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on Tokamak First Wall

Wayne Arter, Senior Member, IEEE

Abstract—Profiles of power deposition on the first wall of the
Joint European Torus (JET) tokamak experiment are fitted by
tracing an analytic representation for the distribution of power
from midplane along lines of magnetic field. The technique
is used to help design plasma facing components (PFCs) in
reactor-scale magnetic confinement devices, hence understanding
how to employ it both efficiently and accurately is important.
Focussing on JET divertor geometry, the work examines the
sensitivity of the integrated power and maximum power per
PFC tile to the representation of the magnetic field and to
the discretisation of the tile’s own geometry and that of other
PFCs. For design it is helpful to reduce computation costs per
realisation to a few seconds of elapsed time, and the work
concludes with recommendations and guidelines for minimising
cost whilst retaining adequate accuracy.

Index Terms—Tokamak, JET, uncertainty quantification, nu-
merical sensitivity, plasma-facing components, power deposition

I. INTRODUCTION

Detailed motivation has been presented in the recently pub-
lished [1] for the accurate simulation of the power deposited
on the first wall of a tokamak due to leakage from the main
plasma confinement region. There are three aspects to be
considered to provide confidence in any simulation, namely
verification, validation and uncertainty quantification (VVUQ).
The recent [1] and other literature [2]–[4] give evidence for the
adequacy of the SMARDDA modules in respect of the first
two (VV) aspects. Specifically for the JET tokamak, unpub-
lished reports from a multi-year campaign to speed execution
of the software provide further VV. Extracted from this report
material, the present work seeks to quantify uncertainty arising
due to the discretisation of tokamak magnetic field and PFC
surface geometry employed by the SMARDDA-PFC code.
Such understanding ultimately enables accurate and efficient
UQ of different field and geometrical designs.

The presence of plasma is key to the effect that the energy
flux on first wall is expected to be directed parallel to the
magnetic field, hence the power Q deposited per unit area can
be reduced dramatically by arranging for grazing incidence
of magnetic fieldlines on PFCs, with obvious benefits for
reducing thermal stress. Observing that for a PFC tile of
indicative extent 200mm, a 1mm ripple equates to half a
degree of normal deflection, it is a challenge to discretise field
and geometry so that power deposition at angles of as little
as 2o or less can be economically calculated. This challenge
forms the primary focus of the current work.

Wayne Arter is with the UK Atomic Energy Authority, Culham Science
Centre, Abingdon, Oxfordshire OX14 3DB UK

The challenge is greater because the present strategy for
triangulating geometry imported from a CAD package does
not allow for adaptive mesh refinement, for example it is not
possible to insert more triangles where gradients of power den-
sity Q are large. However, the surface mesher used, provided
by the CADFIXTM package allows for a wide range of factors
to influence triangulation, and locally written software enables
systematic refinement of an initial mesh [3, Fig. 3].

The representation of the magnetic field B is by the de facto
.eqdsk standard for an axisymmetric field in terms of poloidal
magnetic flux function Ψ(R,Z) and toroidal magnetic field
component BT (Ψ) where (R,Z) are position coordinates in a
vertical plane. The discretisation of B is all the more restricted
since Ψ is specified as point values on a uniform rectangular
grid. Previously published work on convergence has concerned
relatively small areas of ‘target’ PFC, as little as one tile, where
calculations of shadowing by immediately adjacent tiles can
be made in a few seconds on a desktop for a detailed target
with 50 000 triangles [3]. However, the JET divertor consists
of approximately 600 tiles and reactor PFCs will have surface
areas that are at least an order of magnitude larger still, thus
the novelty and importance of the present work lies in enabling
fast design job turnaround by use of coarser triangulations in
configurations that allow more complex shadowing of one tile
by another.

The next Section II describes the JET test cases in more
detail, then Section III begins the presentation of results in a
‘best case’ situation to set the context, and largely disposes of
the issue of magnetic field discretisation. The main study of
sensitivity to surface meshing appears in Section IV, where
many anomalies in the Q results become apparent. Their
causes are identified, enabling the straightforward removal
of most of them. Section V presents analysis that explains
how the most awkward anomaly arises, then meshings which
confirm the explanation, and show how the anomalies may be
eliminated are presented in Section VI. The implications of
the results are discussed in the concluding Section VII.

II. TEST CASE CONSTRUCTION

Calculations are given a runid as follows
runid = eqid-gshad-gres
where eqid identifies the magnetic equilibrium, usually in
terms of the last three digits of the JET shot number, and
gshad and gres are respectively the roots of the .vtk filenames
of the shadow and target or ‘results’ geometry triangulations
respectively. Specification of the physics of the simulation is
completed by giving the leakage power profile at midplane,
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which is by default the formula due to Eich with parameters
λq = 0.017m S = 0.0011m and Ptot = 10.2MW, mathemat-
ical details of which appear as [1, § A]. Other input parameters
for SMARDDA-PFC, other than those which specify output
diagnostics, serve to define the numerical algorithm. Sensi-
tivities to most of the latter have been studied previously in
ref [3], enabling the present work to focus on the discretisation
of the magnetic field and of the geometry in the simulations.

A. Equilibria

For shot #89297 at t = 45.011 s, the equilibrium was
specified by two .eqdsk files each with a different spacing
for the samples of magnetic flux Ψ. These two solutions
were produced with respectively a coarse 32 × 32 Ψ-mesh,
and a much finer 256 × 256 Ψ-mesh. The former is given
the simple eqid=297, the latter is referred to as fi297. The
deposition profile for the shot is exponential decay [1, § III]
with λq = 0.0066m and Ptot = 10.5MW.

Since strike-point sweeping to spread the power deposition
more widely over the PFCs might well be used in high power
density discharges, a second shot is considered. The periodic
sweeping is represented by a sequence of five equilibria
equally spaced in time with the first and the last in the
sequence at approximately the same phase, ie. sampling is at
a interval τP /4 where τP is sweep period. The flux-sweeping
shot considered is JET #90271, where a 128 × 128 Ψ-mesh
is used throughout. Since more than one equilibrium is taken
from this shot, they are numbered in time order after a decimal
point, so that eqid=271.1 corresponds to the first equilibrium
in the strike-point sweeping sequence at t=49.0 s, 271.2 to
t = 49.0624 s, 271.3 to t = 49.1368 s, 271.4 to t = 49.198 s,
and 271.5 to t = 49.2788 s. For experimental details of these
and related shots see [5].

B. Geometry

Since the original design of JET predates the universal
employment of Computer Aided Design (CAD) systems, the
acquisition and assembly of geometrical representations suit-
able for meshing required a deal of assistance as noted in
the acknowledgements section at end. Fortunately the divertor
design belongs to a later period where CAD files including
construction details such as holes and fastenings were avail-
able. It followed that a workflow of modern relevance was
possible for calculation of Q on the divertor, which is anyway
a region of high interest to tokamak designers. The divertor
consists of 24 repeats of a set of 24 tiles that spans 15o in
toroidal angle, together with 48 repeats of a set of vertical
plates joined (T5) to present their edges to the plasma.

The workflow begins by defeaturing the CAD description
of the 15o toroidal segment, removing irrelevant construction
details, using the commercially provided CADFIX software.
Attention focusses on the surface interfaces with vacuum,
particularly the PFCs, which as the name implies are those
directly facing the hot, centrally confined plasma, and espe-
cially on the narrow fillets illustrated in Figure 1. The retention
of the latter demands the extra expense of locally fine mesh,
thus two attempts were made to remove the fillets ‘by hand’

Fig. 1. JET divertor tile T6 design, illustrating fillet boundaries as pale green
lines, closeup at bottom left.

as the automatic defeaturing facility was defeated by some of
the three-way joins. Surface meshing of the defeatured CAD
was also carried out using CADFIX, which has a GUI that
allows for a wide range of different meshing strategies. Given
that four defeatured representations (two with and two without
fillets) of the CAD were available and two levels of automatic
mesh refinement possible, this led to some 20-plus different
meshes for the divertor repeat geometry, with a range of
sizes of approximately 100 in terms of the total number of
triangles N∆ in the target. All the meshes were given labels
traceable to a .vtk file keeping each one for future reference.
The labels begin with ‘c’ if fillets have been removed and
with ‘d’ or ‘f’ if retained, but as explained in Section A,
the remainder of the label is an arbitrary string, excepting
that a terminating ‘2’ or ‘4’ denotes respectively a refined or
doubly-refined mesh (although not all automatically refined
meshes are labelled in this way). Each separate meshing of a
15o segment is referred to as the ‘a’ model. The combination
of three adjacent copies of the ‘a’ model is called the ‘b’
model, which therefore represents one octant (eighth) of the
divertor. Replicating, translating and joining the ‘a’ model
24 times in toroidal angle gives the ‘c’ model and combining
‘c’ with meshes for other PFC geometry gives the full 360o

‘d’ model, see Figure 2, corresponding to the initial 15o ‘a’
mesh. Used as part of the geometry label, ‘a-d’ are prefixed by
‘fs’ and ‘ft’ to denote whether the file represents a shadow or
target respectively. To save storage, instructions only are saved
for re-generating the ‘c’ and ‘d’ models by SMARDDA code
vtktfm.

III. PRELIMINARY STUDIES

A. Results for one Octant

Initial studies that included the JET limiters showed that
little power was intercepted by them. Since the outer limiters
are likely to be the most important PFC lacking rotational
symmetry in their placement, when divertor power deposition
is the main focus, it is reasonable to exploit the inherent
symmetries of the divertor.

First, exploiting an eightfold symmetry, in order to verify
the use of the software on a single JET octant, a series of



IEEE TRANSACTIONS ON PLASMA SCIENCE 4

Fig. 2. 360o model for shadow viewed from outside looking down, with
superimposed results for a 15o geometry providing an indicative fieldline,
drawn in white.

calculations was conducted as indicated in Table I. As the
table shows, these were used to test the adequacy of the
meshing. It immediately makes clear that the total power
deposited on the 15o or 1/24th segment of the divertor is
approximately 400kW and therefore significantly lower than
the value of Ptot/24=425 kW expected given that total power
in the midplane profile was Ptot = 10.2MW. It was then
realised that λq = 17mm was of order of one-third of the
width of the SOL at midplane, so than only the first three e-
folds of the approximately exponential distribution of power
could contribute to the total. Elementary integration of the
decaying exponential reveals that this amounts to 95% of the
total, ie. 0.95× 425 ≈ 404 kW.

Following this renormalisation, Table I shows that the
integrated power is accurately computed on the coarser mesh,
and this level of accuracy extends even to total power on
subsets of the geometry, see Figure 3. However it should be
noted that in the first version of Table I, there was a maximum
power for eqid=271.3 on the coarse mesh given as 7.261MW,
which was identified as spurious due to poor grid alignment
(see Section V) and as there was only one offending triangle,
the table entry was easily correctable. Compute times for a
single processor desktop were of order a minute for the coarser
grid and scaling approximately as N∆. (Multicore parallelism
has been shown to bring wall-clock times down to 30 s for
N∆ = 106.)

The segregation of the geometry indicated by Figure 3 is
about the best that can be achieved using the SMARDDA
software smanal which implements a clustering algorithm in
poloidal angle, because seen from any point inside the PFCs,
there is significant overlapping of at least two tile rows. Given
that variation between the 15o segments is negligible, from the
simple practical standpoint of reducing by a factor of three the
work needed to segregate tile rows, further exploration was
conducted using a 15o toroidal segment as target, although
using a full ‘d’ model as the shadow.

A compact example of the plot of the power deposited on
the divertor is provided by Figure 5, where it will be seen from
T6 that shadowing leads to sharp cutoffs both in the toroidal
direction (decreasing y in the figure) and the radial direction

TABLE I
SCAN OVER STRIKE-POINT SWEEPING OF 45o TARGET GEOMETRIES FOR

GEOMETRY “CLE”. “REFINED” DENOTES THAT BOTH TARGET AND
SHADOW MESH REFINED ×4, THUS COLUMNS 2 AND 3 ILLUSTRATE THE

SENSITIVITY TO MESH REFINEMENT.

Equil Qmax
∫
Q/3

- MW/m2 kW
271.1 6.884 407

Refined 6.735 405
271.2 5.380 399

Refined 5.412 403
271.3 5.002 400

Refined 5.046 400
271.4 5.326 399

Refined 5.380 400
271.5 6.947 407

Refined 6.735 405

The number of triangles for the 45o target geometries were N∆ =182 367 and
729 468 respectively (60 789 and 243 156 in 15o), giving mean mesh sizes of
respectively 6mm and 3mm. The shadow consisted only of the 360o divertor.
Note that the integrated powers have been divided by three to compare with
the 15o case studied later).

Fig. 3. Time history throughout strike-point sweep of power on different parts
of the geometry. Labels finishing r denote results from refined calculations in
Table I.

corresponding to increasing x. Despite this, good accuracy is
achievable using relatively coarse meshes with sidelengths of
order λq for recently explained reasons [1]. Since the coarse
mesh of Table I has a side of mean length one-third of λq , a
tenfold increase in execution speed is conceivable.

B. Effects of flux mesh size

Section II-A describes the equilibria labelled eqid=297 and
eqid=fi297 as having size 32× 32 and 256× 256 meshes re-
spectively. Figure 6 shows that their flux contour plots overlay
very closely in the region of most interest for divertor power
deposition, excepting what is confirmed to be a plotting issue
at the X-point by inspection of the gradients of Ψ. At close to
grazing incidence, Q depends sensitively on the angle between
the field and the surface normal, but it does not depend
greatly on the poloidal component of field, since this is much
smaller than the toroidal component of 2T. To be specific,
the poloidal contribution needed to deflect B by one degree is
approximately 0.04T, whereas the entire poloidal field at the
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Fig. 4. Flux surfaces Ψ(R,Z) for eqid=297, drawn in purple, superimposed
on a profile or ‘silhouette’ of the JET first wall plotted in green. Distances
are in metres.

Fig. 5. Power deposition Q in MWm−2 for a 15o toroidal segment of JET
divertor, labelled with tile row numbers, for case fi297-fip-fiar. The plasma is
sited above the divertor geometry as indicated by Figure 4.

Fig. 6. Close-up of contour plots of flux Ψ(R,Z) superimposed on JET
silhouette (green), contour spacing 0.05. The equilibrium eqid=fi297 has
contours drawn in purple, whereas those of the coarse mesh eqid=297 are
shown as blue dots.

wall is approximately 0.2T, thus Figure 6 suggests a negligible
change in field direction from the different sampling.

In contrast, changes in the point value of Ψ feed into a
formula involving an exponential. Error estimation begins by
using the fact that the software outputs a quantity somewhat
confusingly referred to as psista which is the value of Ψ
at the midplane, ie. the computed end of the fieldline given
a start-point on the PFC. Hence it is possible to plot the
discrepancy in Ψ over the wetted area, as in Figure 7. Since
Ψ = O(1), the discrepancy even on the coarse mesh, seems at
first sight negligible, and indeed the shadow patterns are visu-
ally indistinguishable. but sadly the error of |∆Ψ| ≈ 2×10−3

implies that Q is in error by approximately 10%. However,
the resulting error in Q on the fine mesh will be 0.1% and
easily tolerable.

The standard JET .eqdsk file contains a somewhat
coarser 128 × 128 Ψ-mesh, so it is useful to understand the
mechanism underlying the failure in flux conservation. For
a randomly selected long fieldline, Figure 8 shows that it is
not a consequence of inaccuracy in the Embedded Runge-
Kutta (ERK) solver that computes the fieldline trajectories.
Further investigation confirms the suggestion from Figure 6
that the error correlates with flux gradients. The system of
fieldline equations solved for JET divertor models, advances
positions in cylindrical polar coordinates by the corresponding
components of axisymmetric equilibrium B. The finite-size
mesh used to represent Ψ implies that the fieldline equations
are solved subject to subgrid spatial uncertainty in the field.
Generically, this deficiency leads to a failure of flux conser-
vation, even when (pseudo-)time-step→ 0. This explanation is
supported by the facts that the error is small and accumulates
only over large spatial scales, but is worse the coarser the
Ψ-mesh, and also greater where the flux gradients are larger.

The above arguments and simulations imply an empirical
formula for the relative error in Q = 100∆Ψnum, where
Ψnum is the numerical value of Ψ in SI units, which is
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Fig. 7. Discrepant flux for powcal with 32×32 Ψ-mesh (top), max |∆Ψ| =
2× 10−3 and 256× 256 Ψ-mesh (below), smaller max |∆Ψ| = 2× 10−5.
eqid=(fi)297-fsdfip-fiar.

Fig. 8. eqid=297-fsdfip-fiar. Failure of magnetic flux conservation along
fieldline 753 with 32 × 32 Ψ-mesh, diagnostic activated by uncommenting
source code. ϵ is the tolerance used in the ERK solver. The fieldline computed
with greater accuracy was allowed to continue beyond the inner midplane.

Fig. 9. Failure of flux conservation over divertor using the 128 × 128 Ψ-
mesh, max |∆Ψ| = 2 × 10−4. Equilibrium 271.1, #90271 at t = 49.0 s.

confirmed by Figure 10, that indicates 2% or less error. Hence
the error is bearable for Q calculations using a 128× 128 Ψ-
mesh.

From the plot of flux contours in Figure 6, it is possible
to estimate graphically that the spatial errors (in m) at the
end point of the fieldline are 0.2∆Ψnum, equating to at most
0.04mm for the 128× 128 Ψ-mesh. Hence there is no visible
effect on the extent of the inter-tile shadowing, since the
triangle dimensions are typically at least several mm. The
difference between flux values found at the two ends of a
numerically computed fieldline is noted to be a powerful
diagnostic of its accuracy.

IV. SENSITIVITY STUDIES

The otherwise trivial matter of labelling the 15o geometry
segment by tile row and location, enables a workflow that is al-
most completely automatic for processing and analysing power
deposition on each of 25 different gshad-gres combinations for
a given eqid, in the notation of Section II. Thus the script
that coordinates execution of the different modules geoq,
hdsgen and powcal needed to perform a SMARDDA-PFC
simulation could in turn be invoked by a higher level script
covering the 25 cases. A second script was written to invoke
the smanal module for analysing powcal output to give
maximum and integrated values of Q on each tile row, and to
combine the results both in tabular and graphical form. Both
equilibria jet271.1 and jet271.3 (subsequently abbreviated to
271.1 and 271.3 respectively) were analysed in this way. The
combined plots were initially ordered by number of triangles in
the target, later when it was realised that there was negligible
power deposition on T5, plots were based on the total number
of triangles representing the other tiles.

The results obtained by the automated process showed a
number of anomalies. Firstly although the results for 271.1
and 271.3 tended to share the same features, those for challmr-
challmr2 and challmr2-challmr2 differed. This was traced to
the fact that the sorting algorithm, since the simulations shared
the same size target, had reversed the order of analysis of their
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Fig. 10. Absolute (top) and relative error (below) in power deposition due to
failure of flux conservation along a fieldline. runid=271.1-fsdfia-fiar.

output, and simply corrected. Simulations will henceforth,
unless stated otherwise, be for 271.1 and so may be identified
by the labels of their shadows and targets only (further
omitting fsd and fta label prefixes). The second set of
anomalies was confined to the T1 results and found to occur
because a smaller area of the T1 surface had been meshed
in simulations made before it was realised that notably in the
flux sweeping calculations, power was deposited over much
of T1 and indeed spread to T0. Depending on which T1 mesh
was used, the total power deposited could change by a factor
of approximately two. The simple fix made here was to omit
T1 from the plotting and focus on the other tile rows.

Attention now transferred to the integrated and maximum
powers on T6, which contains the region where the largest
values of Q are expected in 271.1. Unexpected variability
in their values was traced to inappropriate shadowing of the
concave region on T6, as illustrated by Figure 11(a). Such a
problem had been anticipated, and a control parameter ℓcrit
introduced so as to ignore fieldline intersections with surfaces
when the length of fieldline was below this value. However,
the critical length parameter was specified in units of the
underlying uniform grid (‘DDA’ grid), partly for convenience
of implementation, but also because it gives rise to a useful
anisotropy in the metric. Spurious collisions may also occur

Fig. 11. (Top) Schematic of the spurious shadowing of a concave surface of
the blue volume. The surface is represented by two elements in the finer
meshing (red) and one surface in the coarser meshing (green). Fieldlines
starting on the finer mesh soon intersect the coarse mesh. (Below) Overlay of
meshes of the divertor geometry, clas and clar2. The first mesh is shown
in green and the second, its refinement by a factor of four, in red.

with neighbouring triangles on the surface, in which case the
length along the fieldline to intersection may be of order the
triangle size, rather than the considerably smaller distance
between two triangulations at the same point. Specifically, all
calculations in the present section use a ‘DDA’ grid of size
16 384 × 65 536 × 16 384 to represent a volume of approxi-
mately 2×20×2m, so that eg. ℓcrit = 3 corresponds to 0.4mm
in a radial direction, but over 0.9mm in the toroidal (Y )
direction.

Unfortunately, it seems that consequent on this choice
of metric, premature fieldline termination took place over a
significant area of T6 as indicated by Figure 11. leading to
greatly reduced maximum and integrated Q on refined target
meshes. Increasing ℓcrit from 3 to 20 removed the effect
for six of the visibly anomalous cases, and the remaining
two, fias-fiar2 and challmr-challmr4, were fixed by use of
ℓcrit = 50. However, in the latter case, fieldline intersection
with objects over 10mm toroidally from the starting location
will be ignored, which since the inter-tile separations range
from approximately 5− 14mm means that other triangles on
tile edges start to be incorrectly illuminated.

The remaining obvious anomalies are confined to the high-
est values of Q on different tiles, some of which are capable of
affecting the global maximum. Inspection of the results using
ParaView indicated that the anomalous global maxima were
confined typically to a small number, often four or less of
isolated triangles, which appeared to be spurious as a result
of distortions to the T6 tile resulting from the defeaturing of
the fillets, see Figure 12. However, all T6 results for the de-
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Fig. 12. Power deposition on T6, case fsdchasm-chasm, highlighted triangles
have anomalously high values of Q

filleted tiles seemed to be affected to an extent. Anomalies
in the T3 maximum are attributable to the field mis-aligned
meshing described in Section V. Anomalous T1 maxima are
linked to the effect discussed in the next Section VI, but in
any event do not appear in the corrected plots that follow as
Figures 13– 14.

V. SURFACE ELEMENT PROPERTIES

For SMARDDA-PFC calculation of point Q, the key quan-
tities are the barycentre of each triangle and its normal n
outward from the solid, which will here be assumed cylindrical
with radius R. In the analysis, it is convenient to work in
polar coordinates centred on the cylinder axis, see Figure 15
or Figure 17, so that

2R sin
γ

2
= h∆, so h∆ ≈ γR (1)

in the limit of small h∆/R. Computation starts by writing
down the Cartesian coordinates of each point ABCDE rel-
ative to an origin at the cylinder axis in the normal plane
containing the midpoint of AB, thus

A,B : (0, R,±ℓ)

C : (R sin γ,R cos γ, 0) (2)
D,E : (R sin 2γ,R cos 2γ,±ℓ)

Triangles BCE and ACD share an unsatisfactory property,
now discussed in detail for BCE in the Section V-A. Trian-
gles ABC and CDE have very similar and overall satisfactory
properties, shared with all the triangles considered in the
Section V-B thereafter. There follows a study in Section V-C as
to how small vertex displacements can lead to unsatisfactory
triangle properties, and the importance of triangle alignment
is summarised in Section V-D.

A. Problematic Surface Element

Elementary calculation gives the barycentre of BCE as

1

3
(R[sin γ + sin 2γ], R[1 + cos γ + cos 2γ], 2ℓ) (3)

Fig. 13. Effects of mesh, broken down by tile row (15o segment). Total
power (integrated Q) per row for each meshing, for eqid=271.1.

which corresponds to a polar angle β of

tanβ =
sin γ + sin 2γ

1 + cos γ + cos 2γ
, implying β ≈ γ (4)

in the limit of small h∆/R. The normal to the triangle BCE
lies in the direction given by the vector cross product

(R sin γ,R[cos γ − 1],−ℓ)×
(R sin 2γ,R[cos 2γ − 1], 0) = (5)

ℓR(1− cos 2γ, sin 2γ,R/ℓ · 2 sin γ[cos γ − 1])

using the trigonometric identity sin γ(cos 2γ − 1) −
sin 2γ(cos γ − 1) = 2 sin γ(cos γ − 1), so that the normal
is directed in polar angle ηθ, where

tan ηθ =
1− cos 2γ

sin 2γ
, so ηθ ≈ γ (6)

which accurately corresponds to the normal to the cylinder
surface at the barycentre angle β. However, the normal has a
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Fig. 14. Effects of mesh, broken down by tile row (15o segment). Maxi-
mum Q per row for each meshing, for eqid=271.1.

component in the z direction, so is tilted out of the vertical
by an angle ηz given by

tan ηz =
R

ℓ
· sin γ(cos γ − 1)√

2− 2 cos 2γ
, so |ηz| ≈

R

ℓ

γ3/2

2γ
=

R

ℓ

γ2

4
(7)

in the limit of small h∆/R.
1) Mean Value Theorem: It is worth noting that triangles

BCE and ACD are counter-examples to the possibility of
a fully 2-D application of the mean value theorem (MVT).
In one dimension, meaning application to a scalar function y
of a single variable x, the MVT is the result that the secant
must be parallel to a continuously differentiable curve for
at least one point lying on the curve between the ends of

Fig. 15. Schematic of triangulation of cylinder of radius R. The triangle ABC
has base 2ℓ and height h∆, where ‘height’ corresponds to an angle γ
subtended at the cylinder axis. Conversely, triangle BCE has base 2h∆ and
height ℓ.

Fig. 16. The mean value theorem in 1-D. At a value of x between the ends
of the secant (shown in red), the curve y(x) has the same gradient dy/dx as
the secant.

secant, as graphed in Figure 16. It follows immediately that
the normal to the secant must coincide with the normal at such
a point, giving cause to hope that there might be at least one
surface point close to a triangle with vertices on the surface,
that has a common normal direction. However, all points on
the curved surface of a cylinder with axis parallel to z have
normal directions in the xy-plane, whereas it was just shown
that BCE and ACD have normals with a z-component, thus
the MVT cannot apply as hoped.

B. Satisfactory Surface Elements

In Figure 17, the points are

A,B : (0, R,±ℓ)

C,C ′ : (R sin γ,R cos γ,±ℓ) (8)
D,E : (R sin 2γ,R cos 2γ,±ℓ)
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Fig. 17. Schematic of second triangulation of cylinder of radius R. All the
triangles ABC, BCC′, CC′E and CDE have base 2ℓ and height h∆,
where ‘height’ corresponds to an angle γ subtended at the cylinder axis.

Analysis proceeds as in Section V-A. The barycentre of ABC
is

1

3
(R sin γ,R[2 + cos γ],−2ℓ) (9)

which corresponds to a polar angle β of

tanβ =
sin γ

2 + cos γ
, or β ≈ γ/3 (10)

in the limit of small h∆/R. The normal to the triangle ABC
lies in the direction given by the vector cross product

(0, 0, 2ℓ)× (R sin γ,R[cos γ − 1],−2ℓ) =

2ℓR(1− cos γ, sin γ, 0) (11)

so that the normal is directed in polar angle η, where

tan η =
1− cos γ

sin γ
, so η ≈ γ/2 (12)

This normal is obviously inconsistent with radial direction γ/3
at barycentre, but it is nonetheless accurate to the extent of
lying within the range of directions spanned by the triangle.
Symmetry implies that the other triangles in Figure 17 have
the same properties, for example CDE has barycentre at
angle 5γ/3 and the normal directed at 3γ/2 without a z-
component. In the context of a conical rather than cylindrical
surface, the ‘Union Jack’ meshing was criticised for having
this property [3, Sec. II-C], but this criticism has now to be
seen as misplaced. The advantage compared to the case of
Section V-A, that the normal has no spurious z-component,
outweighs the inconsistency between location and value.

C. Misaligned Surface Element

In this example, it is supposed that point B is slightly
displaced in x through an angle δ, so that

A : (0, R,−ℓ)

B : (R sin δ,R cos δ, ℓ) (13)
C,C ′ : (R sin γ,R cos γ,±ℓ)

Analysis proceeds as in Section V-A. The barycentre of ABC
is clearly only slightly displaced by an angle of order δ
from γ/3 in the limit of small h∆/R. The normal to the
triangle ABC lies in the direction given by the vector cross
product

(R sin δ,R[1− cos γ], 2ℓ)×
(R[sin δ − sin γ], R[cos δ − cos γ], ℓ) = (14)
ℓR(2 cos γ − cos δ − 1, 2 sin γ − sin δ,

R/ℓ · [sin δ(1− cos γ) + sin γ(cos δ − 1)])

so that the normal is directed in polar angle ηθ ≈ 1
2 (γ+ δ/2),

but as δ increases from zero, there will be a significant z-
component inclined at angle

ηz ≈ R

ℓ

γδ

2
(γ − δ) (15)

scaling linearly while |δ| ≪ γ with the size of the misalign-
ment.

D. Importance of Surface Element Alignments

The results of the proceeding subsections have shown how if
no side of a triangle sides lies parallel to z, then its normal has
a spurious z-component. This is important if the z-direction
corresponds locally to the largest component of the magnetic
field B, which in a tokamak is the toroidal direction ϕ, for
then the spurious contribution Bϕnϕ may be comparable to
the true contributions. Figure 18 shows speckled behaviour
of the Q-profile, following from the fact that Q ∝ B.n may
differ significantly from triangle to adjacent triangle when the
triangle edges are not well aligned to the magnetic field di-
rection thanks to changes in the Bϕnϕ contribution. However,
provided at least one edge of a triangle lies approximately
in the toroidal direction (y in the figure), then the Q point
values are more accurate. The effect of misalignment on the
quadrature is much reduced since the spurious contributions
tend to cancel, eg. in Figure 15 ACD and BCE have precisely
opposite normals, so any spurious contribution will be limited
by the change in B over the separation of their barycentres.

VI. ADDITIONAL SENSITIVITY STUDIES

Drawing on the above experience, the CAD description of
T4 and T6 was defeatured for a third time, retaining the fillets.
Meshings of the new geometry were combined with meshings
of T0, T1, T3, T7 and T8 to produce .vtk files for the divertor
‘repeat’, and another 11 cases were constructed.

Although for most SMARDDA-PFC fieldline-tracing cal-
culations, the default size of ℓcrit is adequate, a more reli-
able way to avoid problems might be to shadow the target
with an identical mesh. This was not initially considered
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Fig. 18. Power deposition on T6, case fsdfitt3-fitt3, showing ‘speckling’ in
some of the regions near the boundary of high-Q deposition.

because previously studied tokamak geometries had all had
discrete toroidal symmetries whence SMARDDA-PFC could
impose periodic boundary conditions to reduce the problem-
size to the geometry ‘repeat’, ie. by one-twelfth in MAST-
U application [3]. The shadow geometry had thus to have
the same meshing in every repeat. However, the JET results
of Section IV confirm SMARDDA-PFC capability to treat
multi-million triangulations, hence inhomogeneous shadowing
to be feasible. The preceding experience indicates that the
shadowing geometry needs to be as fine as the target geometry
‘locally’. The meaning of locally in this context was explored
by using 360o divertor shadow meshes generated as shown
in Figure 19. Replacing only the target geometry with a fine
mesh is shown to be vulnerable to spurious deposition when
edges of convex tiling are exposed as shown in Figure 20,
indicating that adjacent ‘local’ repeats should also be meshed
finely for robustness.

The meaning of locally in the context of accurate shadowing
will depend on precise details of geometry, but a common
situation will be a configuration involving rows of rectangular
tiles, with approximate sizes Lϕ×Lθ where Lϕ and Lθ are the
dimension in the toroidal and poloidal directions respectively.
Supposing shadowing by tiles on other rows to be less critical
than by tiles of the same row, then coarser meshing might be
allowed once a path following a fieldline has moved a poloidal
distance of Lθ, equating to a poloidal angle of ∆θ = Lθ/r,
where r is the minor radius. Assuming the local fieldline safety
factor is q, the corresponding toroidal angle is q∆θ, equating to
a distance travelled of approximately qR∆θ. Supposing each
tile to subtend a toroidal angle of approximately Lϕ/R, the
number of additional fine copies of a tile needed by the shadow
geometry at each side of the target is thus

Nf± =
qLθR

Lϕr
(16)

Evidently if the target consists of nT copies of the tile in a
row of interest, then the total number of fine copies needed

Fig. 19. Schematics of toroidally 360o shadowing geometry, imagined viewed
from above. ‘=T’ here denotes the location of the target segment. At the top
is the original periodic arrangement of repeats with the coarse (C) meshing.
Inhomogeneous shadows are sketched underneath: the left one shows a fine
mesh (F) coinciding with the target, whereas the right shows the target
bracketed by fine meshes. (Note that a more accurate schematic of the JET
meshes would have 24 segments rather than the twelve drawn above.)

Fig. 20. Exploratory case filp4-dint4 with inhomogeneous shadow, showing
fieldline incorrectly missing adjacent coarsely-meshed convex tile geometry.

by the shadow is

Nf = 1 + 2

[
qLθR

nTLϕr

]+
(17)

where [·]+ denotes that the bracketed quantity should be
rounded up to the nearest whole number.

The new 11 cases, all with fillets, were run semi-
automatically as described in Section IV for 271.1. The results
are shown in Figures 21– 22 which now show an absence of
major anomalies, with again the coarser grids producing results
very little different from those obtained with up to a hundred
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Fig. 21. Effects of mesh, broken down by tile row (15o segment). Total
power (integrated Q) per row for each meshing, for eqid=271.1.

times more triangles (and therefore given that computational
cost is approximately proportional to N∆, up to a hundred
times more expensive). The most significant variation is in
Qmax on T6, but inspection shows that the higher values are
all associated with a curvature sensitive meshing of T6 and
its successive refinement. The fitt-ditt meshes responsible, al-
though arguably a more accurate representation of the surfaces
than the others, are misaligned, accounting for the anomaly
in Qmax.

VII. CONCLUSION

The work presented here in Section IV, Section V and
Section VI has shown that it is possible to compute power
deposition in the divertor to an accuracy better than 10%
and probably exceeding that of the physical model, with a
remarkably small number of target triangles and a relatively
coarse mesh for the flux function. The achievement is assisted
by the relatively simple pattern of power deposition in the

Fig. 22. Effects of mesh, broken down by tile row (15o segment). Maxi-
mum Q per row for each meshing, for eqid=271.1.

divertor. Unfortunately Sections IV– VI have also shown that
it is quite possible to have comparable or worse errors with
much finer geometry and flux function discretisations.

The following guidelines are proposed based on the current
work and the companion paper [1].

1) Great care should taken in defeaturing CAD, especially
when the plasma facing surfaces might be affected. It
may be safer, albeit slower, to rebuild surfaces using
specially selected curves and face geometry extracted
from the CAD database.

2) Make an initial coarse mesh of the main plasma facing
surfaces with triangles of side no greater than the typical
lengthscale of input power profile, viz. λq in the case of
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a simple exponentially decaying profile. Check results
using a 4× refined meshing. Certain critical areas, nor-
mally tile or limiter edges adjacent to the main surfaces,
may require much finer meshing, down to assembly
tolerance of typically a millimetre, and in the absence
of special indication, all such areas should be gridded
to a finer length scale.

3) Meshing should be aligned with the main direction of
the magnetic field, viz. one side of each triangle should
be aligned with or close to the toroidal direction in a
tokamak.

4) Where shadowing and target geometry coincide, they
should share a common triangulation. In cases where
results are needed only over a fraction of the toroidal
angle, coarser triangulation of more distant shadow fea-
tures is acceptable, based on the formula of Section VI.

There is an important practical point that execution speed
may be significantly increased by inserting into the shadow
geometry ‘cutouts’ and ‘beancans’, non-physical surfaces that
intercept fieldlines certain not to connect with the midplane,
and ‘skylights’, non-physical surfaces certain to connect to the
midplane. These additions may greatly reduce the total length
of fieldline that is followed, easily outweighing the costs of
the relatively minor increase in size of the shadow geometry.
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APPENDIX

A. MESHES

For the meshing of the JET divertor geometries, use was
made exclusively of the CADFIX mesher. This allows meshing
strategies that may insert points into surfaces, to satisfy the
Delaunay (empty triangle circumcircle) property, or try to
account for surface curvature, the latter giving the option to
increase element size on flatter surfaces by setting suitable
control parameters. Other parameters set the maximum and
minimum acceptable lengths for mesh edges, the extreme
values of acceptable angles in the triangulation and the max-
imum and minimum number of divisions allowed along an
edge &c., together with further parameters that set the relative
importance of satisfying the preceding constraint parameters.
This parameter space was freely explored for five different
CAD descriptions over several years, in such a way as to defeat
a systematic naming convention, hence the arbitrary choice of
mesh label, beyond the choice of beginning with ‘c’ if fillets
have been removed and with ‘d’ or ‘f’ if retained in the CAD
prior to meshing.

The problem with describing any meshing is not only the
sheer number of parameters that may affect the result, but
also the difficulty that even small changes to an algorithm, as
minor as changing the order of processing a CAD part, may
make significant changes to the result. The decision whether
to join point P1 to P2 or P1 to P3, has to be taken on the
basis of comparison of real numbers, which may be very close
to coincidence if there is symmetry in the local geometry,
and thus the decision effectively be made at random. Since
the first marginal choice may thereafter affect all subsequent
mesh connectivity, there is no expectation that meshing will
be reproducible from one software release to another, or even
from one computer architecture to another. Hence the only
reliable way to achieve reproducibility is to retain the mesh
files as described in the main text, files which may then be
inspected using 3-D viewing software such as ParaView should
it be necessary to check details of the triangulations. The
number of triangles N∆ in each description of the geometry is
however recorded herein, as it gives an approximate value for
the average mesh length h∆ =

√
A∆/(2N∆). Since the total

area A∆ is here approximately a square metre, N∆ = 20 000
corresponds to h∆ = 5mm. Triangle numbers are presented
in Table A. Note that in some cases (calculations) the shadow
mesh of the 15o cell differs from the target by the insertion
of cut-outs, skylights, etc. and so has a label differing by one
character, typically an ‘r’ or ‘t’ is replaced by ‘s’.

TABLE II
MESHED GEOMETRIES, ORDERED IN TERMS OF TOTAL NUMBER OF
TRIANGLES IN THE MESH, FOLLOWING THE SUBTRACTION OF THE

NUMBER OF TRIANGLES IN T5.

Label Triangles Label Triangles
challmr 2851 clet204 51635

dint 3631 clar 52963
challma 6792 dint4 58096
challmr2 11404 filt204 58206

dint2 14524 fiar 63375
ditt 16236 ditt3 64944

cfallmm 19883 challnm 69469
challn 22159 challn2 88636
ditt2 22248 chasm2 92868

chasm 23217 clet2042 208 492
ftavm 36486 clar2 211 852
fsazm 41405 filt2042 232 824
chatm 42084 ditt4 235 728

challmr4 45616 fiar2 253 500
ftaum 47871


