q
gmin(pua pv) zw
u

Pv = qmi
gmax(pm pv) zw

u

In this limit, substituting for 6,,;,, G4y, i, the arguments of the @(-) terms appearing in equation 36 are:

Ormin — Mx _ h(fupy + [P )(fu = Pu) + KGmax

o T.puk
Omax — Mx __ h(fupy + fuP)(fu — Pu) + kGin)
o T.puk
When p, = f,, these simplify to:

emin — ¥ - _ qmax
oo per Oupa
gmux — Hx - _ qmin
S

and n, is independent of p,.
From equations 28 to 45, we observe that by considering a fixed focus (f,, f,):
6

(30)

€19}

(32

(33)

(34)

(35)

(36)

37

(38)
(39)

(40)

(41)

(42)

(43)

(44)

(45)
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1. g1(6; pu, pv) is a truncated normal distribution whereas g>(p,; p,,) is a truncated normal distribution at p, = 0
(this is consistent with equation 4) and an unbounded distribution for p,, > 0.

2. The parameters of the normal distribution g;(6; p,, p,) are o., u. and n,. The parameter n, expresses the
truncation of the normal distribution; o, is independent of both p, and f,, whereas for a given value of p,, w.
varies linearly with p,. The characteristics are plotted in figure 3.

At specific limits,

(a) when p, = 0 (at the source plane), u. = (f, — p)/fu, 0« = 6 (i.e. § is consistent with equation 4).

(b) when p, = f, (at the focal plane), 1. = p,/ f,, 0. = o/ f,. (i.e. at longer focal distances the beam becomes
more collimated and with a reduced standard deviation in velocity.)

(¢) when p, = f,/h, u. = f,/fu, 1.€. . is independent of p,; and o, = /62 + (o/ f,,)?, increasing from o, = §
at p, = 0, and thereafter decreasing witho, =0 as p, — .

(d) in the limit p,/f, — oo, . = p,(1 — f,) and 0. = O i.e. at distances well beyond the focus, the mean
velocity direction varies linearly with p, and its variance is zero.

(e) in the limit f,/p, — oo, . = p,(hf, — 1) and o = ¢ i.e. as the focal point moves towards co at finite
distances from the source the mean velocity direction varies linearly and its variance is 6.

3. The parameters of g»(py; p,) are B, ny, y, and o,. The parameter B is a normalising factor to ensure that
f g2(pv; pu)dp, = 1. Figure 4(a) plots the variation of n,; at p, = f, the variation in n, with respect to
p, reduces to zero and g»(p,; p,) is a normal distribution. Figure 4(b) plots the variation of o,. Although
g2(py; pu) 18 not in general a Gaussian distribution, o, provides an approximation to the standard deviation fit
to a normal distribution.

At specific limits,
(a) when p, = 0 (at the source plane), u, = 0, o, = o (i.e. o, is consistent with equation 4).
(b) when p, = f, (at the focal plane), u, = f,, and o, = ¢ f,. In the limit |p, — guin| < p, and |py — Guax| < Pus
g2(py; pu) 1s a truncated Gaussian.
(c) when p, = fu/h, a7 = ho? [ f7, pr = f.
(d) in the limit p,/f,, — o0, o7, = co and
o if f,=0thenyu, =0
e if f, > 0thenpy, = +o0
e if f, <Othenpyu, = —o0
i.e. at distances well beyond the focus, the radial variance tends to co whereas its mean value dependence
on whether f, is non-zero, and also its sign if non-zero.
(e) in the limit f,/p, — oo, u, = 0 and o, = o i.e. as the focal point moves towards oo at finite distances from
the source the radial variance tends to o and its mean velocity is zero.

4. The p,-value where o, and o, reach their extreme points and where u. is independent of p, are all coincident at
pu = fu/h. Since in general i > 1 (see equation 38) this position always lies between the beam source (p, = 0)
and the focal plane (p, = f,).

3. Model validation

In this section we compare the results of the 1-D model described in section 2 with a 1-D ray-tracing model
and with the Bannmann model for a single Gausscil Beam. The parameters are based on the neutral beam assembly
installed on MAST Upgrade [32] that has a beam half-width=82.5mm, focus = 12m, and beam divergence of 0.6
degrees. The line joining the mid-point of the source and focal point is taken to be perpendicular to the source.
Specific details of the models are as follows:

Monte-Carlo Model

For the purpose of validating the model described in section 2, a 1-D ray tracing code was written in Python. The
geometry is as shown in figure 2. A set of rays (n = 10®), spatially distributed according to a truncated normal distri-
bution about ¢ = 0 with standard deviation 82.5mm were launched from the source within the range g,in < ¢ < @max-
The orientation of each ray emanating from a given point was sampled from a normal distribution with a mean ori-
entation directed towards the focal point and with angular standard deviation 0.6 degrees. The rays were projected a
distance u from the source, and results presented as histograms.
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Figure 3. (a) Variation of . with p, and p,. (b) Variation of o, with p,. The lines shown are at p, = 0 (orange line) and p, = f, (magenta line).
The red line is at the value of p, where p. is independent of p,, o reaches its maximum value and o, (see figure 4b) reaches it minimum value.
(Beam parameters are oo = 82.5mm, ¢ = 0.6degrees, O = (0,0), F = (12m,0), gmin = =0, Gmax = +0°)
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Figure 4. (a)Variation of ny with p, and p,. (b) Variation of o with p,. The lines shown are at p, = 0 (orange line) and p, = f, (magenta line).
The red line is at the value of p, where both i, is constant and o, reaches its minimum value. (Beam parameters are o~ = 82.5mm, § = 0.6degrees,
0 =(0,0), F = (12m,0), gmin = =0, Gmax = +0)
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Figure 5. Geometrical depiction of a single Gausscil beam (y > §) [18].

Bannmann Model

The Bannmann model represents the beam source by a set of Gausscil beams. Figure 5 illustrates a single Gausscil
for the case & < vy on orthogonal axes uv. The geometrical details are taken from its implementation in the Minerva
Bayesian framework [33]. The beam source, located at u = 0 on the left side of the figure, follows a normal distribution
N(0, 0%) about the point O = (0,0) with o = w/2 = 82.5mm, truncated at v = +c. Particles are emitted from all
points at the source in the positive u-direction towards the focus F with a divergence angle 6. The solid lines in
the figure show the trajectory of two particles launched with zero divergence from the extreme edges of the source
converging at the focal point F' = (f,, 0). Neglecting velocity divergence, all particles would converge at F'. However,
velocity divergence causes the majority of particles launched at the source to miss F. To account for this, the model
introduces an ad hoc assumption: particles pass through one of two "virtual" focal points, depending on their observed
position. These virtual focal points, F'; = (f7,0) and F}, = (f3,0), are defined by the trajectories of particles emitted
from the source’s edges at an angle ¢ relative to the optimum focus angle y shown by the dashed lines in the figure.
Particles in front of F (u > f,,) are focused at F';, while those behind F (u < f,) are focused at F,. Although this ad
hoc approach provides a practical framework for modeling, it may not accurately reflect the physical trajectories of
particles emitted from the source.

Expressions for the geometrical angles ¢, £; focal positions fy and f,, and beam width (standard deviation) o at
a point P = (p,, p,) are:

Y =tan”! % (46)
E=y+06 (47)
¢ =ly =4l (48)
o
Ir “tang (49)
o
T = anty =) G0
|fb - pu| tan(ﬁ’ Pu < fu
o =1 lpu— fltané, Pu> Ju (51)

futan(y +6) — o, py = fu

In the limit, f, > o and 6 < 1

o

o 52

Y 7 (52)
o

fr =m (53)
o

T = "o (54)
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Figure 6. Geometrical depiction of a single Gausscil beam (6 > y) [18].

The velocity is taken to be normally distributed N'(65(py., py), 6*) where:

tan~! (%), pu<f
u

tan™! # s DPu2f
u J

O (pus pv) = (56)

In the case d > vy, f, < 0 and the beam model is modified as shown in figure 6. In this case the beam divergence
dominates the focussing of the beam even in the near-focus region u < f,,. Equations 46 to 56 remain valid. In the
MAST Upgrade case, f, = 12m, w/2 = 82.5mm, 6 = 0.6degrees yielding y = 0.39degrees. Therefore we are in the
regime 0 > y and the results presented use the model shown in figure 6.

In both the Bannmann model and the analytic model presented in Section 2, the velocity is normally distributed,
though in the latter case it has truncated bounds. In the Bannmann model, the mean velocity depends on one of two
virtual focal positions (see equations 56) and the standard deviation is constant. In contrast, the analytic model has a
single focal point and a position-dependent standard deviation of velocity (c.f. o(p,) in equation 31).

3.1. Results

Figure 7 plots the spatial variation at six discrete values of p,. From inspection of the figure:

1. The agreement between the analytic model and the ray-tracing model is excellent for all values of p,. The
distribution is not a normal apart from at the positions p, and p, = f.

2. At p, = 0 (the source location) the distribution for all three cases is a truncated normal distribution in agreement
with the requirements of the model.

3. At p, = 12m (the "focal-plane") the Bannmann model is in agreement with the analytic model and ray tracing
model. This is the case because f, > o and § < 1 and equation 55 applies i.e. o = f,0, the value for the
analytic model (see section 2.1, observation 3(b)).

4. The Bannmann model does not agree perfectly with the analytic model and ray-tracing results away from p, = 0
and p, = f.

Figure 8 plots the velocity distribution at p, = 0, p, = 0, and p, = 20, at three positions along the beam: p, = 0,
pu = 12m, and p, = 20m. There is no plot at p, = 0, p, = 20 as the beam is truncated spatially at p, = 0. From
inspection of the figure and the model equations:

1. The agreement between the analytic model and the ray-tracing model is excellent for all cases. This includes
the details of the truncation limits.

2. The Bannmann model agrees with the ray-tracing model and analytic model only at the mid-point of the source
(see the left-hand graph in figure 8(a)). The use of a virtual focus position (F}) rather than the true focal
position (F) explains the discrepancy in the right plot of figure 8(a). The assumption that the velocity standard
deviation is ¢, independent of position, yields values that are at too large at p, = 12m and p,, = 20m. Finally the
Bannmann model assumes the distributions are unbounded in comparison with the analytic model that provides
truncation bounds for p, > 0.

In conclusion, agreement between the analytic model and ray-tracing model is excellent in all cases. The reason
that the Bannmann model works well for interpretation of Charge Exchange Recombination Spectroscopy (CXRS)
data [19] is explained by the fact that the details of the velocity distribution are not important in this case.

10
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Figure 7. Comparison of g2(py; p,) (red line) with ray tracing calculation (histogram) and the Bannmann [18] model (blue line). The results are
shown for six p, values; p, = 0 is the source location, p, = 12m is the focal plane.

4. Transmission losses

Transmission losses in neutral beamlines occur when obstructions, such as baffles, intercept portions of the beam,
effectively "scraping" off its edges. For a point P downstream of an obstruction at coordinates B = (b,, b,) (refer to
figure 9), the obstruction angle 6, is defined as:

Pv _bv) (57)

6, = tan™! (—
Pu— bu

Obstructions intercepting the top of the beam are denoted as #; and those intercepting the bottom as 92. The sets of
these obstructions downstream of point P are 6] = {92] ,.... 0, }and 02 = {62l e, 02,) }, respectively. Equations 34 and
35 impose constraints on the permissible angles:

Omin <0 < Omax (58)
The presence of obstructions introduces an additional constraint:
max(@}) <6 < min(?) (59)
Combining these inequalities results in:
max (6}, Omin) <6 < Min(6}, Onax) (60)

This combined constraint ensures that only beam trajectories unobstructed by baffles contribute to the transmission
at point P. Taking account of transmission losses simply requires to update the values of O, and G, in equations
34 and 35 with these new limits (i.e. Opin — max(e;,,emm) and O, — min(OZ, Omax))- Equations 40 and 41 are
transformed in a similar manner.

Reducing the permissible pitch angles affects both the velocity and radial distribution functions, g,(6; p,, py)
and g»>(p,; pu), respectively, through the term n, (equation 36). The modified PDF g,(6; p,, p,) retains the property

11
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Figure 8. Comparison of g;(6, py; p,) (red dashed line with the truncation limits shown in orange); ray tracing calculation (histogram); and
Bannmann [18] model (blue dashed line). Results are shown for: (a) p, = 0, the source location ; (b) p, = 12m, (plane through focal point); (c)
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Figure 9. Configuration of problem showing addition of a single baffle point B.

f 21(8; py, py)dO = 1. However the integral of g,(py; p.):

n= f &2(pv; Pu)dpy (61)

represents the transmission efficiency; a value of < 1 indicates that some particles have been intercepted by ob-
structions before reaching u = p,. Evaluating n typically involves numerical integration. Since the integral is one-
dimensional over a smooth function, it is readily evaluated using Gaussian quadrature.

Figure 10 illustrates the variation in 7 for a single obstruction located at u = 6m, where the beam is intercepted
from above (v > b,). The figure shows that for values of p, downstream of the obstruction, n varies between 50% and
100%, depending on the value of b,. Upstream of the obstruction, 77 remains constant at 100%.

5. Non-Gaussian 1-D source distributions

In this section, we generalize the spatially truncated normal distribution assumption at the source to accommodate
"arbitrary" distributions. This is accomplished by representing the source distribution as a set of spatially distributed

truncated Gaussian basis functions.
12
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Figure 10. Transmission efficiency for MAST Upgrade case with an obstruction at u = 6m, descending into the beam in the range 0 < b, < 0.3m.
The red line is for p, at Om and 4m; the blue line is for p, at 8m, 12m and 20m

The PDF, I'(g, 8), constructed from a collection of n, normally distributed sources with truncated bounds, is
expressed as:

I(g.0) = )" Tig(g.0) (62)
k=1

where gi(q, 6) represents the PDF of a single Gaussian source with spatial truncation (c.f. equation 4):

Ay ( (g-q)? (-6
A ep - _

] if Gmin < ¢ < gaxand —5 <6< %

8kK(q,0) =1 ny, 207 262 (63)
0 otherwise
Here the normalisation constant A and the terms n;,, n,,, are defined as:
1
= 64
k 2rnoony, (64)
nlk :q)(LInzax)_q)(Qmin) (65)
(o Tk
/2 -6, -n/2 -6,
m, =c1>( / 5 ”k)—CD( /(s “*) (66)

For each gi(g, 0), the expressions for the PDFs g,(6; p,, py) and g>(p,; p,) are given by equations 23 to 45 with the
transformation p, — p, — gx.

For I'(g,6) to be a probability requires that },}* T = 1. With this condition satisfied, I'; is the fractional flux
carried by the k' basis function.

To set about defining parameters of the constituent basis functions to fit a given distribution, we integrate equa-
tion 62 over 6:

np

I"(g) = ) Tigi(@) ©7)

k=1
13
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where the marginal distribution g;(q) is:

_ 2
V27t ARS exp (—M] Gmin < 4 =< Gmax
20

k
0 otherwise

8@ = (68)

With defined g, and o values, the set of coefficients I', = {I'y,--- ,T’,,} can be determined in a least-squares sense
by solving a set of linear equation, with the stiffness matrix composed of g;(g;) terms evaluated at a set of n; sample
points g; € {q1,- - , gy} distributed over the one-dimensional source domain:

gilq) - &,(q1) I I"(q1)
: R : = (69)
81@n) -+ & (qn) 11 Ty, I"(gn,)

Selecting appropriate values for g; and o7 is crucial for achieving a smooth fit across the data range, minimizing
artefacts such as ringing, especially at the boundaries, and ensuring that all basis function amplitudes are positive (i.e.
I; >0,Vi € {1,2,...,n,). In addition as discussed in section 7 the choice of basis function affects the calculation
accuracy of the transmission efficiency.

A single parameter, p, controls the 1-D spatial density of the basis functions via a power-law distribution, ¢”. Here,
p = 1 corresponds to a uniform distribution, p > 1 increases density toward the beam center, and p < 1 increases
density toward the periphery. To mitigate ringing effects, the number of constraint points is increased proportionally
to the basis function density. The standard deviation of each basis function is set equal to the distance to its nearest
neighbour (or the average distance, in cases of non-uniform distribution) further enhances the fit.

Numerical tests demonstrate that for p > 0.1 excellent fits are obtained to a set of constant values, I"(g;) = 1
with guin < ¢i < qmax by placing the mean positions of basis functions within a spatial range extending one standard
deviation beyond the physical extent of the beam source. A particular example with p = 1 is shown in Figure 11(a).
All observed computed fits have no ringing and with basis function amplitudes that are always positive. Obtaining
good fits with p = 0.1 is more challenging, because of the reduced density of basis functions in the domain interior.
Figure 11(b) shows a typical case for p = 0.1 and was obtained with the mean positions of basis functions restricted to
lie within the range of the source domain. Compared to the previous case, ringing is apparent in the domain interior.
Other tests have negative amplitudes for basis functions with means close to the domain boundaries. This is strictly
permissible numerically and is not inconsistent physically as the sum of the basis functions is nevertheless greater
than zero at all values of g.

1.0 - 1.0
0.8 1 1 0.8
0.61 -e- input data 0.6 -e- input data
—— basis functions —— basis functions
— fitted data — fitted data
0.44 0.44
0.21 0.2
0.0 1 0.0 \ /
~03 -02 -01 00 01 02 03 —0.2 —01 0.0 01 02
[m] [m]
(a) p = 1 (uniform loading) (b) p = 0.5 (high density of basis functions at boundaries).

Figure 11. Results of fitting a set of data with 5 basis functions. The blue curve represents the sum of the constituent basis functions, which are
individually shown in green. The boundary of the region, indicated by faint blue vertical lines, is located at +0.21 m.
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6. Extension to 2-D source distributions

The model can be extended to two dimensions if the beam can be approximated as rectangular and is uncorrelated
across dimensions. For cases involving multiple beams (e.g., beamlets within a larger beam), the constraints apply
individually to each beamlet rather than to the composite beam. The PDF at the source grid can then be expressed as
the product of two independent distributions:

g(quv ’ 614\) ’ qul ’ ewu) = gMV (qllV ’ eLlV )gWM (qWLl ’ HWM) (70)

Here g,, and g,,, corresponds to g(g, 0) as defined in equation 4. The function g(gy., 6..) is obtained by transforming
g(g, 0) with the substitutions w — —v and 6,,,, — —0.

An additional condition is that the baffle edges must align with the beam-aligned uvw coordinate system. However,
this is not achievable for circular baffles and may only be partially true for other baffles shapes. Accurate modelling
of baffle losses necessitates precise boundary representation, considering combinations of rectangular and circular
baffles, as illustrated in figure A.20.

To address this challenge, the source distribution can be decomposed into Gaussian basis functions each occupying
a smaller spatial extent, as outlined in Section 5. Figure 12 shows the arrangement of Gaussian basis functions over
a two-dimensional source grid, uniformly distributed on a grid, aligned with the coordinate axes. Defining the source
intensity distribution as the product of two one-dimensional functions:

", w) =TI, (w) (71)

permits the node intensities to be computed in one dimension by solving equations 69 separately for each axis us-
ing I""(¢q;) sets generated from the functions I'}(v) and I'],(w). From these results, the two-dimensional PDF can be
assembled.

The independence of the distributions in the uv, and vw planes allows the transmission coefficient, 7, to be com-
puted as a sum of products of integrals over n;, basis functions:

n=> Ik f (8u)5 dv f (gwa)s dw (72)
k=1

Here, (gw)é denotes the k™ basis function’s g» PDF (equation 29) in the uv plane, and (gwu)lg represents the k™ basis
function’s g, PDF in the wu plane.

The next section will explore how the selection of the number of basis function and their spatial distribution
influences the model’s capacity to accurately account for baffle-induced losses.

7. Application to MAST Upgrade

A new module has been developed within Minerva to model collisionless beam propagation from a two-dimensional
beam source comprising multiple sub-beamlets, incorporating realistic baffle geometries. This enhancement leverages
Minerva’s recent integration with the ITER Integrated Modelling & Analysis Suite IMAS) [34, 35], enabling the sim-
ulation of any neutral beam system for which an appropriate IMAS database instance is available. In this section, we
present model predictions for the MAST Upgrade neutral beam system.

The MAST neutral beam system is detailed in Barrett [36], with additional engineering specifications provided in
a technical note [32]. As the latter information is not publicly available, we include pertinent details here, along with
descriptions of baffles and PINI geometry in the appendix.

The IMAS dataset for the MAST Upgrade beam system specifies the locations of 262 beamlets and their fractional
powers; in the data set used for this work there is equal power distribution among all beamlets. The numerical model
computes the PDF of the beam by summing the contributions from each beamlet. To reduce computational demands,
the model also allows for fitting the spatial variation of fractional powers with a reduced set of basis functions, as
described in Section 5. Below, we present results using both the full set of 262 beamlets (method 0) and the reduced
set of basis functions (method 1).

15
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Figure 12. Cartoon of a 2-D beam source, indicating the locations of Gaussian basis functions. The shaded region indicates the range to within
one standard deviation for a single Gaussian basis function. The green circle indicates the position of a circular baffle surface, and the magenta and
orange lines indicate the positions of effective baffles necessary to compute the 1-D beam propagation in the v-u and w-u planes respectively.

Figure 13 displays contours of PDF variation, marginalized over velocity, for a MAST Upgrade neutral beam using
method 0. The plots are on planes parallel to the beam source, with u denoting the normal distance from the source.
Figures are shown at the beam source (#=0m), at two positions downstream toward the plasma cavity (#=1.5m and
u=2.5m), and within the plasma cavity (u=7m). The coordinates v and w represent vertical and horizontal positions
relative to the center of the beam source.

In figure 13(a), the localized intensity of the 262 beamlets is evident, exhibiting symmetrical mirroring across
the beam source. The PDF in subsequent panels (figures 13(b—d)) is modified by the combined effects of velocity
divergence and baffle interactions. Notably, the shaping observed in figure 13(b) results from the "Neutraliser Il HR"
baffle, the outline in figure 13(c) is due to the "Inter-tank duct entry" baffle, and the circular outline in figure 13(d)
arises from the "Duct 1 entry" baffle (see Table A.4 for baffle names and coordinates).

Figure 14 illustrates the variation in transmission efficiency with distance from the beam source, calculated
using method 0. Step-wise reductions in efficiency are induced by baffies, resulting in a final transmission effi-
ciency of n = 93.2% at the plasma cavity. The most significant degradations occur at the "Neutraliser II HR" baffle
(u = 1.840m), the "Inter-tank duct entry" baffle (u = 2.799m), and the "Duct 1 entry" baffle (v = 3.851m). These
results align with calculations of transmitted power efficiency in the JET beam line, as shown in figure 8 of [26].
Although [26] does not provide specific details about the beam geometry, beam divergence and baffle geometry, the
reported transmission efficiency of 7 = 88% for JET, obtained using the PINI simulator code, is reassuringly close to
the value computed for MAST Upgrade.

Figure 15 compares transmission efficiency at u=7m across five model variants. The dashed line represents results
from method 0, considered the most accurate representation of the neutral beam system. Other calculations employ
alternative sets of basis functions as prescribed in Section 5. The findings show that as the density of basis functions
changes from uniform loading to edge loading (o = 1.0 - p = 0.5 - p = 0.3 — p = 0.1), the discrepency with
the method O result decreases. In particular the result with p = 0.1 and 5 basis functions per axis is within 0.03%
of the method O result. Further calculations show that for these model parameters the maximum discrepency in the
transmission efficiency in the range 0 < u < 10 is 0.25%. The reason that small values of p improve accuracy is
because the generated basis functions can better account for circular baffles; in cases where the baffles are entirely
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parallel to the v- or w- axes there was no observed dependence on p. These results show that using five basis functions
per axis (totalling 25 basis functions) results in a transmission efficiency degradation of less than 0.03% at u=7m
(0.25% for u < 10m), while reducing execution time by a factor of approximately 10. It is important to note that
method 0 and method 1 address similar but not identical problems. While method 0 models a non-rectangular, locally
varying source distribution, method I assumes a rectangular source with a constant (and, in this work, non-varying)
fractional power density. For method I the transmission efficiency is affected by the dimensions of the nominal source;
the results shown in Figure 15 assumed the dimensions of the rectangular beam source extended 3mm (ie one pini
half-radius) beyond the outer pini beamlets.

Figure 16 presents the horizontal PDF profile, marginalized over velocity, at u=7m and v=0m. Results are shown
for method 0 and method 1 (p=0.1 with five basis functions per axis). The two cases are nearly indistinguishable,
indicating that the simplified model accurately represents spatial variations in the neutral beam at this location.

Figure 17 plots the marginal velocity distributions in the wu and uv planes at u=7m. Results for method 0 and
method 1 (using p=0.5 with five basis functions per axis) are compared. The method 0 results exhibit detailed varia-
tions reflecting the spatial distribution of beamlets on the source grid. In particular, the unusual 8-dependence in the
wu plane is due to fewer beamlets on the top and bottom rows of the beamlet grid (see figure 13a). In all cases the
method 1 results closely replicate the trends of the method O results. These plots show that the effect of superposing
the spatially offset Gaussian beams results in velocity distributions that are fundamentally different to the distribution
of a single Gaussian beam expressed by equation 28 (c.f. figure 8).
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Figure 13. Variation of PDF on planes normal to the MAST Upgrade neutral beam source marginalised over velocity.
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Figure 17. Marginal velocity distributions in the wu plane (blue) and in the vu plane (red). The angle 6 is the anti-clockwise angle subtended by
the velocity vector with the unit vector in the u-direction. Results shown are from model method 0 (solid line) and method 1 (dashed line). Refer to
figure 13d to relate the velocity distributions to their spatial positions within the neutral beam .

8. Conclusions

We have developed an analytical model to describe the transport of collisionless particles in neutral beam sys-
tems, incorporating non-Gaussian source distributions using Gaussian basis functions. The model extends to two-
dimensional source distributions under the assumption of separability along orthogonal axes, enabling a comprehen-
sive analysis of beam propagation dynamics.

The model also accounts for baffle geometry, with reductions in the transmission factor due to baffle losses com-
puted efficiently through integrals over one-dimensional marginal velocity distributions along each beam axis. The
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model shows that a single beam’s velocity distribution retains its Gaussian nature en route to the plasma cavity, al-
though its divergence is modified by geometric shaping. However, superposing spatially offset Gaussian beams can
produce a velocity distribution that deviates significantly from a Gaussian profile (see figure 17). The degree of
deviation will depend on the spatial distribution of fractional beam power among the Gaussian components.

Our implementation of the model as a module in Minerva, interfaced with IMAS, enables the computation of
two-dimensional collisionless particle distributions for any neutral beam system with an available IMAS database.
Application to the MAST Upgrade neutral beam system has demonstrated the model’s ability to account for detailed
source distributions and to capture the evolving beam shape and velocity distribution.

A key feature of the model is its computational efficiency. By employing an analytical method to evolve the par-
ticle distribution instead of relying on Monte Carlo tracking of individual particles, the model ensures computational
tractability, particularly in Bayesian analysis contexts. Using a reduced basis set to represent the source distribu-
tion maintains accuracy within 0.25% for transmission efficiency calculations, while achieving a tenfold reduction in
execution time.

Future plans involve coupling the collisionless beam model with a collisional-radiative model to enhance diagnos-
tic modelling capabilities, enabling the quantification of beam losses in the duct during its transit to the plasma cavity.
Additionally, the implementation of the model within the Minerva framework, achieved during the current work, will
create new opportunities to address uncertainty-related challenges in neutral beam systems within the tokamak context
by utilizing the extensive Bayesian analysis tools provided by Minerva.

This integration will particularly benefit diagnostics such as Motional Stark Effect (MSE) and Charge Exchange
Recombination Spectroscopy (CXRS) on MAST Upgrade. By applying Bayesian analysis, uncertainties in parame-
ters such as beam divergence, power flux, geometry, and the neutral gas distribution in the duct can be systematically
evaluated. This comprehensive approach will enhance the interpretation of diagnostic data and optimize the perfor-
mance of heating systems in tokamaks reliant on neutral beams.
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Appendix A. The MAST neutral beam system

Figure A.18 shows the engineering dimensions of the The MAST neutral beam system. The values of parameters
referred to in this figure are given in table A.1. Other relevant design parameters are given in table A.2. The final
acceleration grid (referred to as grid 4 in figure A.18) is shown in figure A.19. Ions emerge from 262 circular holes
each with a diameter of 12mm into a neutralisation chamber. The coordinates of the sub-beamlets are provided in
table A.3 and baffle coordinates in table A.4. The locations of the beam baffles are plotted in figure A.20.
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Table A.1. Neutral beam engineering dimensions (see figure A.18 for parameters definitions). Taken from [32].
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Table A.2. Neutral beam design parameters operated with Deuterium injection. Taken from [32].
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