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INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127,

Padova (Italy). 3Fusion@OEAW, Graz University of Technology, Graz, Austria.
4UKAEA, Culham Campus, Abingdon OX14 3DB, UK. 5 6 Department of Atomic,

Molecular and Nuclear Physics, University of Seville, Seville, Spain. 6General Atomics,

PO Box 85608, San Diego, CA 92186-5608, USA. ∗See the author list of J. Harrison et

al 2019 Nucl. Fusion 59 112011. ∗∗See the author list of E. Joffrin et al 2024 Nucl.

Fusion 64 112019

E-mail: edoardo.tomasina@igi.cnr.it

Abstract. Edge Localized Modes (ELMs) pose a critical challenge to the safety and

performance of plasma-facing components in tokamaks due to their periodic expulsion

of heat and particles. This study investigates the behavior of various figures of merit

for evaluating Resonant Magnetic Perturbations (RMPs) as a tool for achieving ELM

control in the spherical tokamak MAST-U. A combination of linear and quasi-linear

modeling workflows, including MARS-F (single-fluid resistive MHD) and KilCA (two-

fluid kinetic) codes, was used to analyze plasma responses to RMPs under realistic

operational conditions. To address recent experimental results, a detailed model for

the n = 2 intrinsic Error Field (EF) generated by the Poloidal Field (PF) coil system

was developed, and the plasma response to this EF was computed. Results indicate

that the n = 2 EF is, at least, of the same order of magnitude of the perturbations

introduced by the external RMP coils. In particular, the EF was found to significantly

shift the optimal points of the analyzed metrics, affecting the effectiveness of ELM

mitigation strategies. The study further explores the dependence of ELM control on

kinetic parameters through a systematic scan of the pedestal density profile. Findings

reveal that different metrics exhibit varying degrees of robustness to changes in the

density gradient. While radial field-based and torque-based metrics optima are found to

be more solid, displacement-based metrics are more sensitive to variations, emphasizing

the importance of accurate equilibrium reconstruction and robust kinetic modeling.

These results underscore the critical need for addressing intrinsic EF correction and

integrating kinetic considerations when designing ELM control strategies.
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1 Introduction

Edge Localized Modes (ELMs) are pressure-current hybrid MHD instabilities that

periodically lead to the violent expulsion of heat and particles in a filamentary fashion

when plasmas in tokamak configurations reach the so-called H-mode confinement [1]. In

reactor-scale experiments such as ITER, controlling ELMs is crucial to ensure the safety

of plasma-facing components, as the power deposited by ELM bursts scales with the size

of the device [2]. Various techniques have been explored for ELM control, which can

be broadly categorized into pacing, mitigation, and suppression strategies. ELM pacing

is typically achieved through pellet injection [3], whereas mitigation and suppression

are generally realized via the application of Resonant Magnetic Perturbations (RMPs)

through external, non-axisymmetric coils [4]. Mitigation refers to reducing the amplitude

while increasing the frequency of ELM events [5, 6], whereas suppression describes a

regime in which ELMs are completely eliminated [7].

Notably, ELM suppression has never been observed in tight aspect ratio, or spherical,

tokamaks [8]. While ELM mitigation via RMPs was demonstrated in the earlier MAST

experiment [9], replicating this success in MAST-U has proven challenging. Recent

MAST-U campaigns have yielded mixed results, ranging from significant effects leading to

mode-locking and disruptions to negligible impact [10]. Key differences between MAST-

U and its predecessor include an increase in the maximum plasma current amplitude,

accompanied by a reduction in the number of independently powered non-axisymmetric

coils [11]. This reduction was necessary to accommodate the installation of the off-axis

Neutral Beam Injector (NBI) and several diagnostics views. However, as a consequence, it

also constrained the achievable toroidal spectrum. Nevertheless, considering the increased

plasma size in MAST-U which effectively brings the plasma boundary closer to the coils,

similar magnitudes of the perturbed fields are achieved [10]. Detailed specifications of the

RMP coil system in MAST-U are provided in [10]. Moreover, so far RMP experiments

have been conducted only in Connected Double Null (CDN) discharges as no Single Null

(SN) scenario was yet available. It is known that ELM control in CDN discharges is

more challenging due to the reduced plasma response on the High Field Side (HFS) [12].

Since previous MAST experiments, modeling and empirical evidences have suggested

the presence of a residual Error Field (EF) dominated by a n = 2 component (with n

being the discrete number denoting toroidal periodicity)[10]. While in previous ELM

control experiments the n = 2 was less impacting because of the access to higher

toroidal perturbations (see for ex: [5]), in the current state of the operations the EF

could have a non-negligible impact. This could, in principle, explain the discrepancies

between experimental results and predictions of the optimal phase alignment for achieving

mitigation when operating with the RMP coils in n = 2 configuration.

Expanding the modeling effort to understand these discrepancies, this work investigates

the plasma response to external magnetic perturbations in MAST-U. The study evaluates

and compares the roles of different metrics, both fluid and kinetic, while assessing

the influence of kinetic parameters. Specifically, the magneto-hydrodynamic, resistive,

linear code MARS-F [13] is applied to compute the perturbation field resulting from the

combined effects of RMP coil currents and the plasma response. Classical fluid metrics
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Figure 1: Summary of the complete modeling pipeline.

derived from linear and quasi-linear response theories, are analyzed and re-evaluated

by incorporating an EF model. Additionally, a quasi-linear figure of merit based on a

kinetic plasma response model, computed within the KilCA framework [14] and previously

applied to AUG results, is integrated into the analysis.

The kinetic parameters are crucial in addressing plasma response challenges. Investigating

these requires robust diagnostics, diverse modeling tools, and dedicated experiments. In

this study, the impact of variations in the edge density profile has been numerically

examined, motivated by the recent installation of a cryopump in the MAST-U lower

divertor, expected to operate in current and future campaigns. The behavior of the

various metrics is analyzed and compared as the electron density profile in the pedestal

region is systematically scanned.

In the following: the numerical models used throughout the work are presented in Section

2, the different figures of merit applied are discussed in Section 3, whereas the separatrix

density scan is reported in Section 4. In Section 5 the EF model is presented and its

implications are briefly discussed. Finally, Section 6 includes the conclusions and the

work summary.

2 Modeling workflow

In this work, starting from the experimental discharges, a combination of numerical

workflows has been implemented with the scope of deriving and compare metrics for

the optimization of RMPs in terms of ELM control. The summary of the complete

process is summarized in Fig.1. Results are mainly based on the application of the

CHEASE/MARS-F workflow, where CHEASE is a well-established Grad–Shafranov

solver [15] used to generate equilibrium inputs for subsequent plasma response

calculations. The starting point for any plasma response evaluation is the equilibrium

configuration, to which a perturbation can then be applied. To maintain consistency with

experimental observations, the reconstructed equilibrium of an ELMy discharge from

the MU-02 campaign has been chosen, specifically discharge #47051. A closely related
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Figure 2: Equilibrium. Left : Magnetic flux reconstruction at 611 ms. Right, top: MSE constrained safety factor profile.
Right, bottom:Kinetic profiles (EFIT++ reconstructed) provided as MARS-F inputs.

discharge, #47052, was previously modeled with MARS-F to determine the optimal coil

phasing for ELM control experiments in the MU-03 campaign [10]. The equilibrium is

prepared by running CHEASE on magnetically constrained data that has been processed

with the EFIT++ [16] code. In MAST-U, equilibrium reconstructions are typically

constrained using Motional Stark Effect (MSE) measurements [17], which provide a

physical constraint on the internal current profile and thus on the safety factor (q) profile.

Furthermore, to closely replicate experimental conditions, kinetic radial profiles are fitted

within separate EFIT++ runs and provided to MARS-F as additional inputs. MAST-U

diagnostics can reliably measure electron temperature and density, ion temperature and

toroidal rotation velocity, though the latter tow are only available when the diagnostic

NBI is active. Since MARS-F cannot explicitly handle the X-point singularity at the

plasma boundary, a smoothing routine is applied in CHEASE before preparing inputs for

plasma response computations. This smoothing reduces the edge safety factor (qa) value

but does not affect q95. Previous studies have shown that that this kind of variations

in qa still yield similar plasma response spectra [18]. Fig.2 presents the equilibrium and

kinetic profiles used for the MARS-F computations. It is important to note that, at this

level, the kinetic profiles do not influence the equilibrium computation performed with

CHEASE; the implications of this will be discussed in a subsequent section.

MARS-F solves the linearized MHD equations under the single-fluid, resistive

approximation, within the resistive-inertial regime. These MHD equations account for a

generic toroidal flow and couple with RMP source terms, modeled as an antenna problem.

The system is expressed as follows:
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i(ΩRMP + nΩ)ξ = v + (ξ · ∇Ω)Rφ̂ (1)

i(ΩRMP + nΩ)v = −∇P + j×B + J× b

− ρ[2ΩẐ × v + (v · ∇)Rφ̂]

− ρk//|κ//vth,i|(v + (ξ · ∇V0))// (2)

i(ΩRMP + nΩ)b = ∇× (v + B) + (b · ∇Ω)Rφ̂−∇× (ηj) (3)

i(ΩRMP + nΩ)p = −v · ∇P − ΓP∇ · v (4)

+

j = ∇× b, ∇× b = jRMP , ∇ · jRMP = 0 (5)

In this formulation, bold quantities represent 3D vectors, uppercase variables denote

equilibrium quantities, and lowercase variables indicate perturbed quantities. The unit

vector φ̂ points in the toroidal direction, while Ẑ indicates the vertical direction in the

poloidal plane. For physical quantities, J represents the electric current, B the magnetic

field, ξ the perturbed displacement, v the perturbed velocity, P the pressure, ρ the

plasma density, and η the resistivity. Additionally, R is the plasma major radius, Ω is the

toroidal rotation frequency, and V0 = RΩφ̂. The toroidal mode number is denoted as n,

and Γ is the adiabatic index. The parallel wave number, κ// = (n− m
q

) is defined using

the poloidal mode number (m) and the safety factor q. Here, vth,i represents the thermal

ion velocity, and k// is a numerical coefficient that mimics parallel sound damping [19].

In this study, a strong damping regime is assumed, corresponding to k// = 1.5. The input

RMP current, jRMP is modeled as sinusoidal along the toroidal angle, with periodicity n,

such that jRMP ∝ einφ. Details of the implementation of the active coil currents in the

code can be found in Appendix A of [20].

2.1 KilCA/QL-Balance kinetic model

External perturbation are usually effective in controlling ELMs only when they

successfully penetrate into the plasma. As an initial response to external RMPs, parallel

currents are built-up in correspondence to the relative resonant surfaces. These currents

are oriented to produce a radial field opposite to the externally induced one in the attempt

to reduce the perturbation, hence they are also referred to as shielding currents. The

shielding to the external perturbation is proportional to the plasma flow. In principle,

the parallel currents will interact with the radial field causing an electromagnetic torque

which onsets a feedback loop that eventually may lead to the flow braking and to the

loss of shielding. The non-linear process for which the plasma response eventually fails in

producing shielding is known as bifurcation [21]. Due to this cyclic nature of the RMPs

dynamic, a quasi-linear model requires to be employed when studying penetration. In

particular, within the fluid framework perturbation penetration is assumed to be related

to the bulk fluid braking exerted by the induced external fields. Alternatively, when

considering the kinetic framework, the penetration is associated to the electron fluid

braking.
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Here, a quasi-linear kinetic response model has been applied to study penetration

effectiveness with the KilCA/QL-Balance workflow. KilCA is a linear kinetic Maxwell

equation solver in cylindrical geometry based on a finite Larmor radius expansion [14].

The equations that are solved in cylinder coordinates (r, ϑ, z) are

∇× E− iω

c
B = 0, ∇×B +

iω

c
E =

4π

c
(j + jRMP). (6)

Note the time-harmonic dependency and the use of CGS units. Also, due to the

periodicity of the cylindrical model, a Fourier expansion in toroidal and poloidal angle

can be employed. This casts the problem into a set of ordinary differential equations in

the radial variable r. To connect the model to experimental profiles, the radial variable

is set equal to an effective radius r ≡ reff =
√

2ψtor/Bref , where ψtor is the toroidal flux

and Bref is the reference magnetic field of the equilibrium at the magnetic axis. The

experimental profiles given as a function of the square root of the normalized poloidal

flux are mapped to reff .

The current density in Ampere’s law in (6) is given by two parts: the RMP current

density provided by an antenna (i.e. the active coil) outside the plasma jRMP and the

plasma response current j. The plasma response current is determined in kinetic theory

with a finite Larmor radius expansion to order NFLR as

jimn(r) =
1

r

NFLR∑
k,k′=0

(−1)k
∂k

∂rk

(
rσilkk′,mn(r)

∂k
′

∂rk′
Emnl(r)

)
. (7)

Where the apex i identifies the spatial components and the species index is suppressed

here for brevity. The current is determined for a specific poloidal and toroidal mode

number m and n, respectively, by the conductivity tensor σ. The conductivity

tensor is derived from the solution to the kinetic equation with a Fokker-Planck

type collision operator in the Ornstein-Uhlenbeck approximation including an energy-

preserving integral term. For more details see [14, 22]. In the following, NFLR = 1 is

used.

QL-Balance [14] is a quasi-linear 1D radial transport code which takes inputs from

the linear kinetic response. This model solves transport equations for the electron density,

electron and ion temperature, and the toroidal rotation velocity based on drift-kinetic

transport coefficients Dql that are determined by the electromagnetic field perturbations

of KilCA. Anomalous transport is taken into account here by a diffusion coefficient Da,

which is set to a constant value Da = 1 m2/s. Additionally, to determine the radial

electric field via the ion force balance, the poloidal rotation is calculated by the drift-

kinetic solver NEO-2 [23, 14].

2.1.1 Toroidal rescaling A drawback of the cylinder model is the lack of poloidal mode

coupling which can significantly affect the magnitude of the shielding [24]. This issue

was addressed already for the modeling of ASDEX-Upgrade in [14] by rescaling the

electromagnetic fields calculated by KilCA with a scaling factor

Cmn =
ItMHD
‖,mn

IKilCA
‖,mn

, (8)
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given by the integrated parallel shielding currents determined by a chosen toroidal MHD

code (ItMHD
‖,mn ) and by KilCA (IKilCA

‖,mn ). In previous work studying ASDEX-Upgrade, the

toroidal ideal MHD code GPEC [25][26] was used. Here, the toroidal shielding current

is provided by MARS-F. The computation of the parallel current in MARS-F and its

integration into the KilCA current are summarized in Appendix A, the latter part is also

exhaustively described in [14]. The rescaling is motivated by the similarities between the

plasma response in the fluid and kinetic models in the case of strong shielding. For more

details, see Ref.[14].

3 Metrics

When preparing an ELM control experiment, the routine procedure involves running a

linear MHD code, such as GPEC [27] or MARS-F, to quickly predict the coil phasing that

optimizes a specific objective function or metric. In MAST and ASDEX [6], successful

experiments have been conducted by maximizing the magnitude of the radial component

of the edge-resonant perturbation field, b1
edge,res, which is nominally defined as: b·∇ψ

B0·∇φ
q

R2
0B0

with the subscript ’edge, res ’ identifying the Fourier harmonic which resonate at the last

pitch-aligned surface (i.e m = n · qedge). Here ψ and φ are respectively the poloidal and

toroidal fluxes, R0 is the machine axis position and B0 is the equilibrium magnetic field

at the axis. This quantity is calculated in straight field line (SFL) coordinates, or PEST-

like, within MARS-F and serves as a figure of merit for quantifying the perturbation

effectively injected into the edge plasma, accounting for the plasma response. This metric

is particularly valuable for coil systems that may struggle to surpass the threshold field

or input current required to achieve ELM mitigation. It is especially useful for higher

n perturbations, which tend to penetrate less effectively due to the higher number of

rational surfaces concentrated in the edge and to a faster spatial decay. At lower n

and for sufficiently powerful coil systems, the injected perturbation may trigger a locked

mode [21], potentially leading to plasma termination. In such cases, a figure of merit

that decouples the effects of the perturbation at the edge and core is preferred. The

objective is to degrade the edge confinement just enough to stabilize the ELM while

preserving favorable conditions in the plasma core [28]. To this end, metrics such as

ξNX/ξ
N
mid or τedge/τcore are often maximized. The first metric, ξNX/ξ

N
mid, represents the ratio

of the normalized plasma displacement at the X-point to that at the mid-plane. This

is considered a robust marker of confinement degradation induced by the application of

RMPs. Studies have shown that the X-point displacement tends to couple strongly with

a peeling-like plasma response, which is closely associated with edge stability, whereas

mid-plane displacement is typically linked to a kink-like response that penetrates further

into the plasma core [29]. This behavior has been corroborated by ELM mitigation

experiments conducted in ASDEX and MAST [6]. Notice that, since in MARS-F the

X-points are not reproduced, the ξNX displacements are computed by averaging the

regions around the upper most and lower most points of the boundary. The second

metric, τedge/τcore corresponds to the ratio of the integrated total torque injected, by the

RMPs, into the edge region to that injected in the core region. This metric provides a

complementary view for evaluating the effects of RMPs on edge and core dynamics.
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Linear metrics

MARS-F operates within the linear physics framework, meaning that the superposition

of computed solutions also constitutes valid solutions. Mathematically, if X is a generic

solution, the expression Xtot = A ·XL +B ·XUe
i∆φ remains a solution in MARS-F. Here,

A and B are arbitrary coefficients, and ∆φ represents the relative toroidal variation

between the coil rows. In MAST-U, two rows of ELM coils are currently available.

The coils are placed in-vessel on the Low Field Side (LFS), covering the whole toroidal

angle. The two rows have different number of coils with the Upper row having 4 coils

and the Lower having 8, hence yielding less space between each of them. In this work

the relative phase between respective coils at the same toroidal position is defined as

φLOWER − φUPPER, that is: the upper coil row is treated as fixed at φUPPER = 0◦, while

the lower coil row, which has a greater number of degrees of freedom, is varied. This

property enables a rapid exploration of all possible coil-set combinations in terms of input

current amplitude and toroidal phasing. Such efficiency is leveraged to identify optimal

configurations for addressing the ELM mitigation or suppression problem by analyzing

the behavior of various (linear) output quantities while scanning the parameter space of

the input currents. The optimization results for the first two metrics are illustrated in

Fig. 3 for the two toroidal mode numbers, n = 1 and n = 2. The computed optimal

phasing values for each metric align well with those reported in [10]. As anticipated,

the optimal phase is sensitive to the applied toroidal mode number but exhibits similar

trends in both cases. Notably, the plasma response always introduces a shift of the optimal

phase, of ∼ 90◦ for the n = 1 and ∼ 40◦ for the n = 2. Additionally, the displacement

metric achieves optimization at nearly the same relative phase when considering the

displacement at both the lower and upper X-points. Strictly in terms of magnitudes, the

displacement at the upper X-point exceeds that at the lower X-point for both the n = 1

and n = 2 cases, measuring ξU = 0.49mm/kAt, ξL = 0.3mm/kAt and ξU = 0.39mm/kAt,

ξL = 0.18mm/kAt respectively.

Quasi-linear fluid metric

The torque induced by externally generated 3D fields is inherently a non-linear effect, as it

depends quadratically on the perturbation. In MARS-F, various types of physical torques

can be calculated based on the plasma response results. Specifically, the electromagnetic

(j×b), Neoclassical Toroidal Viscosity (NTV), and Reynolds stress (REY) torque sources

are included in this work. The j×b and REY torques are purely MHD-driven, with the

former originated by the interaction between the perturbed field (b1) and the shielding

currents built in response to it (j2) and the latter associated to the Reynolds stress

tensor term, that is ∝ (v · ∇)v. A comprehensive evaluation of the NTV torque,

instead, would require a full kinetic or drift-kinetic treatment. However, in MARS-F,

an analytic formula is implemented to bridge different collisionality regimes, as detailed

in [30] and [31]. Comparisons of this NTV computation with kinetic treatments have

demonstrated qualitative agreement [32]. To leverage the linearity advantages of the

framework, some manipulation of the torque outputs is necessary. For this purpose, a

semi-analytic algorithm is integrated into the code to construct a torque matrix that
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Figure 3: Fluid linear metrics dependence on relative coil phase ∆φ. a,c: n=1, b,d : n=2. a,b: |b1edge,res| metric, with

blue: vacuum only and red: vacuum + plasma response. c,d : ξNX−point/ξ
N
mid−plane metric, with red: ξNupperX−point and

green: ξNlowerX−point

incorporates terms accounting for mutual coupling between the rows of coils [33]. This

approach generalizes the torque computation for arbitrary input current values I, as

described by the following relationship:

Πα(s) = I ·Πα
M(s) · I∗ = [IU IL]

[
Πα
UU Πα

UL

Πα
LU Πα

LL

]
(s)

[
I∗U
I∗L

]
(9)

Where Πα(s) is the surface-averaged torque density, with s =
√

ψ−ψaxis

ψedge−ψaxis
being the

MARS-F radial coordinate and α = j × b, NTV,REY . The superscript * denotes the

complex-conjugate of the vector.

In order to maximize the τedge/τcore ratio, we first define Πtot ≡
∑

α Πα and then

take the radial integral separating the core and edge regions:

τcore ≡
∫ 0.89

0

Πtot(s)ds (10)

τedge ≡
∫ 1

0.89

Πtot(s)ds (11)

Where the boundary among the two regions has been set s = 0.89. Of course the

separation between the two regions retains a degree of freedom, however, as long as

the edge region contains the pedestal, the results are fairly robust to variation of this
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parameter[34]. In Fig.4, a scan in input current for determining the total integrated

torque is reported for both toroidal mode numbers n = 1 and n = 2 and for both the

edge and the core regions. In the scan the upper row of coils is again considered fixed while

the lower row is allowed to vary between [0 − 360]◦. For both rows the input current is

also scanned in amplitude, ranging between [1−8]kAt. Notice that the maximum current

achievable in MAST-U active coils consists of a total of 8kAt. The result of the torque

ratio optimization is shown in Fig.5. Notably, this metric appears to be strongly robust

against the toroidal mode number variation. In particular, the torque ratio seems to be

always optimized when the relative phase between the two rows of coils corresponds to

180◦ . This should be due to the strong decoupling between edge and core torques. While

this decoupling is predominant in the n = 2 configuration, for the n = 1 the optimal phase

follows the request of maximizing the edge total torque, whereas the core appears to be

less impacted by the phase variation.
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Figure 4: Integrated total torque obtained by varying the current magnitude and relative phase between the upper and
lower coilsets. a: n = 1, core region, b: n = 2, core region. c: n = 1, edge region. d : n = 2, edge region

In order to better understand this behavior, we can analyze more in detail each

source of torque, in each spatial region, at the variation of ∆Φ. This is shown in Fig.6

for both the n = 1 and the n = 2 mode numbers.
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Figure 5: τedge/τcore vs ∆φ for n = 1 (a) and n = 2 (b) configurations.
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Figure 6: Integral torques split by source and region. a: n = 1, b: n = 2. Solid lines corresponds to the edge while dashed
lines identify the core. A color code is used to distinct each torque source, so red: j× b, blue: NTV and green: REY

Focusing first on the n = 1 component, within the core region (dashed line in the

figure) it appears that the REY and j × b torques are in competition, with the latter

being bigger hence driving the global flow braking. Moving in the edge region the picture

changes, for most of the ∆Φ values j × b and REY torques are aligned in braking the

flow. The optimum of the torque ratio metric is justified observing that the integral

torque in the core region, of each source, is only slightly changing while varying the coils

relative phase, whereas in the edge, the braking is strongly amplified at ∆Φ ∼ 180◦,

hence satisfying the requirement. Notably, depending on the phase, both j×b and REY

torque components can individually be oriented toward plasma acceleration, however

when summing them together, the global torque appears to be always in the counter-flow

direction.

For the n = 2 case the picture is somehow different, even if leading to the same

conclusions: now REY and j×b are always in competition with the viscous term trying to

compensate the electromagnetic-induced braking. However the j×b is always leading the

global behavior. The core torque now is always smaller than the edge one, in particular,

the j × b is minimal in the exact correspondence of the correspondent edge maximum,

which is located, as expected, at ∆Φ ∼ 180◦, this allows to achieve simultaneously both
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the edge and core torque requirements. Moreover, as the relative phase is increased, the

positive edge REY torque and the negative core j×b both decrease while the negative edge

j× b increases in magnitude. This allows to simultaneously satisfy both the edge torque

maximization/core torque minimization requirements. Finally, the NTV contribution to

the total toroidal torque is always at least one order of magnitude less than the others.

Therefore evolution of the velocity profile can be interpreted as being predominantly

driven by the competition between the electromagnetic braking (induced by the external

coils) and the correspondent inertial viscous drag of the plasma.

Quasi-linear kinetic metric

To determine the actual effectiveness of the perturbations achieved with the MAST-U

ELM coil system, the KilCA/QL-Balance quasi-linear framework has been implemented.

Within the framework a criterion for the bifurcation of an arbitrary mode was defined in

[14]. This criterion is characterized by a ratio of diffusion coefficients,

Dmn ≡
Dql
e,22

Da

∣∣∣∣∣
r=rmn

≥ 1. (12)

Here, Dql
e,22 is the quasi-linear electron heat diffusion coefficient determined within drift-

kinetic theory employing a Fokker-Planck collision operator in the Ornstein-Uhlenbeck

approximation. For the expression of the quasi-linear diffusion coefficient see Ref. [14].

Da is the anomalous diffusion coefficient, which is set to 1 m2/s. The criterion is based

on the observation that a feedback loop enabling bifurcation, by local rotation braking or

acceleration to approach the electron fluid resonance, is triggered when the quasi-linear

diffusion increases to the size of the anomalous one. The diffusion ratio is evaluated at the

effective radius rmn of the resonant surface. Since mode penetration of a resonant surface

on the pedestal top is commonly assumed to be a requirement for ELM suppression [35],

the focus of this metric are modes located near the pedestal top.

In this work, the criterion (12) as a metric for ELM control is applied. In particular,

when scanning over the differential phase ∆Φ, the maximum of Dmn indicates the optimal

coil configuration for mode penetration while the value assumed by the ratio suggests its

actual effectiveness.

A first qualitative assessment can be provided by the analytic expression of the quasi-

linear diffusion coefficient in constant-ψ approximation given by equation (51) in [14].

The expression shows that the coefficient is proportional to the parallel shielding current

squared, Dql
e,22 ∝ |I‖|2. This statement is independent on the model in which the current is

calculated. Hence, since the ∆Φ toroidal dependence can only be introduced from MARS-

F results, assuming constant anomalous diffusion, the optimum of the kinetic metric Dmn

has to coincide with the maximum of the shielding currents. Fig. 7 shows the integrated

current for MAST-U n = 2 perturbations for various poloidal mode numbers m that are

near the pedestal top. These are calculated as described in Appendix A. The values are

given for the maximum RMP coil current possible in MAST-U (IRMP = 8 kAt). The

maxima of the shielding current indicated by ’x’ markers simultaneously indicate the

optimal differential phase to achieve bifurcation of the respective mode. The optimal
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differential phase for the edge modes is, within a few degrees, in agreement with the

prediction of the linear fluid metric b1
edge,res, as shown in Fig. 3.

On the other hand, core modes, which should ideally not penetrate, have maxima and

minima at higher differential phase values compared to the edge modes. As discussed

above, for achieving ELM mitigation/suppression, it is desirable to minimize the core

response, while maximizing the edge response. Hence, the optimal differential phase

for the experiment lies within the minimum of the core modes and the maximum

of the edge modes. This first assessment indicates the differential phase for optimal

edge response, but it does not infer on actual mode penetration. For this, the kinetic

metric with KilCA/QL-Balance is calculated (including the toroidal rescaling described

in section 2.1.1). Figure 8 shows the kinetic metric for various poloidal mode numbers

located near the pedestal top for n = 2. Indicated by dashed-dotted lines are the maxima

of each mode. Notably, the magnitude of the metric does not imply the bifurcation of

any of the modes.

In terms of optimal differential phase, the trend of Dmn goes toward the optimal

value of b1
edge,res for higher poloidal mode numbers. However, the cylindrical model of

KilCA is not valid at the outermost edge of the plasma where the model’s neoclassical

reconstruction of the radial electric field loses validity. In fact, the kinetic criterion is

mostly reliable (and hence it should be used) when considering the optimization around

the pedestal top [14]. Whereas the fluid metrics are informing for regions closer to the

separatrix, that is m = 22 for qedge = 11 and n = 2. As a result, KilCA/QL-Balance

computations provide a reliable pedestal-located optimization criterion which could be

in principle a more effective predictor of RMP induced ELM control, than conventional

fluid based metrics. Since a numerical comparison between the two metrics, in the same

spatial region, is not possible yet, this may call for an experimental validation.

4 Separatrix density scan

ELM control metrics are strongly influenced by the plasma response to the initial

perturbation. In turn, the plasma response is primarily determined by the magnetic and
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kinetic characteristics of the equilibrium. To investigate and systematically characterize

the effects of various kinetic features on ELM control metrics, it is advantageous to

vary, one at a time, the kinetic properties of the initial equilibrium. In this work,

motivated by the recent installation of a cryopump in the lower divertor of MAST-U,

the dependence of the control metrics on the edge density profile has been examined.

To maintain a conservative approach and isolate the effects of density alone, it has been

assumed that the cryopump reduces the separatrix density while leaving the temperature

profiles unaffected. To implement a separatrix density scan while keeping other aspects

of the profile consistent, the density profile was truncated at approximately ∼ 96% of the

normalized radius and then fitted using a modified hyperbolic tangent (mtanh) function.

This method allows the density profile to be modeled with a small number of parameters,

as detailed in [36]. While the separatrix density itself is not directly a degree of freedom of

the fit, a systematic scan was achieved by fixing the pedestal height, width, and position,

and increasing the pedestal gradient. In this way, the separatrix density scan effectively

corresponds to a pedestal gradient scan. The results of this procedure are shown in Fig.

9. By increasing the pedestal gradient up to 10 times its original value, the separatrix

density can be reduced by up to two orders of magnitude. To ensure a smooth connection

between the modified edge profile and the original core profile, the core slope parameter

was adjusted accordingly (see Fig 9 inset).

4.1 Equilibrium reconstruction

By varying the density while keeping the temperature fixed, the pressure profile (and

consequently the initial equilibrium) must change accordingly. Thus, the separatrix

density scan inherently translates into an edge pressure scan. The resulting input pressure

profiles are shown in Fig.10 (left panel). It is important to note that, due to the lack

of additional constraints, the reconstructed pressure profile consists solely of the thermal

contribution, expressed as Pnew ∝ ne ·(Te+Ti). This differs significantly from the original

pressure profile, which was constrained exclusively by the fit of magnetic measurements.

A comparison between the magnetic EFIT++ pressure profile and the one implemented
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for the first scan point (i.e., the case where the density profile matches the original one)

is shown in the right panel of Fig. 10. In the thermal-only profile, a pronounced pedestal

feature is evident in the edge region, which is absent in the magnetically constrained

pressure profile. Additionally, the thermal-only profile exhibits a significantly higher

integral β parameter. It is important to notice that the ”kinetic” pressure used in the

new scan is not magnetically constrained but corresponds to the equilibrium computed

running CHEASE with the kinetic profiles fixing the EFIT++ boundary and current

density profile. Realistically, the actual pressure profile likely lies between these two

cases, which can be regarded as limiting scenarios. Despite the notable differences in

pressure profiles, the computed equilibria show negligible variations in the q-profile (and

thus in the plasma current), in fact, after recomputing the equilibrium, the q95 parameter

changes are less than 2% with respect to the original one. Consequently, any observed

differences in the plasma response can be attributed almost exclusively to the kinetic

effects. For clarity sake, the equilibrium constrained by the magnetic measurements will

be referred hereafter as ’magnetic equilibrium’, whereas those obtained by reconstructing

the pressure with the kinetic profiles will be called kinetic (or thermal) equilibria.
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Figure 9: Full separatrix density scan. The original density profile, which corresponds to the ’X1’ case of the scan, is cut at
s = 0.96 and fitted with an mtanh function. As the pedestal gradient increases (the curves turn yellow-ish) the separatrix
density lowers. The inset, which reports the full profile for the whole scan, shows how the core region always coincide with
the original one.

4.2 Metrics evolution

For each point in the separatrix density scan, a plasma response run was performed

using MARS-F, starting from the corresponding new equilibria and density profiles.
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Figure 10: a:Pressure profiles scan obtained by increasing the density pedestal gradient and fixing the temperatures.
b:Confront between magnetic constraint pressure profile (the original one), in blue, and the fixed-boundary, kinetically
reconstructed profile, in green.

For simplicity, here the scan was conducted only for the n = 2 case, which currently

represents the best candidate configuration for the incoming ELM control experiments.

In the next subsection, the evolution of the predicted optimal phases based on the different

metrics, will be discussed as the pedestal gradient increases (i.e. as the separatrix density

progressively lowers).

Linear - resonant field metric As can be observed in the left panel of Fig.11, when

considering the most external pitch-aligned component of the perturbed radial field, a

nearly monotonic decrease in the optimal phase is observed while ∇ne increases. The

only exception is represented by the last scan point which suddenly jumps down of

several degrees. Conversely, the magnitude of the edge-resonant field increases with the

pedestal gradient, as indicated by the marker size. This trend suggests that steeper

gradients and consequent lowering of the density close to the boundary may favour

the perturbations penetration. The originally computed metrics, based on the initial

equilibrium parameters, are indicated by the star symbols. Comparing the two cases,

the phase that maximizes the vacuum field alignment shifts of ∼ 10◦; when adding the

plasma response however, the optimum shifts of several degrees. Despite the evident

evolution of the metric, the total variation of the optimal phase remains within ∼ 40◦.

By comparing this to Fig.3b, it becomes clear that the magnetic field remains close to its

maximal value within this range. This demonstrates the robustness of the resonant field

metric against variations in the density pedestal gradient.

Linear - displacement ratio metric The study of the evolution of the ξX/ξmid metric

offers additional insights. As shown in Fig.11, right panel, where the ratio corresponding

to the displacement at the upper X-point is depicted in red and at the lower X-point in

green, an opposite behavior compared to the resonant field metric is observed. Up to the

last one or two points of the scan, the trend exhibits a monotonic increase in the optimal

phase for both curves. Interestingly, the magnitude of the displacement (represented

by the marker size in the plot) also evolves differently depending on the X-point under
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Figure 11: Fluid linear metrics scan. a: maximum of last resonant surface, pitch-aligned, radial perturbed field. b:
maximum of the ratio between displacement at upper/lower X-points and mid-plane. In both figure the star marker
identifies the values corresponding to the magnetically constrained equilibrium. The size of the dots scales with the
magnitude of the perturbed field (left) and the displacement at the X-point (right) assuming 1kAt perturbation. The
size of the stars scale similarly but in the case of the displacement ratio metrics it has been magnified by a factor 5 for
visualization sake.

consideration. Specifically, the displacement at the upper X-point ξU increases with the

pedestal gradient, whereas it decreases at the lower X-point ξL. This suggests that the

region of the X-point where the induced perturbation acts depends significantly on the

pedestal gradient’ shape.

It should be noted that the anomalous values assumed by the last one or two points of

the scan, already evidenced in the b1
res metric analysis, could likely be associated to a

possible unstable response of the plasma. In this eventuality, those values of the pedestal

gradient would mark the threshold for the maximum pedestal steepness achievable.

Another notable difference between the red (ξXU
/ξmid) and green (ξXL

/ξmid) curves in

the figure, is the range of optimal phase excursion during the scan. For the upper X-

point displacement ratio, the phase variation remains within 40◦, while the lower X-point

displacement ratio spans about one-third of the toroidal angle. Moreover, as shown in

Fig.3, in the right-lower quadrant, the peak around the optimal phase is narrower for

this metric compared to the optimal region for b1
res. This indicates that changes in the

pedestal gradient could significantly influence the ELM control strategy based on this

figure of merit. When comparing the metric computed using the magnetic equilibrium

to the scanned cases, it is observed that its optimal phase aligns with only the first

of the points of the ξXU
/ξmid curve. Conversely, the optimal phase for the ξXL

/ξmid
ratio, which becomes the dominant contribution in the recomputed equilibria, shifts by

approximately 80◦ and the displacement magnitude increases tenfold. This evidence,

combined with the above considerations regarding the resonant field metric, suggest that

the use of well-constrained input equilibria (both magnetically and kinetically) may have

a critical impact when analyzing metrics which depend on the fine details of the plasma

response.

Quasi-linear - torque ratio metric The ratio of torque generated at the edge to that in

the core (τedge/τcore) proves to be the most robust metric against variations in separatrix
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injected assuming 1kAt perturbation. The star marker identifies the value corresponding to the magnetically constrained
equilibrium. Its size has been magnified by a factor 10 for visualization sake

density as shown in Fig.12. However, notably the total torque injected (calculated

as the sum of edge and core contributions) computed with kinetically constrains is

approximately ∼ 100× larger than the one derived from the magnetic equilibrium. This

can be visualized again in Fig.12 where the marker sizes now represent the total integrated

torque magnitude. This increase may be primarily attributed to a significantly stronger

braking induced in the edge region associated to an increase of the plasma response,

which is in alignment with the conclusion drawn for the other linear metrics. These

results further emphasize that while the τedge/τcore optimum itself remains relatively

invariant to the density scan, the absolute torque values are significantly influenced

by adding kinetic constraints. Such large differences underscore, again, the necessity

of incorporating accurate kinetic modeling when predicting or optimizing torque-driven

effects in ELM control strategies.

Quasi-linear - kinetic metric Furthermore, the quasi-linear kinetic metric Dmn for the

separatrix density scan cases is determined. To begin with, the difference in the

constrained equilibria, as discussed in section 4.1, is again highlighted by the substantial

difference in the magnitude of the response currents. The first kinetically constrained

case, X1, clearly shows an integrated MARS-F current roughly three times as high as

compared to the original magnetically constraint case for the mode m = 13. As a

consequence, also the plasma response of KilCA is affected significantly.

Shown in Fig. 13a) is the quasi-linear kinetic metric at the differential phase of the

maximum shielding current for each case. The jump from the magnetically constraint

case (original) to the kinetically constraint cases is substantial and matches with the

observations made in the previously discussed metrics. Most notably, now the metric

predicts penetration for all the pedestal top modes even in the ’X1’ case. This is a

clear evidence of the correlation between penetration physics and the pressure profile

structure. As the edge density gradient increases, the kinetic metric rises independently

of equilibrium constraints. Since the density scan aims at emulating the effect of the

cryopump, this suggests an advantageous effect of the pump on mode penetration for

pedestal top modes, hence in principle favouring ELM control. Fig. 13b) shows the
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Figure 13: a) Kinetic metric for the maximum in the shielding current. b) Differential phase of the maximum shielding
current.

differential phase of the maximum shielding current. The phase for the density scan

cases shows an initial jump by approximately 10◦ to 30◦ from the original one. The trend

of the differential phase is consistent with the behaviour of b1
res as discussed above, even

if the amount of change is reduced.

Summing up: during the scan, different metrics tend to behave differently. The b1
res

figure of merit ranges similarly to the ξXU
/ξM one, but with an opposite trend, whereas

the ξXL
/ξM show a similar trend to the latter but different ranges of excursion in ∆Φ. In

general, in all cases the last one or two points of the scan display a different behavior, this

may be associated to a gradient too steep that may lead to some kind of unstable plasma

response. Moreover, the τedge/τcore metric is shown to be the most robust to the separatrix

density scan with only the torque magnitude slightly varying with the pedestal gradient

increase. The quasi-linear kinetic analysis shows a remarkable agreement with the b1
res

density scan trend. When including kinetic constraints in the equilibrium, the plasma

response field grows non-negligibly. In particular, with the reconstructed equilibria the

quasi-linear kinetic metric seems to be able to predict enough magnitude to finally achieve

bifurcation (hence penetration). The observed change in this behavior may be attributed

to an increase in the global beta, the introduction of a pedestal in the profile, or a

combination of both. While an initial analysis indicates that the pedestal slope increases

tenfold throughout the scan, the kinetic criterion also rises consistently but remains within

the same order of magnitude. This suggests that the pedestal slope variation alone is

unlikely to explain the abrupt transition from the magnetic to the kinetic equilibrium.

Further work will be required to disentangle the individual contributions of these factors,

possibly also including a fully non-linear analysis. Nevertheless, these observations

strongly point out the importance of having a well constrained (both magnetically and

kinetically) initial equilibrium when dealing with a plasma response analysis.
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Figure 14: Comparison between the n > 0 radial field predicted by the ERGOS model (solid lines) and as detected from the
outboard saddle probes (dotted lines) during discharge #47216, at 600ms. Figure a) shows the big saddle signals whereas
b) shows the small saddle signals. In both cases the ERGOS field has been obtained by averaging over the correspondent
probe surface.

5 Error Field

Previous MAST-U campaigns faced significant challenges in achieving ELM control.

Multiple attempts were conducted using the external coils in the n = 2; however, none

succeeded in reaching the threshold current necessary for ELM mitigation. Instead, in

most cases, a locked mode (LM) was triggered, leading to early plasma termination [10].

A possible explanation for these failures lies in the presence of a non-negligible n = 2 error

field (EF), which could interfere with the externally induced perturbations. Historically,

MAST-U has suffered from strong unwanted EFs originating from imperfections in

the placement of poloidal field (PF) coils. The dominant EF contribution, in the

n = 1 configuration, has been successfully mitigated through mechanical adjustments,

as confirmed by recent analyses [37]. However, no corrective measures have been

implemented to address a potential n = 2 component, as tilting or re-positioning the coils

alone would not be effective. The failure of previous experiments has motivated a detailed

investigation and characterization of the n = 2 EF. The aim of this work is to quantify

how the EF might modify the optimization of key metrics for ELM control. It should

be noted that no attempt is made here to fully interpret experimental results, as non-

linear physics should be accounted for once the perturbed fields successfully penetrates

causing mode-locking. Instead, the focus lies on recomputing the optimal phases while

incorporating a realistic, 3D EF model.

EF model

The EF model was derived by integrating vacuum discharge measurements into the fully

toroidal Biot-Savart code, ERGOS [38], within which the detailed geometry of the MAST-

U PF coil system has been inserted [39]. As a first check, to provide procedure validation,

the model computations were compared to the experimental measurements obtained from

the #47216 vacuum discharge during which only one set of PF coils, namely P5 (upper

and lower) was powered. The P5 coil set was chosen since, as can be seen later in the
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discussion, its contribution to the Error Field turns out to be the predominant one. The

measures were taken from the outboard saddles, a pair of toroidal arrays of saddle coils

which, in MAST-U, allows to detect and evaluate the n > 0 component of the radial

field BR. The pair is divided into the big and the small saddles, which are positioned

at the same radial location (around R = 1.99m from the machine axis) with the center

aligned with the machine’s midplane. The coils have slightly different heights, hence the

nomenclature, with the big spanning about 2 meters and the small around 1.6 meter.

Being positioned right behind the P5, covering all their frames, these outboard saddles

should detect the whole magnetic field produced by the poloidal coils, hence representing

the best choice to compare vacuum discharges with the modeling results. It is worth

noticing that the previous validation of the model was carried out in MAST which had

worse capabilities in terms of radial field detection, instead, the comparison relied on

measurements taken with three high-accuracy Hall probes that were installed ad-hoc

[39].

Fig.14 shows the comparison between the saddles measurements and the ERGOS

results taken at the same radius and at the toroidal angles φ corresponding to the probes

location. To best match the observations, ERGOS computations are also averaged over

the nominal coils area. It should be noted that neither the big nor the small saddles

cover entirely the toroidal circumference, instead they provide total coverage only when

superposed. To obtain the EF measurement, the equilibrium contribution (i.e the mean

value) to the radial field must be taken out from the signal. Then, when comparing the

remaining n > 0 components with the correspondent ERGOS prediction, a satisfying

match between model and measurements occurs. Notably, both the measured and the

modelled signals display a clear n = 2 behaviour.

A Fourier transform (FT) of the ERGOS 3D field was performed to correctly isolate

the n = 2 component. The computed vacuum field, for a unit current of 1kAt, is shown in

the left panel of Fig. 15. According to equations 5, to compute the plasma response using

MARS-F, the EF must be translated into an equivalent current on a conformal surface

outside the plasma boundary. This is achieved using the Equivalent Surface Current

(ESC) technique, which allows to prescribe an arbitrary magnetic field and to map it, by

solving an inverse Biot-Savart problem, into the required input current [40]. This ensures

that the plasma response calculation remains consistent within the entire domain enclosed

by the ESC. The n = 2 EF obtained via the ESC procedure was recomputed in MARS-F,

and fig. 16 shows the excellent agreement between the vacuum field modeled by ERGOS

and the results processed in MARS-F at the plasma boundary. The b1
res poloidal spectra

of the computed EF, for both vacuum-only and with plasma response runs, is reported

in Fig. 17. For comparison, Fig. 18 shows the spectra (obtained with plasma response)

for the upper and lower rows of RMPs coils. By observing the maximum values of each

spectra, it can be immediately noted how the magnitude of the combined perturbation

injected by the RMPs system, when in perfect constructive phase, would still of the same

order of the intrinsic EF.

To identify the primary sources of the n = 2 EF, computations were performed for

each individual PF coil. Figure 19 indicates that the dominant contributions arise from

the P4, P5, and P6 coil sets, with a minor contribution from the D coils. However,



Linear and quasi-linear modeling in view of ELM control in MAST-U 22

0.0 0.4 0.8 1.2 1.6 2.0
R [m]

−2

−1

0

1

2
Z 

[m
]

D1L

D1U

D5L

D5U

D6L

D6U

D7L

D7U

DPL

DPU

P4L

P4U

P5L

P5U

P6L

P6U

a) log10|BR| [G/kA]

0.25 0.50 0.75 1.00 1.25 1.50
R [m]

−1.2

−0.6

0.0

0.6

1.2

Z 
[m

]

b)|Bn| [G/kA]

0.0

0.8

1.6

2.4

3.2

0.0

0.6

1.2

1.8

2.4

3.0

Figure 15: a: n = 2 ERGOS BR components (cylindrical coordinates) generated by the poloidal field coils (in blue) which
distribution is marked in the poloidal section. The dashed line identifies the plasma boundary of #47051 at 611ms. b:
n = 2 normal component of the ERGOS field interpolated on the MARS-F grid. The ERGOS field has been computed
singularly for each poloidal coil reported in the left figure, assuming 1kAt feeding current.

−100 0 100
χ

−3.0

−1.5

0.0

1.5

3.0

[G
/k

At
]

Bn at plasma boundary
Re(ERGOS)
Im(ERGOS)
Re(MARS)
Im(MARS)

Figure 16: Poloidal distribution of the normal component of the n = 2 vacuum error field at the plasma boundary, computed
assuming 1kAt current flowing in the poloidal field system. Solid lines represent Re(Bn), whereas the dotted lines show
Im(Bn). Blue color identifies the ERGOS field, while the red color shows the same field but computed in MARS-F after
applying the ESC technique.



Linear and quasi-linear modeling in view of ELM control in MAST-U 23

0 10 20 30
m - pol. harmonic

0.2

0.4

0.6

0.8

1.0
s=

p ψ p
ol

|B1
m| spectrum SFL [G/kAt]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(a)

0 10 20 30
m - pol. harmonic

0.2

0.4

0.6

0.8

1.0

s=
p ψ p

ol

|B1
m| spectrum SFL [G/kAt]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(b)
Figure 17: Poloidal spectrum of |b1| per 1kAt (in SFL coordinates) produced by the intrinsic n = 2 EF. a: Vacuum field.
b: Total field (vacuum + plasma response). The dotted white line corresponds to the q profile while the white dots identify
the positions of rational surfaces.
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Figure 18: Poloidal spectrum of |b1| (in SFL coordinates) total field produced by the the ELM coil sets in n = 2
configuration, assuming an input current perturbation of 1kAt. a: ELM coils, upper row. b: ELM coils, lower row.
The dotted white line corresponds to the q profile while the white dots identify the positions of rational surfaces.

not all contributions are oriented in the same direction. The right panel of Fig. 19

illustrates the distribution of the perturbed radial field in the complex plane, showing

partial cancellation between certain contributions like, for example, P4U and P6U, as well

as P4L and P5L. The overall largest contribution comes from the P5 coils, with the upper

P5U coil being dominant. This analysis suggests that distancing the plasma column from

the P5 coil set could help reduce the intrinsic EF. Furthermore, as shown in Fig.19 and

Fig.20, the green bar/marker in the complex plane represents the perturbation induced

by the ELM coil system when in maximum constructive phase. A direct comparison

with the EF components confirms that both effects produce perturbations of the same

order of magnitude. This highlights the non-negligible impact of the intrinsic EF on the

overall injected perturbation, potentially influencing the effectiveness of external RMP

actuation.

To accurately assess the impact of EF-induced perturbations, the plasma response

must account for the actual currents flowing in the PF coils during the experiment. In

MAST-U, an external Rogowski coil is wrapped around each poloidal field coil, enabling

the precise estimation of the currents that feed the PF system [41]. For discharge #47051
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P4 P5 P6 D1 D5 D6 D7 DP

Upper -2.89 -6.05 -0.08 3.91 -0.14 1.45 -1.71 -3.58

Lower -2.87 -5.99 0.08 3.92 -0.13 1.44 -1.72 -3.61
Table 1: Values of the currents feeding each PF coil (both Upper and Lower) during shot #47051 at 611ms (in kAt), as
measured by the external Rogowsky coil. P5 information are highlighted
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Figure 21: ∆Φ scan of the linear, fluid metrics adding the EF effect. Left : |b1res| metric. Here blue is the vacuum field
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at 611 ms, these currents are reported in Table 1. Notably, the P5 coils, which already

yield the strongest contribution, also appear to carry the largest fraction of the current.

By re-scaling the ERGOS field with these experimentally measured currents, the actual

effect of the EF plasma response during the discharge can be determined. Those re-

scaled computations, shown in Fig. 20, confirm the P5 coils as the dominant sources

of EF. Furthermore, the actual perturbation amplitude, due to the EF alone, reaches

approximately ∼ 3G, representing a substantial effect.

EF correction to the metrics

By linearly combining the plasma response to the n = 2 EF with the perturbation

generated by the ELM control coils, the effect of the EF on key optimization metrics can

be evaluated.

Fig. 21 shows the phase scan of both the linear metrics with the EF included

compared to the curves obtained without. From the left panel, it is possible to appreciate

the shift of the resonant field metrics. Both the vacuum and the total optimal alignments

are moved ahead of ∼ 70◦. The displacement ratio metric (right panel) displays a

less drastic shift. The new optimum is found, for both the X-points, moved of about

40◦ with the ratio values strongly peaking above one for ξU for both ξL. However, at

the original optimal phasing (∼ 156◦), the ratios are now below unity. Hence, using

this configuration would lead to a dominating kink-like response which would affect,

potentially in a detrimental way, the core confinement. To investigate a little more in

detail the influence of the EF, the evolution of the metric optimization is shown as the

RMP current is ramped-up from 1 to 8kAt, which is the maximal nominal current of the
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(yellow-ish), while fixing the latter. The black dashed curve shows the optimum trend for the total |b1res,edge| field, at

8kAt, without the EF

coil set (Fig.22). Initially, the EF dominates the field response, shifting the optimization

to ∼ 335◦. However, as IRMP increases, the intrinsic field is gradually compensated by

the ELM coils which attempt to restore the original optimum. Indeed, once the current

finally saturates, the predicted shift settles down at ∼ 305◦. The optimal curve for the

same metric but for the case without EF is also shown (black-dashed in the figure) for

comparison sake. Aside from shifting the optimum, the inclusion of the EF also induces

extra magnitude to the radial field which increases by approximately 20%.

When looking at the displacements metric, instead, the changes in the ratio values

can be explained by observing Fig.23 which shows the ∆Φ dependence of the absolute

value of ξ in each region considered. When adding the EF, all the displacements are

shifted of few degrees. In particular, the displacement at the midplane (blue curve

in Fig23) becomes the most important one in the ∆Φ = [0 − 180]◦ region, while the

displacement at the upper X-point (red curve) would dominate in the rest of the parameter

space. Most importantly, the maxima and the minima of each displacement curve get

closer to alignment at similar relative phases. This suggests that the EF has a non-

negligible influence on the plasma response and that it could in principle, when selecting

the wrong choice of relative phasing, affect the core region.

The analysis of the torque ratio metric (τedge/τcore) further consolidate previous

observations. Figure 24 shows that the optimal ∆Φ, when the EF is included, remains

at the same phase of the original case. However the torque ratio value lowers getting

closer to 1. With the introduction of the EF the edge and core torques become coupled
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displaying minima and maxima aligned while, when considering the ELM control coils

alone, the two regions were perfectly decoupled (see Fig25)a and b). Moreover, the core

torque magnitude, being more dependent by the relative coil phase variation, also suggest

the EF to be mostly affecting the core region of the plasma.

The core induced torque is also maximized at the RMPs optimal phase due to the

presence of the EF. This could explain why previous experiments, in which RMPs were

configured without accounting for the intrinsic field, ended with a lock-mode.

6 Conclusions

This study investigated the role of linear and quasi-linear modeling to understand, and

eventually achieve, ELM control in the spherical tokamak MAST-U. Particular focus

has been set on the correlation between the presence of an intrinsic Error Fields, the

plasma response to external Resonant Magnetic Perturbations and the importance of

having kinetic constraints on input equilibrium. With the recent installation of a

cryopump in MAST-U lower divertor as a justification, a kinetic scan has been performed

lowering the density value at the separatrix. Such a scan, when trying to maintain the

maximum consistency with the original profiles, corresponds to steadily increase the

pedestal density gradient. In the work the importance of having accurate equilibrium

reconstructions has been highlighted, together with how the incorporation of both

kinetic and magnetic constraints is crucial to precisely quantify the plasma response

to the external perturbations, especially when resolving the pedestal region. In terms of

optimization, this work evaluated the relative effectiveness of fluid and kinetic metrics in

guiding ELM mitigation strategies. While, in general, validation with the experiments is

essential to clarify which figure of merit should be applied, some considerations can be

done about the reliability and the convenience for the use of each metric. The resonant

radial field exhibits degrees of robustness under density pedestal gradient variations

however the value of this metric relies only on predicting whether the system is able, or
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Figure 25: Integrated torque magnitudes, in absolute values, varying ∆Φ. Different spatial regions are denoted by colors
with: red the core region, green the edge and purple the whole radius. a: torque injected by powering the RMP coils at
full current (8kAt). b: torque injected by powering the RMP coils at full regime and including the EF scaled with the
experimental currents.

not, to produce enough perturbation to achieve control. The results necessarily requires

comparison with the experiment and it is usually device-dependent. It can, in turn,

represent the fastest way to determine the optimal coil parameters when ELMs control

has already been achieved on a device. In order to better understand the details of the

response to the perturbation, the radial field metric should be complemented by a figure

of merit that decouples the types of response, this could also be useful to prevent the on-

set of dangerous locked-modes while still investigating the coil-set parameter space. The

displacement-based metric displays strong sensitivity to scenario changes, probably due

to its extreme localization feature. While notable results have been previously achieved

using this metric, it remains device-dependent and it may even turn out to be unreliable

if the scenario characteristics happen to be too uncertain. Oppositely, the torque ratio

metric, due to its global nature, is generically the most robust under different parameter

variations such as toroidal mode number and kinetic profiles. Therefore, this metric could

be utilized to assess the safety region of coil configurations prior to experimentation.

Analysis of the composition of the fluid torque on MAST-U identifies the dominant role

of the j×b process which requires minimization in the core and maximization at the edge.

So far only the optimal ∆Φ has been computed with the fluid quasi-linear torque which,
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in principle, could also be used to derive the minimum current magnitude to achieve

penetration by evolving the single-fluid momentum equation using the RMP torque as

input source. This is currently left as future work.

The quasi-linear kinetic analysis, even if still unrefined, provided a remarkable

comparison with the more traditional resonant field metric and an adequate agreement

in the prediction of the optimal phase is demonstrated between the two workflows. The

two metric both align in the suggestion that increasing the pedestal density gradient (i.e

lowering the separatrix density) would favour the perturbation penetration. Moreover, a

precise assessment of the RMPs magnitude needed to achieve the full penetration, even if

time consuming, helps in determining the validity threshold for the linear metrics. This

work has also shown how the penetration criterion is crucially dependent on the features of

the pressure profile and therefore the importance of having a precisely constrained input

equilibrium has been assessed. In future, comparing penetration dynamic as computed in

the kinetic and fluid models would further deepen the physical understanding of RMPs

applied to the ELM control. This pushes in the direction of directly benchmark the two

quasi-linear frameworks. Moreover, careful analysis of the dependency on other kinetic

parameters should be carried out to improve the characterization of the metric sensitivity

to the pedestal parameters and enhance the modeling prediction capability.

In general, all these findings suggest that careful consideration of metric selection is

essential to develop effective ELM control strategies in MAST-U.

Finally, this analysis characterized and quantified the dominant contribution to the

n = 2 component of the intrinsic EF associated with the PF system. The plasma

response computations indicate that the EF may affect non-negligibly the core region,

possibly compromising confinement and preventing ELM mitigation. Unfortunately, to

mechanically correct the imperfections that produce all the unwanted n > 1 components

is not practically feasible, as it would require bending and deforming the coils shape,

hence likely incurring in the risk of breaking them. Operation-wise, it could be a solution

to try to adjust the plasma column to distance it from the P5 coil set. Alternatively,

a possibility could be implementing error field correction with another set of external

3D coils such as the Error Field Correction coils (EFCc) which have been previously

applied to correct the n = 1 EF [11]. In the meanwhile, in this work alternative optimal

phases have been computed including the model-based presence of the EF. Nevertheless,

a thorough investigation should also include potential contributions from the toroidal

field system and central solenoid to ensure a comprehensive evaluation of the intrinsic

fields. This is, again, left as future work.
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Appendix A MARS-F shielding current integration

Bridging between MARS-F and the KilCA code requires the computation of the parallel

component of the perturbed current density j// which arise in response to any external

magnetic perturbation. This can be done directly starting from MARS-F outputs.

Indeed:

j‖ =
j ·B0

B0

(A.1)

Where B0 is the equilibrium field and B0 its modulus. This expression can be expanded

in terms of MARS-F variables since B0 = [B1
0 , B

2
0 , B

3
0 ] = [0, ψ

′
/J, F/R2] with ψ

′
= dψ/ds

and with ψ being the poloidal flux, J the metric Jacobian and F the poloidal current

flux function and where 1,2,3 superscripts denominates the radial, poloidal and toroidal

components respectively. Then:

jiBi =
j1ψ

′
g12

J
+
j2ψ

′
g22

J
+ j3F (A.2)

B0 = |B0| =
√
Bi

0Bi,0 =
√

0 + ψ′g22/J2 + (F/R)2 (A.3)

With gij being the metric elements. Finally:

jMARS−F
‖ =

j1ψ
′
g12/J + j2ψ

′
g22/J + j3F√

ψ′g22 + (F/R)2
(A.4)

The parallel current density determined in real space with MARS-F is expanded for

Boozer coordinates in Fourier harmonics. For a single harmonic, we have

j‖ = B0

(
j‖
B0

)
m

eiϑBm+iϕBn, (A.5)

where (j‖/B0)m is the Boozer harmonic of the current in toroidal geometry for the specific

mode number m = (m,n). Note that the current calculated by MARS-F is given for a

specific toroidal mode in geometrical angles. Hence, we need to account for a phase factor

occurring in the transformation to the toroidal Boozer angle

j‖,n(sp, ϑB) = jMARS−F
‖,ng

(sp, ϑg(ϑB))e−inG(sp,ϑB), (A.6)

where ng indicates the toroidal mode number for the geometrical angle used in MARS-F.

To get the mode specific parallel current, we integrate over a surface S,

I‖m =

∫
dS ·B0

(
j‖
B0

)
m

. (A.7)

We choose the surface to be a toroidal surface, i.e. fixed toroidal angle, meaning that

dStor ·B0 = dΨtor. Hence,

I‖m =

∫
dΨtor

(
j‖
B0

)
m

. (A.8)
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To proceed we realize that, in the case of flux variables, the harmonic of the current

density only depends on s =
√

Ψn
pol, where Ψn

pol is the normalized poloidal flux, or

Ψpol = Ψa
pols

2 with the poloidal flux at the last closed flux surface, Ψa
pol. We further

recall that the safety factor is defined as

q =
dΨtor

dΨpol

. (A.9)

With this, we can write dΨtor = 2Ψa
polsds, with which the integration is written as

I‖m = 2Ψa
pol

sres+sd∫
sres−sd

ds sq

(
j‖
B0

)
m

. (A.10)

Note that the integration is over a region around the resonant surface with sres.

Previously [14], the width of this region was determined by a Gaussian fit, where sd was

taken to be five times the standard deviation. Here, however, it proved more consistent

to integrate between the two neighbouring minima around a resonant surface.
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