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The tokamak is a world-leading concept for producing sustainable energy via magnetically-confined nuclear fusion.
Identifying where to position the magnets within a tokamak, specifically the poloidal field (PF) coils, is a design prob-
lem which requires balancing a number of competing economical, physical, and engineering objectives and constraints.
In this paper, we show that multi-objective Bayesian optimisation (BO), an iterative optimisation technique utilising
probabilistic machine learning models, can effectively explore this complex design space and return several optimal
PF coilsets. These solutions span the Pareto front, a subset of the objective space that optimally satisfies the specified
objective functions. We outline an easy-to-use BO framework and demonstrate that it outperforms alternative optimi-
sation techniques while using significantly fewer computational resources. Our results show that BO is a promising
technique for fusion design problems that rely on computationally demanding high-fidelity simulations.

I. INTRODUCTION
A. Motivation and aims

A spherical tokamak is a torus-shaped device with a low as-
pect ratio that uses strong magnetic fields to confine and con-
trol a thermonuclear fusion plasma, with the goal of producing
fusion energy!. The Spherical Tokamak for Energy Produc-
tion (STEP), currently in the design phase and targeting com-
pletion in 20407, is one of a few ongoing fusion research and
development projects based on the spherical tokamak concept.
To deliver fusion power to the grid on such a short timescale,
researchers are increasingly designing next-generation toka-
maks in silico with multi-physics simulations, many of which
require high-performance computing (HPC) resources.

STEP is no exception, with initial concept designs for the
tokamak (and the associated plasma) being generated by low-
fidelity integrated modelling codes® such as PROCESS*3 and
Bluemira®®. These codes use simplified physics and engi-
neering models to produce designs within seconds or minutes.
In contrast, more complex medium- to high-fidelity codes,
such as JINTRAC?, incorporate more detailed physics mod-
els but can require days or weeks to complete a single sim-
ulation. These higher-fidelity simulations play a crucial role
in refining, integrating, and validating the initial concept de-
sign across the entire fusion power plant'®. Making the most
efficient use of these computationally expensive simulations
is critical if we wish to accelerate the design of future fusion
power plants like STEP.

Our focus here will be on the design of the poloidal field
(PF) coil system, which plays a critical role in controlling the
position and shape of the plasma in both the core and divertor
regions of the tokamak'!. In particular, some coils are cru-
cial for managing the vertical stability of elongated plasmas,
such as those in spherical tokamaks, where the higher elon-
gation can lead to larger vertical instability, risking disruption
without appropriate control'?. By generating poloidal mag-
netic fields, the PF coil system ensures the plasma remains in
equilibrium, balancing the inward-facing magnetic forces pro-
duced by the coils against the outward-facing pressure-driven

forces generated by the plasma'3. The design of the system—
in terms of the coil positions, sizes, and shapes—will have
a significant impact on plasma performance and stability and
will therefore need to satisfy a number of competing (and of-
ten conflicting) constraints. In the plasma, for example, con-
straints are required to ensure X-points form in specific loca-
tions (for stability), strikepoints hit the correct divertor plates
(for heat management), and total current density limits on the
PF coils are not exceeded. In terms of the tokamak itself, the
locations/sizes of the coils will inevitably be constrained by
the vacuum vessel, diagnostic systems, and maintenance ports
(to name but a few).

In addition to constraints, there will be a number of objec-
tives related to the desired operational plasma conditions that
we wish the chosen coilset to minimise or maximise (depend-
ing on the objective). This could include minimising the coil
size to reduce fabrication, construction, and installation costs
or could include minimising current flows to reduce power
consumption and structural stresses from forces produced by
the coils'4. Moreover, we may wish to optimise certain prop-
erties of the plasma in the divertor chambers in order to min-
imise heat loads on plasma facing components and improve
exhaust performance!>!®. Simultaneously satisfying both the
objectives and constraints will require the solution of a com-
plex optimisation problem that needs to be tackled in a sys-
tematic, computationally efficient manner.

In this paper, we will perform multi-objective Bayesian op-
timisation (BO) on an earlier baseline design of the STEP PF
coil system!”. Our aims are to:

(i) design and outline an easy-to-use BO framework which
is flexible, data efficient (reducing the computational
cost of design), and can yield more optimal designs
than obtained through other exhaustive optimisation
schemes.

(i1) identify a Pareto front, i.e. a set of optimal PF coil loca-
tions, that outperform the baseline for some given ob-
jectives and constraints.

(iii) motivate more widespread adoption of BO for the in
silico design of interlinked components on future toka-
mak devices to save time, minimise financial costs, and



improve plasma performance.

We should stress that this work has not had a direct impact
on the current design of the STEP PF coil system'® and is
instead a demonstration of a generalisable BO framework for
PF coil system design. We do wish to highlight, however,
that the framework is completely machine agnostic and can be
used with different objectives and constraints to the ones we
use here. It is the hope that frameworks such as this will be
adopted more regularly within the integrated modelling codes
currently used for tokamak design.

B. Related work

PF coilsets are typically optimised using integrated mod-
elling codes for tokamak power plant design. A common ap-
proach is to force the PF coils to lie on a contour “rail” that
surrounds the core plasma, reducing the number of degrees
of freedom in the optimisation problem'*!°. Exclusion zones
along the rails enforce engineering constraints, before nonlin-
ear (non-Bayesian) optimisation is performed with respect to
some pre-specified objectives and constraints on the plasma
boundary shape.

While well-established, rail-based methods can restrict the
PF coil design space, often rely on estimated objective func-
tion gradients, and can struggle with multiple competing ob-
jectives. They are primarily suited to conventional aspect ratio
tokamaks, where PF coil rails are placed outside (and close
to) the toroidal field (TF) coils, sometimes leading to inter-
section issues. BO, on the other hand, performs gradient-free
global optimisation, can handle diverse constraints, and uses
a surrogate model of the multi-output objective function to
intelligently guide function evaluations. This helps balance
exploration of new designs and exploitation of known optimal
designs, leading to high levels of data efficiency.

Despite these advantages, the adoption and application of
BO in fusion engineering and design has, so far, remained rel-
atively limited. Brown et al. 22! aimed to improve six key
properties of the safety factor profile by using BO on the cur-
rent profiles in STEP. They also demonstrate that BO per-
forms better than a genetic algorithm with the same number
of black-box function evaluations (as we will do later on).
Mehta et al.*> use BO to find the parameters such as neu-
tral beam injection power, plasma current, and plasma elon-
gation in the DIII-D tokamak that safeguard against disrup-
tion during the ramp-down phase. Similarly, Pusztai et al. >
use BO to mitigate the impact of disruptions in ITER by ex-
ploring how injected deuterium and neon can minimise run-
away electron currents, transported heat, and quench time
post-disruption. Jirvinen e al. >* also investigate runaway
electron currents using BO as an advanced sampling method
to help calibrate uncertainty and minimise the discrepancy be-
tween simulations and experimental data. For fusion compo-
nent design, Humphrey et al. > demonstrate the use of BO
to minimise stresses in parametrised divertor monoblocks un-
der fusion conditions. The most relevant work to ours is that
of Nunn, Gopakumar, and Kahn 26 who use multi-objective
BO to optimise TF coil shapes to reduce both financial costs

and magnetic ripples (which affect plasma stability and per-
formance). In contrast, our approach deals with more compu-
tationally expensive, failure-prone plasma equilibrium simu-
lations without analytic objective/constraint functions, neces-
sitating the use of a classifier alongside the surrogate model.

The work here is inspired by that of Hudoba ef al.!’,
in which the authors seek to optimise the STEP PF coil
system by minimising deviations of key plasma parameters
from a baseline scenario (which we adopt) and coil currents,
while maximising divertor performance metrics. Using a
free-boundary equilibrium solver, thousands of potential PF
coilsets are sampled and evaluated (in a Monte Carlo-type
approach) before optimal solution sets are identified heuris-
tically. We aim to provide and fully outline an alternative,
much more data efficient, framework for carrying out similar
multi-objective optimisation that can return a STEP equilib-
rium similar to the baseline.

There are also a number of areas in fusion design where
BO has yet to be applied but could potentially offer significant
benefits. For example, parameter scans for optimal magnetic
sensor placement, as explored for TCV? and SPARC28, could
benefit from BO’s sample efficiency, saving computational re-
sources and time. Similarly, these benefits could transfer to
existing frameworks for stellarator coil design®®—3!.

C. Outline

In Section II, we describe the multi-objective BO problem,
the Gaussian process surrogate model, the classifier scheme,
and the acquisition function required in the BO loop. We fol-
low this in Section III by defining the PF coil design problem
in terms of the input space, the objectives we seek to optimise,
and the constraints on the plasma and the machine. In addi-
tion, we describe the simulator used to generate the plasma
equilibria for each PF coilset and define cases in which the
simulator may fail to produce a valid equilibrium (requiring
the classifier). The numerical experiments are detailed and
presented in Section IV. To highlight the data efficiency of
the BO scheme, we carry out a number of experiments with a
fixed computational budget and assess performance against al-
ternative optimisation methods. In Section V, we discuss our
findings, highlight any major advantages and disadvantages
of the BO framework applied to this problem, and propose
avenues for future work.

Il. MULTI-OBJECTIVE BAYESIAN OPTIMISATION

BO is a method for performing gradient-free global opti-
misation of black-box functions, typically utilised when the
function is expensive-to-evaluate’?. Practitioners will of-
ten want to identify (feasible) optimal points of the func-
tion’s input/output spaces with as few function evaluations as
possible—especially if there is a limited computational bud-
get.

Here, we are interested in optimising the nonlinear function
f: U CRY — RA™ that takes in a d-dimensional input and



returns / objectives and m constraints. More formally, the aim
of multi-objective BO (I > 1) is to solve

argmin  fj; 5 (), (L
xzel
Fi1.04m <0

where f)_; denotes the first k components of f and < denotes
a component-wise less than or equal to comparison.

Given we need to optimise over multiple competing objec-
tives, problems such as (1) will often involve trade-offs where
improving one objective may come at the expense of another.
The aim is therefore to seek the set of Pareto optimal solu-
tions P that are not dominated by any other solutions. A so-
lution & dominates another x’, denoted x < &/, if and only if
f(z) < f(2') and 3j € {1,...,1} such that f;(z) < f;(z’).
In short, a solution & dominates @’ if it is at least as good in
all objectives and strictly better in at least one. Given a dataset

D= {(zi, f(z)}Y |,

consisting of N evaluations of f, the Pareto set for (1) is de-
fined as

PD)={xcD|fz' cDst a' <z} )

The Pareto front, denoted Py, is defined as the image of the

Pareto set, i.e. Py :={f(x) | € P(D)}. See Garnett 32, Chp.
11.7 for an illustration of the Pareto front.

A. The Bayesian optimisation loop

The key component in BO for identifying feasible and op-
timal trade-offs between the objectives is a probabilistic sur-
rogate model, capable of performing uncertainty based explo-
ration. This model is typically trained on some initial dataset
by maximising its marginal likelihood—more details on this
surrogate model are given in Section II B.

The first stage in BO (refer to Figure 1) is to construct this
initial dataset (which we will call D) by taking N samples
x € U and evaluating them all using f. One popular method
used is Sobol sampling3, whereby samples are chosen quasi-
randomly with low discrepancy to achieve approximately uni-
form coverage of the input space. The number of samples N
chosen/required may depend on the size of d, the computa-
tional budget available, and if parallel processing is available
(for the f evaluations). Note that at this point, while we could
use D to immediately generate a Pareto set P(D), this would
almost certainly be a poor estimate given a lack of data points
and that most would reside in non-optimal regions of the ob-
jective space.

It is worth noting that for many black-box functions such as
f, there will be failure regions of the input space that cannot
be evaluated. The reasons for failure in our particular setting
are discussed further in Section III B5. During construction
of the initial dataset, samples that lie in failure regions may
be encountered and so we do not wish to include these in the
dataset. We do, however, wish to learn from these samples so
that we do not encounter similar samples again and therefore
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FIG. 1: A flowchart illustrating the standard “BO loop” along
with an additional failure region classifier step—see text for
more details.

we train a classifier to predict when this may happen—a sim-
ilar approach was taken by Hornsby et al. >* when generating
gyrokinetic simulation datasets for spherical tokamaks. This
classifier will be used within the BO loop, which can be seen
in Figure 1 and is now outlined:

Stage 1: Generate the initial dataset D using the Sobol sam-
pling scheme.

Stage 2: Train the surrogate model using the dataset D (see
Section II B) to obtain a probabilistic model: f(x) | D.
Note that we exclude failure samples during training as
they do not provide any valid information about the ob-
jective or constraint values.

Stage 3: Train the failure region classifier using the generated
data (see Section I1 C).

Stage 4: Maximise the acquisition function over the input
space to identify the most “informative” point * to ob-
serve next, given the current surrogate model (and clas-
sifier) f(z*) | D (see Section IID).

Stage 5: Evaluate f(x*) and add it to the dataset: D := DU

{(z", f(x"))}.

Stage 6: Check whether the terminating condition is met and
if not, return to Stage 2. In our case, we check whether
or not the maximum number of iterations has been ex-
ceeded (to remain within our computational budget).
Other terminating conditions include stopping once im-
provements in the acquisition function are below some
threshold or when the objectives are deemed to be suf-
ficiently optimal®>.



B. The Gaussian process surrogate

In BO, the most common type of surrogate used is a Gaus-
sian process (GP), which is a probabilistic machine learning
model for performing inference on the value of a function
f: U — R given some training data—see Garnett>2, Chp. 2.
It is characterised by a mean function m: U — R and a pos-
itive semi-definite covariance function k: U x U — R (with
k(-,+) > 0) such that the prior can be defined as

The distribution of this prior is the joint distribution of (in-
finitely) many Gaussian random variables and can be thought
of as a distribution over functions. Therefore, at a finite set of
evaluation points X = {x,x>,...} C U we have that

f(X)~N(p, %), (4)

where p = [m(x),m(x;z),...]T is the mean vector and
[X];,j = k(x;, ;) Vi, j € {1,2,...} is the covariance matrix.

Training a GP requires conditioning the prior (3) on the
dataset of known function evaluations D (with outputs stan-
dardised to mean 0, standard deviation 1 and the inputs trans-
formed to the unit hypercube) such that we obtain the follow-
ing posterior distribution

FX)|'D~ N, S). 5)
This conditioning can be done analytically (see Garnett32,
Chp. 2.2 for formulae for & and $) and effectively tells
the model to assign higher probability to functions that fit the
training data well.

The quality of this posterior distribution (in terms of the
mean accuracy and variance calibration), however, is highly
dependent on the choices made for the functions m and k. A
typical choice for the mean function is m = 0, which assumes
no prior knowledge of the function being modelled and en-
sures model predictions from (5) are heavily influenced by the
training data. The choice of covariance kernel is formed via
our prior belief in the expected behaviour of the true function
being modelled (e.g. non-periodicity and smoothness). The
covariance function used here is the Matérn-(1/2) (or expo-
nential) kernel

k(z;,x;) = o exp (||w,~ _;j”2> :

where || -||2 denotes the Euclidean distance®. In addition, the
parameters ¢ and o define the input length scale (smaller val-
ues produce more ‘wiggly’ functions) and the function noise
(smaller values lead to lower predictive uncertainty in the
function). The covariance kernel encodes the relationship be-
tween input points and the resulting covariance matrix quan-
tifies how a change in one point influences changes in another
across the domain. The hyperparameters ¢ and ¢ are tuned
(for example, using traditional non-Bayesian optimisation al-
gorithms) to produce the best fit to the training data such that
the marginal log-likelihood of the posterior (5) is maximised.

It should be noted that while we have described scalar out-
put GPs here, in practice we model each output dimension of
f using its own scalar GP. This assumes each output of f is
uncorrelated (i.e. independent) of one another and means that
we require [ + m “stacked” GPs to model the joint distribution
over f. More importantly for BO, it is crucial that the surro-
gate model is relatively cheap to train and evaluate compared
to the cost of evaluating f.

C. The classifier

The aim of binary classification is to label each data point
in the input space as either a failure (0) or a non-failure (1).
The probability that a point € U is a non-failure is modelled
using a GP over a latent function, which is then transformed
via the logistic function®’:

1

P (non—fallure | l’) = m

z <l (6)

Using the logistic function transforms the GP from a regres-
sion model (as it is used in Section II B) to a classifier by map-
ping its prediction into a probability that a point belongs to the
non-failure class.

The GP model with classification now has a Bernoulli like-
lihood p(D|f), making the calculation of the posterior dis-
tribution p(f|D) analytically intractable—unlike in (5) where
the prior, likelihood, and, therefore, posterior were all Gaus-
sian (see Williams and Rasmussen 38 Chp. 3.4). To address
this, we approximate the posterior using a variational distri-
bution ¢g(f|D; A), chosen such that its likelihood g(D|f; ) is
Gaussian—with X parameterising the new distribution®®. The
parameters A are found by maximising the evidence lower
bound

L(A) = Eyp|pa) log p(D]f)] =KL [g(fs ) || p(f)]-

The first term represents the expected log likelihood (ob-
serving the training data given the probability distribution over
functions), while the second term denotes the (non-negative)
Kullback-Leibler divergence between the two distributions.
Clearly if the KL divergence was zero (the distributions were
identical), we would be maximising over the original (log)
Bernoulli likelihood. Once the A are found, the GP can be
conditioned on the data (as was shown in Section II B) using
the new Gaussian likelihood g(D|f; ).

In classification, imbalance in the dataset-where one la-
bel is significantly more prevalent-can create a poor qual-
ity classifier. This results in the classifier being accurate by
simply predicting the majority class, rendering it useless for
identifying failure regions. To combat this, we employ over-
sampling, which randomly duplicates samples in the minority
class such that both labels are equally represented in the train-
ing dataset®?. As a result, the classifier cannot achieve a high
accuracy by simply predicting one class and a higher quality
model is produced.



D. The acquisition function

Based on knowledge from the trained GP and classifier, the
acquisition function provides us with a way to estimate how
informative evaluating f at a previously unseen point € U
will be. Depending on the task at hand, there are many possi-
ble choices of acquisition functions, each tailored to specific
objectives. As mentioned before, the key factor in selecting
an appropriate one is that it should be computationally cheap
(compared to f) to evaluate given the surrogate model.

Here, we use the expected hypervolume improvement
(EHVI) function, which seeks to quantify the expected in-
crease in the hypervolume of P, when adding a new point
to the dataset D*!. The hypervolume HV of Py is defined as
the [-dimensional integral of the subspace

{yeRl|Elp€(Pfs.t.p-<y},

dominated by P 42

EHVI is particularly suited to multi-objective optimisation,
as it effectively balances exploration and exploitation by fo-
cusing on regions of the search space that are both uncertain
and potentially optimal. The EHVI function agpyy: U — R is
given by

opnvi(z) = Ef [HV(PrU{f(z)}) —HV(Py)],

where Ey is the expectation operator of (5) (with respect to
the / objectives, not the constraints). Recalling that f(x) is a
random variable, this function describes how much additional
volume in objective space we expect to gain by sampling at a
new point x, relative to the current Pareto front. Please refer
to Yang et al. ** for a more rigorous treatment of this material.

As mentioned before, we have both constraints on the func-
tion f and failure regions in the input space. To this end, we
define the probability of feasibility as

where f;. 1 to fi1., are the GP models of the m constraint func-
tions and p(non-failure|x) is the classification model (6). This
measures the joint probability that a given point in the input
space is feasible (respects all of the constraints) and is not a
failure.

Using this probability, we can then define a constrained ac-
quisition function (ECHVI):

agnvi(x)-g(x) if g(x) > A4,
o = 7
Echvi(2) {O otherwise. ™
which weights aggvy by g and enforces a cut-off

threshold*>** (here we use A = 0.5). This ensures that sam-
ples with a probability of feasibility less than A are excluded
from consideration, while those with probabilities higher are
more likely to be selected during the optimisation than those
with lower probability (but still above A). We also note that
appyr must be calculated with respect to the hypervolume of
the feasible Pareto frontier by excluding infeasible points from
the dataset.

To find the next most informative sample, we use single-
objective (non-Bayesian) optimisation to find the point that
maximises Qgcyvr:

¥ = argmax agchvi(x).
zeU

This is done using the L-BFGS-B* algorithm which makes
use of multiple restarts to avoid local maxima and avoid the
discontinuity in agcyyy. Once found, * is evaluated using f
and added to the dataset D.

Ill. THE POLOIDAL FIELD COIL DESIGN PROBLEM

The PF coil design problem described here is concerned
with identifying the set of PF coil positions that will opti-
mise some aspects of both cost and performance of a STEP-
like tokamak, subject to strict design and engineering require-
ments. In this section, we will describe the inputs, objectives,
and constraints required to formulate the optimisation prob-
lem as well as the underlying STEP baseline design and the
simulator required to calculate plasma equilibria. Through-
out, we will be working within a cylindrical coordinate system
(R, ¢,Z) which denotes the major radius, the toroidal direction
(into the page), and the height, respectively.

A. The STEP baseline design

We will be working with the initial PF coil setup and lim-
iter geometry from the baseline STEP design presented by
Hudoba ef al.'”. The design is shown in Figure 2 and the
information available to us from the baseline dataset are the:

o Names, centroid positions (R, Z¢), and half

width/heights (dR,dZ) of the PF coils.

o Permissible zones for each PF coil, i.e. the region of
the RZ-plane in which each coil can be placed without
intersecting the TF coils, diagnostic systems, or other
parts of the tokamak.

o Limiter contour that confines the plasma equilibrium.
This was constructed using the strike plate locations
and made to match the geometry illustrated in Tholerus
etal.*.

o Strike plate locations, i.e. segments of the limiter in the
inner and outer divertor where the legs of the plasma
separatrix will strike.

o Separatrix of the plasma equilibrium, the X-points, and
the strikepoints.

o Plasma pressure and toroidal magnetic field profiles re-
quired to solve for the equilibrium.
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FIG. 2: The baseline setup from Hudoba et al. !7 in the
RZ-plane (due to vertical symmetry about Z = 0 only the top
half of the tokamak is shown). The separatrix (red) outlines
the shape of the plasma core and the divertor legs which hit
the inner (green) and outer (blue) strike plates. The initial
location of the seven PF coils (grey rectangles) are displayed
within their respective permissible zones (red rectangles).
Note the absence of the central solenoid, which is not used in
the flat-top phase of operation shown here. The isoflux
constraints (black crosses) define locations at which the
separatrix should pass through.

B. Optimisation problem

The mathematical formulation of the PF coil optimisation
problem requires stacked scalar inputs, objectives, and con-
straints so that we can map a vector of PF coil positions to a
vector of objective/constraint values.

1. Input space

As can be seen in Figure 2, there are seven up-down sym-
metric (around Z = 0) PF coil circuits each with their own
(R¢,Z°) centroid coordinate that is allowed to move freely
such that no part of the coil leaves the permissible zone. The
exceptions are the two quasi-solenoid (QS) coils, positioned
above (and below) the central solenoid for magnetic shaping
in the inner divertor, which are only able to move vertically.
This results in a twelve dimensional input space for the opti-

Height [m]
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Separatrix # X-Point
== PF Coil o | L IMP
to X-point
FL inner strike FL OMP
to X-point to X-point
FL outer strike Inner Strike
to X-point Point
Outer Strike
Point

FIG. 3: The baseline setup from Figure 2, this time marked
with objective and constraint quantities. Shown are the
separatrix (light pink), the upper X-point (red cross), and the
inner (green star) and outer (red star) strikepoints. Also
shown are the flux surfaces traced out to calculate the ICL
(blue plus red lines) and OCL (yellow plus green lines).

misation problem: five pairs of (R, Z¢) coordinates for the PF
coils and one Z¢ coordinate for each of the two QS coils. We
normalise each of the coordinates with respect to their own
permissible zones so that we can work with the unit hyper-
cube [0, 1]'2 as our input space. A more detailed explanation
of the normalisation process can be found in Appendix A.

2. Objectives

In this problem, we consider two scalar objective functions
that we wish to optimise with multi-objective BO—though we
should note that nothing prevents us from adding more objec-
tives.

The first objective is to minimise the volumetric sum of
the PF coils. This is important as smaller coils require less
physical material and therefore weigh less, making the fab-
rication, transportation, and installation process less arduous
and costly. Recall, each PF coil is modelled as a rectangle
in the RZ-plane and as an annulus in the R@-plane. The total



volume of the seven PF coils (upper and lower components
inclusive) can therefore be defined as

14
V =8nY R{dRidZ;. (8)
i=1
where the coil index i = 1,...,7 for upper and i = 8§,...,14
for lower coils. It is important to note that the PF coils do not
change shape in the poloidal plane (i.e. cross-sectional areas
are fixed, equal to 4dRdZ) and so the volume of each coil will
change only when its central radial position R changes.

The second objective is to maximise the average of the in-
ner connection length (ICL) and the outer connection length
(OCL). The connection length is the distance traced out by
a helical (i.e. moving both poloidally and toroidally) mag-
netic field line that starts at the inner (outer) edge of the last
closed flux surface (LCFS) at the midplane and ends at the in-
ner (outer) strikepoint*’*8. We refer to these inner and outer
midplane points as the IMP and OMP, respectively. Larger
connection lengths ensure that hot plasma leaving the core
edge region will travel a farther distance and therefore cool to
more acceptable temperatures before hitting the strike plate.
This is an important aspect of managing heat loads in the di-
vertor region.

The ICL and OCL are calculated by carrying out an integral
over the length of the magnetic field line of interest*. Tracing
the magnetic field line requires the solution of a system of
ordinary differential equations (ODEs) for the position vector
of a point along the field line trajectory r({):

ar(t) _
=),

where b is a unit vector along the direction of the magnetic
field B in cylindrical coordinates:

telo0,L], €))

d
B(r(t)) = { FWR2)

Here y(R,Z) denotes the scalar poloidal magnetic flux and
F the toroidal magnetic field profile. To solve this problem,
we use a fourth-order Runge-Kutta method (with appropri-
ately chosen step size Af) and integrate until a terminating
condition is met (see next paragraph), recording the value of
L obtained (i.e. the total number of steps Af).

In practice, however, the calculation is split into two
stages. The first stage involves integrating from an initial po-
sition 7(0) which is selected to be 3mm radially outside the
IMP/OMP and ending at some very small distance away from
the upper X-point. The second stage integrates between the in-
ner/outer strikepoint and the point close to the upper X-point.
The length of these individual sections is then combined to re-
turn the final connection length. The two flux surfaces traced
out when calculating the ICL and OCL are visualised in Fig-
ure 3. These techniques reduce the likelihood of the integrator
getting stuck at the exact X-point, travelling around the LCFS
(instead of going up into a divertor), and from travelling into
the wrong divertor.

[ Constraint [Bound [unit] |
LCEFS area ratio <0.012

Outer strike distance <0.14 [m]

Inner strike distance <0.32 [m]
X-point distance <0.01 [m]
Maximum current density | < 100 [MA/ m?]

TABLE I: Constraint bounds enforced on the equilibria
generated by FreeGS for a particular PF coilset.

3. Constraints

In addition to the objectives, we also have a number of
design and engineering constraints that need to be satisfied
so that each PF coilset considered in the BO loop produces
an equilibrium with key targets that are similar to the base-
line equilibrium and does not violate coil current limits. The
bounds of the constraints are summarised in Table I.

The first constraint is on the shape of the LCFS, which is
defined as the contour of (R, Z) points that pass through the X-
point closest to the magnetic axis—recall Figure 2. We denote
this region of the RZ-plane as Q,, and quantify the difference
between two different regions using

Qlua| - |Qlna?|
n QI’QQ — P 14 14 14
)= oy oy

€ [0,1],

where | - | denotes the cross-sectional area of a region in the
poloidal plane®®. This parameter quantifies the ratio of the to-
tal non-overlapping areas and the sum of the two areas. Plac-
ing an upper limit on this ratio enables us to constrain the
LCFS shape of the new equilibrium (Qi) to be similar to that
of the baseline (Q}J). This helps to ensure the new equilibrium
has similar core performance to the baseline.

The second and third constraints place an upper limit on the
distance between the strikepoints (i.e. where the separatrix
first intersects the limiter geometry at some location) and the
centre of the strike plates. In rare cases, an equilibrium may
have a separatrix that intersects the limiter multiple times on
the same plate, hence we need to account for that. The bound
is half of the length of the strike plate, with one constraint on
each of the inner and outer strike plates.

The fourth constraint will place an upper limit on the dis-
tance between the two X-point locations when mirrored about
Z = 0. This distance should be minimal in a double-null
plasma scenario as considered here. See Figure 3 for the
strikepoint and X-point locations.

The final constraint ensures the maximum current density

1 Ii

Jmax = — max ,
T 4417 dRidZ;

in the PF coilset remains below the engineering limit defined
in Nasr ef al. '8. Here, I; denotes the coil current and the de-
nominator is the coil area. This limits stresses in the PF coil
structures and helps avoid quench events—a sudden loss of
superconductivity which can damage the coils’!.



4. Equilibrium simulator

In order to calculate the aforementioned objective functions
and evaluate whether or not the constraints have been met, we
need a simulator that is able to generate a plasma equilibrium
using the STEP baseline design and a given PF coilset. For
this we use FreeGS, a free-boundary static inverse equilibrium
solver>2. FreeGS will return a plasma equilibrium (in terms of
the poloidal flux) and the PF coil currents required to generate
it. It uses an optimisation routine to identify the coil currents
with respect to some constraints on the chosen plasma shape
and a Picard iteration scheme to solve the free-boundary Grad-
Shafranov problem (see Song et al. > and Pentland et al. >*).
The required inputs to solve the equilibrium problem are:

* The STEP baseline parameters and a PF coilset (per-
missible zones not required).

» Two X-point locations, one at (R*,ZX) and the other
mirrored at (RY,—Z%X) (as we required an up-down
symmetric double-null configuration like the baseline
equilibrium).

* 23 isoflux constraints that link poloidal flux values on
the core plasma boundary to the X-points and the diver-
tor regions (i.e. constraints that ensure the poloidal flux
W (R,Z) at two different locations (R;,Z;) and (R2,Z;)
are the same).

Given these inputs, FreeGS will return the coil currents in
the PF coils required to generate an equilibrium that (closely)
matches the one provided in the baseline. From this equilib-
rium, we can then calculate the values of the objectives and
the constraints. From time to time, however, the simulator
may fail to converge on a physically “valid” equilibrium, re-
turning spurious objective and constraint values. This could
be for a number of reasons such as solver instability or a phys-
ically incompatible PF coilset. This requires care and will be
discussed in the next section.

5. Failure regions

The equilibrium simulator will either (in rare cases) fail
to converge or stop once the relative difference between the
poloidal flux at successive iterations is below some tolerance
threshold (returning an equilibrium solution). This stopping
criteria does not, however, consider the physical validity of the
equilibrium identified. In some cases, non-physical equilib-
ria that do not satisfy the X-point and isoflux constraints may
be returned. In other cases, we may have an equilibrium for
which we either cannot calculate the objectives/constraints or
which return spurious objective/constraint values. The regions
of the input space for which non-physical (invalid) equilibria
are returned (or if the simulator outright fails) will be referred
to as failure regions.

In Figure 4, we illustrate two cases of invalid equilibria re-
turned by FreeGS. The left panel shows a single-null equilib-
rium with the LCFS intersecting the limiter in the core region.

Height [m]
Height [m]

0 2 4 6 0 2 4 6
Radius [m] Radius [m]
— Separatrix * X-Point — Separatrix * X-Point
== PF Coil == PF Coil

FIG. 4: Two examples of invalid equilibria returned by
“converged” FreeGS simulations with different PF coilsets.

The right panel depicts an equilibrium in which both X-points
have formed inside the divertor regions, far from the desired
locations in the core, resulting in the LCFS again intersecting
the limiter. This is problematic when calculating the ICL, as
this calculation assumes the LCFS does not intersect the lim-
iter geometry until hitting the strikeplate, resulting in an un-
feasibly small ICL value. Calculations for both the ICL/OCL
and the strike distances are spurious in this case.

To mitigate these issues, we can classify (recall Sec-
tion II C) whether an equilibrium is valid by checking the fol-
lowing conditions:

1. the X-points (RX,Z¥) and (RX, —ZX) must be to within

10cm of the limiter boundary with RX € [2.2,3].

2. the LCFS does not intersect the limiter’>.
By actively avoiding sampling the PF coilsets where the sim-
ulator fails or produces such invalid equilibria (via the clas-
sifier), we can avoid wasting computational resources on so-
lutions that do not provide any useful information to the BO
loop.

IV. NUMERICAL EXPERIMENTS

In this section, we will perform the design optimisation of
the PF coil set problem. The first experiment will use multi-
objective BO to find several Pareto optimal PF coilsets that re-
spect the engineering and design constraints in Section III B.
We analyse two of the Pareto optimal solutions in more detail,
highlighting how the BO explores the solution space while
respecting the trade-off between the objective functions. To
further illustrate the data efficiency of the BO, we compare
its performance against two other optimisation methods (sim-
ple Sobol sampling and a genetic algorithm) when using both



identical and larger computational budgets.

To generate these results, we use the Trieste pack-
age which provides the software implementations for Sobol
sampling, acquisition functions, and Gaussian processes (via
GPflow>®). Pygmo2>® provides the genetic algorithm which
we will use for benchmarking. When evaluating the Sobol
samples with FreeGS>2, we make use of the CSD3 HPC clus-
ter (see Acknowledgements) and the Simvue platform® to
monitor simulation progress and store the objective/constraint
data.

56,57

A. Stand-alone BO

In this experiment, we will limit ourselves to 128 evalua-
tions of f: 64 Sobol samples to build the initial dataset and 64
sequential BO samples to intelligently explore the objective
space and identify feasible optimal points.

In Table II, we display the proportions of each sampling
set that result in feasible, infeasible (violating one or more
constraints), and failed (invalid) PF coilsets. We can see that
only 10% of the Sobol samples provide feasible designs and
that once the BO loop begins running, we accumulate a much
larger proportion of feasible designs with fewer failures. This
shows that the GPs can accurately model the constraint re-
sponses and the acquisition function uses this to propose fea-
sible samples.

The drop in failure region samples likely results from a
combination of explicit classifier intervention and the scarcity
of optimal samples near these regions, making them less likely
to be chosen by the acquisition function. The classifier has a
precision of 0.82, meaning 82% of the area included in the
acquisition maximisation (by zeroing the ECHVI in these re-
gions) is indeed non-failing, reducing waste of computational
resources by potentially sampling failing points. A recall of
0.86 shows that only 14% of the non-failure region is incor-
rectly avoided by the classifier; it is more important that this
percentage is low because Pareto optimal solutions could exist
here but would be missed.

The BO loop successfully identifies the Pareto front (see
Figure 5), capturing the trade-off between the volumetric sum
(8) and the average connection length (recall (9)). Gener-
ally, the latter BO iterations produce samples that dominate
earlier samples, highlighting how BO learns from new data
and exploits its new understanding of the functions to produce
higher-quality samples.

During the initial BO iterations, the data is sparse, result-
ing in highly uncertain and inaccurate GPs. As a result, the
exact location of the feasible regions is unclear and, as it ex-

[Method | Failure [Infeasible| Feasible || Total|
Sobol 23 (36%)] 31 (48%) | 10(16%)]| 64
BO 5(6%) | 37(58%) |23 (36%)|| 64

TABLE II: The number (and percentage) of samples from
each sampling method that lie in failure, infeasible, or
feasible regions.
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FIG. 5: Feasible solutions in the objective space for the 64
Sobol + 64 BO experiment. Shown are the baseline (grey
cross), Sobol solutions (blue) and the BO solutions (light

pink to red). Pareto optimal solutions are denoted with a star

and dominated solutions with a circle, with light pink to red

indicating successive BO iterations. Two of the BO samples,
71 and 110, are highlighted for further analysis.

plores for the first 20 iterations, the BO produces few feasible
samples—see Figure 6. Following this initial exploration, 30
iterations of exploitation takes place, where BO reliably pro-
duces feasible samples (those seen in Figure 5). The final 20
iterations yield no feasible samples, indicating a return to ex-
ploration and suggesting there is little scope to find feasible
optimal solutions around the current Pareto optimal points.

In Table III, we display the objective/constraint values ob-
tained from the baseline and two of the Pareto optimal PF coil
sets shown in Figure 7, with both samples obtained during
the BO iterations. The 71st sample yields the highest average
connection length while the 110th sample has the joint low-
est volumetric sum (of these tied samples, it has the higher
connection length). The first three rows of the table show the
objective quantities for both samples while the intermediate
five rows show the constraint values.

The objective values of the baseline (and its location in Fig-
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FIG. 6: The total number of feasible BO samples at the end
of each BO iteration.



[Objective/constraint | Baseline [Sample 110 [Sample 71 |
V [m’] 86.5 77.6 85.1
ICL [m] 96.5 96.9 108
OCL [m] 67.1 70.3 71.8
LCEFS area ratio 0.0108 0.0117 0.0103
Outer strike distance [m] 0.0934 0.0957 0.0962
Inner strike distance [m] 0.0297 0.0233 0.0305
X-point distance [m] 0.000374| 0.00394 0.000919
Jmax [MA/mz] 71.4 82.4 98.8
Inner (B)) [T] 0.414 0.413 0.373
Outer (B, [T] 0.552 0.537 0.530

TABLE III: The objectives and constraint values (to three
significant figures) for the baseline and two of the Pareto
optimal solutions shown in Figure 7. Also shown are the
inner and outer line-averaged poloidal magnetic field
readings.

ure 5) relative to the Pareto optimal samples demonstrate that
BO is able to improve the PF coilset design significantly. At
a minimum, BO has yielded a reduction of V by 1.4m> and
an increase in average connection length of 1.8m over the
baseline; this is not insignificant considering the low computa-
tional budget to achieve these gains. The constraints show that
samples 110 and 71 are close to the constraint bounds for the
LCEFS shape and maximum coil current density, respectively.
This could indicate that further optimisation of these samples
(and other Pareto optimal samples) is not possible without vi-
olating the constraints, hence the lack of feasible samples in
the final BO iterations.

It is clear from Figure 7 that the 110th sample has a smaller
volumetric sum because PF coils 2, 3, 4, and 5 are closer to
the device centreline (R = 0). However, the difference in av-
erage connection length is less obvious because the separatri-
ces look (qualitatively, at least) very similar. The lower con-
nection length in sample 110 results from a higher poloidal
field, causing particles travelling from the midplane into the
divertors to move faster, decreasing the number of times (and
thus the distance) they orbit the tokamak toroidally. This can
be seen in the final two rows of Figure 7, which shows the
line-averaged poloidal magnetic field (B,) along the inner and
outer connection length field lines, respectively.

B. Comparison between BO, Sobol sampling, and a genetic
algorithm

Next, we compare the BO scheme against two other multi-
objective optimisation methods. The first method we com-
pare against uses quasi-Monte Carlo sampling via the Sobol
method, essentially relying on random chance to sample feasi-
ble and optimal coilsets. The second method will use a genetic
algorithm, specifically the ‘Non-Dominated Sorting Genetic
Algorithm I’ (NSGA-IT)®!. NSGA-II, like all genetic algo-
rithms, operates on the principle that combining the inputs of
well-performing individuals within a population can produce
offspring (new samples) that inherit characteristics from its
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FIG. 7: The PF coilsets and corresponding separatrices for
the baseline (pink) and two of the Pareto optimal equilibria:
sample 71 (blue) and 110 (green) of the simulator
(corresponding to samples from the 7th and 46th BO
iteration, respectively).

parents and therefore may perform similarly or better. Start-
ing with an initial population (in our case, Sobol samples),
the algorithm generates additional samples through iterative
recombination and mutation (applying slight random changes
to the inputs), therefore introducing variation to explore the
solution space®?. Constraints are handled by penalising the
objectives according to the number of violated constraints®>.
Similarly, the failure region is handled by returning large con-
stants for the objectives, artificially making the sample appear
very non-optimal.

We run six additional experiments with each of these meth-
ods, the results of which are presented in Table IV. The first
three (II, IIT and I'V) use the same computational budget as the
BO experiment (I) from Section IV A, while the final three (V,
VI and VII) have a budget that is 8 x larger.

Four of the experiments contain results for the NSGA-II
genetic algorithm. For each budget, we include an NSGA-
IT experiment with the same initial population (64 samples)
as Experiment I (experiments III and VI) and another with a
lower initial population (experiments IV and VII) but with the
ability to run over more generations. In both cases, the exper-
iments using a lower initial population size (IV and VII) out-
perform their counterparts with larger initial population sizes.
This is because they are able to explore the solution space
more widely (using more iterations), thus generating more
feasible solutions and making incremental progress each gen-
eration towards the Pareto frontier. This can be seen by the
higher percentage of feasible solutions sampled by these ex-
periments compared to the others. For the remaining analysis,
we will compare only these best performing NSGA-II experi-
ments (IV and VII) against the Sobol sampling and BO.

From the results, we can see that experiment I produces



[ ] Experiment | HV [Feasible|
[T] 64Sobol+64BO  [19909] 26% |
II 128 Sobol 1626.6| 18%

IIT | 64 Sobol + 64 NSGA-II |1544.2| 16%
IV | 8 Sobol + 120 NSGA-II {1659.2] 49%
v 1024 Sobol 1711.5| 13%
VI |64 Sobol + 960 NSGA-II|1713.6| 23%
VII|32 Sobol + 992 NSGA-II|1820.3| 64%

TABLE IV: The hypervolume of the feasible solution set and
the percentage of total samples taken that were feasible for
each of the experiments run. Here, we compare the 64 Sobol
+ 64 BO experiment from Section IV A with pure Sobol
sampling and the NSGA-II algorithm, each with the same
number of samples (128). We also display Sobol and
NSGA-II experiments that use 8 x the number of samples
(1024). All hypervolumes are calculated with respect to the
same reference point.
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FIG. 8: Feasible solutions in the objective space for
experiments I (red), II (blue), and IV (green) in Table IV.
Pareto optimal solutions are denoted with a star and
dominated solutions with a circle.

better samples than both IT and IV with a hypervolume at least
20% larger. Recall that a larger hypervolume indicates a feasi-
ble objective space with better trade-offs that are further from
the (anti-optimal) reference point—the feasible solutions are
shown in the objective space in Figure 8. The genetic algo-
rithm finds the most feasible samples, outperforming BO by
nearly 2x. However, the hypervolume of experiment IV in-
dicates few of these feasible samples offer any improvement
over even quasi-random samples. This illustrates how the BO
performs significantly better than the Sobol sampling and the
genetic algorithm at finding Pareto optimal PF coilsets. Ge-
netic algorithms find the most feasible PF coilsets, however,
all of the samples are of significantly lower quality than those
from BO.

BO continues to outperform Sobol sampling and the genetic
algorithm even when we increase their computational budgets
to 1024 samples. While the hypervolume returned in exper-
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iments V and VII are larger compared to those in II and IV
(as expected), they still cannot reach the level achieved by the
BO (with 1/8th of the data). In Figure 9, we again see the
majority of Pareto optimal samples coming from the BO with
a few being found by the genetic algorithm, with BO finding
the best samples in each objective (the samples that optimise
the marginals of the objective space). The vast majority of
samples taken by the alternative methods are, however, dom-
inated by others from the BO. Again, genetic algorithms find
the most feasible samples, however, they form a front that un-
derperforms that of BO, particularly in the volumetric sum.

V. DISCUSSION AND OUTLOOK

In this paper, we have demonstrated that BO can suc-
cessfully identify a set of Pareto optimal PF coilsets in a
spherical tokamak. Using underlying probabilistic models,
it learns the trade-off between the volume of the PF coilset
(i.e. the financial cost) and the average connection length
produced by the corresponding equilibrium state, simultane-
ously respecting several physical plasma and engineering con-
straints. Compared to some existing optimisation methods,
quasi-Monte Carlo (Sobol) sampling and a genetic algorithm
(NSGA-II), BO identifies better solutions while using a sig-
nificantly smaller computational budget, highlighting its ef-
fectiveness and data efficiency. Overall, the successful appli-
cation of BO to a complex tokamak design problem should
reinforce its suitability for future fusion power plant design
challenges, particularly given the increasing reliance on high-
fidelity, high-runtime HPC codes where data efficiency is crit-
ical.

The relatively poor performance of the Sobol sampling
is expected and can likely be attributed to its sparse quasi-
uniform coverage of the sample space. While uniform cover-
age is good for exploring high dimensional spaces and training



emulators (such as the one in our BO loop), the Sobol scheme
lacks the ability to hone in on more desirable regions given it
is forced to sample inputs within uniformly-spaced partitions
of the space. NSGA-II outperforms Sobol sampling, espe-
cially when both are afforded moderately high computational
budgets, however, has an underwhelming performance against
BO. While it excels at finding feasible samples, NSGA-II fails
to find samples dominant over BO, even with a significantly
higher computational budget. This is likely because the ge-
netic algorithm favours sampling feasible points instead of
exploring towards the feasible boundary and potentially find-
ing a more optimal sample—the cost of infeasibility does not
outweigh the reward of slight improvements in the objectives.
It is possible more advanced treatments of the constraints®*
would improve the genetic algorithm’s performance and al-
low it to explore closer to the feasible boundary, however, that
is beyond the scope of this work.

To increase the applicability and extend this BO framework
to ongoing and future PF coil design projects, a number of
avenues of future work can be considered. For example, in-
corporating additional objectives and constraints should be a
trivial task and could be used to help find coilsets that further
improve performance. For example, one could try to max-
imise flux expansion to improve divertor performance or in-
clude PF coil shaping (in the input space) to try to extract
further financial cost savings. While this would increase the
dimensionality of the BO problem, the current framework can
be readily adapted to support this via dimensionality reduction
techniques® 7.
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Appendix A: Coil location normalisation

Here, we outline how to normalise the centroid coordinates
of each PF coil with respect to its permissible zone. First,
define the lower left and upper right corners of each permissi-
ble zone as Vi = (Rmin, Zmin) and V3 = (Rmax, Zmax ), respec-
tively. Given each coil must entirely reside within its permis-
sible zone, we know that the centroid must remain within a
half-thickness of the permissible zone:

(R°,Z°) € [Rmin + dR, Rmax — dR] %
[Zmin + dZ»Zmax - dZ] .

We can then obtain the normalised centroid coordinates (with
respect to the permissible zone) by defining

R° — (Rin +dR)
(Rmax - dR) - (Rmin + dR)
2¢ — (Zin +dZ)
(Zmax - dZ) - (Zmin + dZ)

-

€0,1],

ZC:

€[0,1].

An illustration of a PF coil and its permissible zone are shown
in Figure 10.
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