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This research utilizes established cyclic deformation models to simulate the Bauschinger effect observed in
copper monocrystal cantilever experiments during the initial bending and straightening phases. Crystal plas-
ticity finite element simulations employing Armstrong-Frederick, Orowan-Sleeswyk, and various other backstress
models have drawbacks to reproduce the experimental force-displacement curves accurately since they are not
able to reproduce the isotropic hardening measured during cantilever straightening. However, the Armstrong-
Frederick model combined with Voce-type hardening and a newly proposed modified Orowan-Sleeswyk model has

GND proven to be effective. In this work, we propose a modified Orowan-Sleeswyk model, based on recent studies,
SSD where not all the geometrically necessary dislocations (GND) recombine during the straightening phase, but
instead reorient to achieve a net zero-strain gradient with ongoing hardening during load reversal.

1. Introduction

Copper has excellent thermal conductivity and adequate mechanical
strength for high thermal stresses, therefore it is often used as a stress-
relieving interlayer at the bond interface between the radiation shield
and the heat sink in plasma-facing components (PFC) of fusion reactors
such as Wendelstein-7X, JET, and ITER [1,2]. Cyclic high-heat-flux
loads caused by pulsed plasma operations generate a repeated variation
in thermal stress in the PFC structure. Under these circumstances, the
copper bond layer experiences alternating loads that cause plastic strain
accumulation responsible for hardening during deformation (expansion
or contraction) or softening when the sense of deformation changes
(from expansion to contraction or vice-versa), leading to cycle fatigue
of the material [2].

The Bauschinger effect refers to the reduction in yield strength
observed when the direction of the applied load is reversed or when
the load path is changed [3]. For cyclic deformations, it could explain
stress saturation at relatively low stresses, frequently forming persis-
tent slip bands (PSBs) due to extrusions/intrusions that can lead to
fatigue cracks [4]. In polycrystals, this effect is well understood and is
mainly attributed to polarized dislocations in front of the crystal grain
boundaries, as supported by experimental evidence [5,6].

In single-crystals, the dislocation structures responsible are still
under debate [5]. Currently, there are two main explanations for
the Bauschinger effect. The first involves cells formed by dislocations
that produce long-range internal stresses (LRIS). This phenomenon

was first studied by Mughrabi [7] and Pedersen [8] who proposed
a structure called dislocation cell, formed of regions with high yield
stress/dislocation densities (cell walls) in combination with lower yield
stress/dislocation densities regions (cell interiors); this structure re-
mains nearly invariable during cycles. The second is based on complex
distributions of dislocation obstacles that allow movement of disloca-
tions in one direction but not in others until high strain levels are
produced [9,10].

This discussion has remained open for several years, Kassner et al.
[11] support the idea of cell structures based on compression and
tension experiments on monocrystals of copper, nickel and aluminium
but noted that the LRIS were smaller than initially expected and did not
discard the idea of the Orowan-Sleeswyk model. Levine et al. [4] worked
with the compression of monocrystal copper micropillars, measuring
low LRIS associated with cell structures and concluding that both
models (Mughrabi and Orowan-Sleeswyk) have importance. The discus-
sion is more complex when we have curvature as during cantilever
experiments. The lattice curvature allows the formation of geomet-
rically necessary dislocations (GND) that increase the impact of the
Orowan-Sleeswyk model. In addition, the interaction of the curvature
with extrusions or intrusions in the metal creates slip bands that act
as obstacles to the dislocations and are particularly complex to model
during the first load cycles [5,12].
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On the other hand, other models have appeared such as Armstrong-
Frederick model and its variations [13,14], that are not based on disloca-
tions like the two previous ones (Mughrabi and Orowan-Sleeswyk). These
models are based on crystal slip, a much simpler quantity to calculate,
reducing the computation time and complexity. They have been widely
used in the literature for polycrystals [15,16] and monocrystals [17].
They have also been used in combination with the Orowan-Sleeswyk
model in [18] but in this case, an equation with the same structure as
the Armstrong-Frederick model is used to model the isotropic hardening
(non-softening) and the Orowan-Sleeswyk model is responsible for the
Bauschinger effect.

Recent studies indicate that the Bauschinger effect and hardening
are different during initial load cycles of cantilever experiments [19,
20]. In these studies, a monocrystal copper cantilever undergoes load
and straightening cycles. The results showed a more pronounced
Bauschinger effect than in polycrystal copper or monocrystal after
many cycles, furthermore, isotropic hardening occurred between cy-
cles. Consequently, Ugi et al. [20] illustrates the evolution of GND
in a cantilever experiment during initial cycles. The GND distribution
contradicts the idea that the structure of the dislocation cell remains
constant throughout the full bending/straightening cycle. The GND
pile-ups formed during the first bending are converted to a highly
complex structure during the straightening, with the dislocation density
being distributed throughout the cantilever base giving rise to the
isotropic hardening. Dislocation dynamics simulations provide qualita-
tive information [21], but are computationally expensive for cantilever
experiments, making crystal plasticity codes a more practical approach
to modelling these types of experiments [22].

In Demir et al. [19], it is exposed the results of a Bauschinger ex-
periment using a single-crystal copper cantilever. Based on these exper-
imental results, this study has modelled the Bauschinger effect during
initial bending/straightening cycles, comparing the results between two
well-known types of model: Armstrong-Frederick [13] combined with
hardening laws and GND-based models [9].

The modelling process used the OXFORD-UMAT code [23] (code
available on [24]), which was designed to analyse various types of
materials for the Spherical Tokamak for Energy Production reactor. The
code incorporates models for plasticity, GND calculus and hardening.
The GND calculations follow the method proposed by Demir et al. [22].

2. Cantilever experiment

Demir et al. [19] studied the Bauschinger effect [3] of a monocrystal
copper cantilever (25.4 x 8.64 x 7.05 pm, Fig. 1(b)) consisting of three
total cycles of bending and straightening.

The cantilever was produced from a single-crystal copper sample
grown in a Bridgman furnace. First, a cylindrical sample with a di-
ameter of 100 pm was crafted using wire electro-discharge grinding
and subsequently etched in a 40% HNOS3 solution. Finally, focused ion
beam (FIB) milling shaped the cantilever beam from this cylindrical
specimen, using a 500 pA current at 30 keV to finish all surfaces [19].
The initial Euler angles [25] were ¢, = 260.0°, ®= 101.1°, ¢, = 248.2°
and the corresponding Miller indices were [5 2 1] for the longitudinal
beam axis (z-axis), [4 11 2] for the transverse direction (y-axis), and [5
2 21] for the loading axis (x-axis) as shown in Fig. 1(b).

The cantilever was bent by a Hysitron® indenter with a spherical
indenter that produced a displacement of 3 pm at a speed of 1 pm s~!
in displacement-controlled mode. The indentation region was situated
at a distance of 17.3 pm from the base. The size of the indented
region (approximately 2 pm®) was much smaller than the bent volume
(approximately 180 pm?), having only a small influence on the strength
of the cantilever during deformation.

The bending and straightening process consists of three stages in
each cycle: (i) the indenter bends the cantilever (bending), (ii) the
indenter stops applying pressure and gradually releases the load to zero
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(unloading), and (iii) the cantilever is loaded in the reverse direction
until it is straightened to its original position (straightening).

Fig. 1(a) illustrates the force-displacement measurements of the
experiments in the first three consecutive cycles. There is a notable
increase in hardening during bending in successive cycles. There are
also drops in force during the 1st bending, which appear as discontinu-
ities in the blue line. These drops are attributed to the formation of slip
bands (see slip bands in Fig. 1(b)), which cause a plastic displacement
of the cantilever with less resistance than usual. Once formed, these
slip bands act as obstacles to dislocations, contributing to increase the
hardening [12].

During the straightening process, the yield strength is significantly
lower than the yield strength observed during bending. Demir et al. [19]
estimates a stress reduction of 73% (1st cycle), 76% (2nd cycle) and
83% (3rd cycle) relative to the bending yield stress. This observed
reduction in the yield strength during straightening is due to internal
backstresses that support the load reversal. They arise from sets of GND
accumulated during forward bending that disappear (through the glide
in the reverse direction which causes the annihilation with dislocations
of the opposite sign) as the cantilever returns to the original position.

3. Crystal plasticity framework

A detailed description of the crystal plasticity simulation code used
in this study (OXFORD-UMAT) can be found in [23]. The code was
applied in combination with the finite element software Abaqus [26],
while the specific methodology for GND calculation is outlined in [22].
This section presents an overview of the crystal plasticity kinematics
and constitutive laws governing slip behaviour in the material.

3.1. Crystal plasticity kinematics

The deformation gradient in a crystal under stress can be defined by
F,y = F,F,, where F, is the mechanical elastic deformation gradient,
F, the plastic deformation gradient.

The mechanical elastic deformation gradient F, is calculated using
the Jaumann stress rate [27] and a method (explained in [23]) which
uses the total deformation components minus the plastic deformation
components.

The plastic deformation gradient F, is calculated from the plastic
velocity gradient L,, which is the sum of the slip rates 7 times the
Schmid tensor S¢ of each slip system ¢, which is the dyadic product
s? ® n“, where s is the slip direction and n“ the slip plane normal of
the plastically deformed lattice [28]:

L, =F,F;'= Z 7958 ® nt = Z 7989, 3.1
a a

However, the slip system undergoes elastic deformations, transforming
the slip and normal direction to a deformed configuration (ng, s2):

s = F,5% nl = F;Tn" = n? Fe_l. (3.2)

The rotation, g, is applied to use the experiment reference frame
during calculations (Bunge convention), where ¢,, @, and ¢, represent
the Euler angles [29], for further details see Appendix A. The temporal
evolution of the crystal orientation is computed by updating g from an
initial time 7 to a subsequent time 7+ A¢, where Ar represents the discrete
time increment. This update can be expressed as:

8ivar = 8= (I + 40, At) 8- (3.3)

Using the orientation rates according to [30]: g = 4Q,g.
In which 4, is the elastic spin obtained by subtracting the plastic spin
from the total spin:

40,=Y W
a

40, = AQ - AQ,; P (3.4

2

AQ
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Fig. 1. (a) Force-displacement bending and straightening cycles of the cantilever experiment [19]. The plateaus observed at 0 pN in the force-displacement curves correspond to
the retraction phase of the indenter, during which it disengages from the copper cantilever. Consequently, these regions do not reveal meaningful data regarding the mechanical
properties of the copper specimen. (b) SEM image of the experiment at end of the first bending straightening cycle, indicating the dimensions of the cantilever. The distances from

the base and the top of the cantilever where the indenter was applied are shown in yellow. The areas with slip bands created by active slip systems are shown in blue. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1
we = 3 (sz ® "2 - n‘e' ® s‘e') (3.5)

Where W? is the antisymmetric matrix of the Schmid tensor, and 7 is
the slip rate, which is determined by various plastic models. L is the
velocity gradient of the total strain, defined by L = FF~!.

The set of equations is solved through a semi-implicit algorithm im-
plemented in a user-defined material subroutine (OXFORD-UMAT [23])
for the finite element software Abaqus, which uses the Foward-Gradient
algorithm [31] to obtain the approximate initial and backup solution
for the Cauchy stress.

3.2. Constitutive laws

The constitutive laws depend on the elasticity and the slip rate
responsible for the plasticity (Eq. (3.1)). Elasticity relates the rotation-

free objective Jaumann rate of stress, ¢ [32], to the vectorized form of
elastic deformation rate d,, writing the 4th rank elasticity tensor C for
the deformed configuration [33] in Voigt notation:

v T
c=C:d,, C=RCyR (3.6)

where C is a 6 x 6 matrix obtained by applying the rotation matrix
R to the elastic stiffness constant C,, [34], thus adjusting it from the
crystalline reference to the experimental one (see Appendix B). The
stiffness constant C, for a face-centered cubic material (FCC) such as
copper is given by three elastic constants C;;, C,, C44 [35]

The slip rates of the slip system “a” are calculated using the
hyperbolic-sine law [36], where « and f were assumed to be constants
adjusted according to [35], T:f is the effective resolved shear stress
(RSS) in each slip system, am{ 7¢ the critical resolved shear stress
(CRSS), which depends on the initial Statistically Stored Dislocations
(SSD) density and needs to be calibrated:

7= asinh(ﬂ(

in which the effective RSS is given by the RSS, 7%, minus the backstress
term, y“:

= 79— y° (3.8)

ol | - e Dsignces, ) 3.7)

a
Tess

The prefactors of the slip law are computed based on physical param-
eters according to:

AF AV?
= b2 - 5 = . 3.9
o= netuen(-AL) po A2 6
The model parameters for crystal orientation, elastic constants, and the
slip law are given in the table below:

Parameter Definition Unit Value [35]
o3 Undeformed euler angle 1 Degrees 260
[ Undeformed euler angle 2 Degrees 101.1
) Undeformed euler angle 3 ~ Degrees  248.2
Cy Elastic constant 1 MPa 168-10°
Cp, Elastic constant 2 MPa 121.4-103
Cy Elastic constant 3 MPa 75.4-103
a Constant value 1/s 1073
p Constant value 1/MPa 0.2
AF Activation energy for slip eV 0.5
Vo Attempt frequency 1/s 10!
AV Activation volume b’ 50
b Burgers vector pm 2.56-107%
P Mobile dislocation density ~ pm~2 0.5
Kp Boltzmann constant eV K1 8.61-1073
T Temperature K 300

4. GND model

Heterogeneity in crystal deformation causes the formation of the
Geometrically Necessary Dislocations (GND) responsible of hardening and
backstress (lower yield strength when cantilever straightening) [9,37].

GND density (ogyp) [38] is the sum of the length of dislocations
per unit volume that is obtained by the lattice incompatibility in
the crystalline structure. GND density is calculated according to the
formula [39]:

T
A== (VXF,) =Y p& b's" @
a
= E(paGND,edgebasa ® + p??ND,screwbasa ® sa) (41)
a

where A is the Nye tensor that represents lattice incompatibility, 57 is
the length of the Burgers vector of the slip system ¢, I is the dislocation
line. Note that the line direction is the slip direction s?, and transverse
direction #“, for screw and edge dislocations, respectively.

GND density was calculated from the lattice incompatibility in
Eq. (4.1) considering only active slip systems and using generalized
singular value decomposition to solve the system [22].

5. Modelling Bauschinger effect

Various models have been proposed based on slip y or GND to model
the Bauschinger effect [4,7,9,13,20], (see scheme in Fig. 2).
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Constitutive laws

Include ¥ = asinhp (|| — 7¢) sign(7*)
Bauschinger 5 AF AV“
T xu a = ppub”~vyexp (—ﬁ>; B=
Redefine Armstrong-Frederick model (AF) Redefine
hardening ¥ = asinh B (|7° — x| — %) sign(7%) hardening

em i Of o= ar— Aol

AF with linear hardening (Taylor eq.)

¢ =1¢(t =0)+aGb/pisp(t)

Pssu(') = pssp(t — At) +ApSsp
Ap§sp = k|| At

AF with Voce-type hardening

Redefine
Bauschmger
term %

Chaboche and Nouailhas model Ohno and Wang model

Np
=) 4
k=1

28 =AY —Api |7 2

A/A

term TE(t)

AT = ZH"Ah” Ah”—ho(l——) || At

x"=A?’—AD( % ‘D> 217
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GND model
A=—(VxF,)" =Y pluph’s"®
a

= Z(p(u]ND,edgebus" @t + PGND screwb”s* @ 57)

Include Bauschinger
a
term X¢,GND

Orowan-Sleeswyk model
7" = asinhf |r" 2G| — 77 sign(z%)
xeonp = Ca - @G \/péy, - sign(Y")

Include
term PGnp

Redefine hardening
term T2(t)

Orowan-Sleeswyk model with SSDs
Apgp = AMApGap| G ApGnp - PEnp < 0)

¢ = 1¢(t =0) + aGhb |/ pésp(t)

Fig. 2. Scheme of the models analysed in this study.

5.1. Armstrong-Frederick model

The Armstrong-Frederick (A-F) model is a phenomenological model
that integrates the concepts of proportional hardening and saturation
into the backstress term y? in Eq. (3.8), providing greater precision
during cyclic loading:

X =Ay" = Ap || x* 6.1

where y¢ represents the backstress rate, y¢ is the slip rate, A and A
are parameters associated with direct hardening and dynamic recovery
respectively that need to be adjusted [18]. The backstress y¢ evolves
quasi-linear at the beginning of deformation, curving progressively
until a saturation value of A/Aj,.

The A-F model was first applied to crystal plasticity by [40] and was
later adopted by other researchers in their own crystal plasticity frame-
works. Several variations have been proposed, such as the Chaboche
model (Eq. (5.2)) [41] that introduced a combination of linear and
non-linear hardening terms or the Ohno-Wang model (Eq. (5.3)) [42]:

Ng
B= 20 A= A= Ap || xf
k=1
where Ap, = 0 for only linear hardening terms. (5.2)
M
p=ar-ap (22L) 7 53)
D\ A/A, : )

All these models are empirical and were applicable to the macroscopic
length scale to capture the Bauschinger effect and cyclic ratcheting, but
they are not expected to capture the underlying mechanisms at a lower
length-scale [18]. Section 6.1 demonstrates how these models present
important limitations to capture the level of observed hardening dur-
ing the first cycles of deformation [19]. To overcome this limitation,
we combine A-F type models with linear SSD hardening or Voce-type
hardening models that include isotropic hardening during bending and
straightening without contributing to backstress.

5.1.1. A-F combined with linear SSD hardening

The critical resolved shear stress (CRSS) is defined by Taylor rela-
tion (Eq. (5.4)) [37] that depends on the dislocations density in which
0 is the initial strength or friction stress:

_ ;0
7l =1, +aGby /0% g, 5.4
The evolution of statistically stored dislocation (SSD) density is given
by [36]:

o=k 17°] (5.5)

where 7{ is the CRSS on slip system a, p% ¢, is the SSD density, G is the
shear modulus, a and k are geometrical parameters being a« = 0.25 and
k needs to be adjusted.

5.1.2. A-F combined with voce-type hardening

Voce-type hardening [43,44] is an experimentally-based hardening
model composed of a hardening rate and a saturation term. It also
considers latent hardening interactions between slip systems:

b
4ct =Y Han"; Ah”=h0<1——> ‘7|At
b

where h is the hardening rate, s is the saturation slip strength that
represents the saturation of hardening, m is the hardening exponent and
H} is the hardening interaction matrix of the slip system’® in the slip
system?.

In our models, the Voce-type hardening will be used to represent the
linear hardening observed experimentally. Given that Demir et al. [19]
did not observe any decrease in the hardening during the initial cycles,
we assumed s, > 7’ i.e. 7%/s; ~ 0, simplifying the expression to:

(5.6)

Act =Y Hyawb; an" = no |1 ar (5.7)
b

5.2. Orowan-Sleeswyk model

The Orowan-Sleeswyk model [9,10] proposes a Taylor’s hardening
relation to represent the kinematic hardening produced by GND:

x°=Cy-aGby/ol. ) - P - sign(y?) = C, - aGby [0% - sign(r®) (5.8)

where P9 = sign(y?) - sign(y%), C, denotes a geometric factor that
requires adjustment, « = 0.25 is a geometrical factor, G the shear
modulus, b the Burgers vector magnitude and pf., , the GND density.

P9 is the reversibility term [45] to determine the sign of y“ respect
to the sign of the resolved shear stress r¢. P is positive (y* causes
kinematic hardening) when both signs of accumulated slip y and slip
rate y? are the same, and negative (y“ causes kinematic softening)
otherwise. The overall sign of y“ is:

sign(y?) = P - sign(z*) = P* - sign(y?) = sign(y?). (5.9)

In contrast to the mathematical approach of the A-F model, Orowan-
Sleeswyk model tries to apply our knowledge of dislocation structures.
According to Mughrabi et al. [7], two explanations for hardening and
softening can be found due to GND. (i) GND obstacles are dislocation
cell walls and the hardening results from short-range interactive forces
between the walls and the mobile dislocations, while the initial drop
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in the yield strength occurs as a consequence of the glide of the GND
during the reverse loading, which produces some relaxation of the
dislocations cell walls and the plasticity generated in the interior of
the cell. (ii) The pile-up of GND in certain regions during deformation
causes stress on the slip systems and prevents further slip (strain
hardening). For a cantilever, the region corresponds to the neutral axis
of the cantilever. During the reverse loading, the backstress induced
by the dislocations previously formed facilitates the transition towards
equilibrium, contributing to the observed softening.

5.2.1. SSD modification in the Orowan-Sleeswyk model

The examination of load/straightening experimental curves for the
cantilever (see Section 2) reveals an excessive increase in hardening
during the straightening process, despite the anticipated reduction in
yield stress caused by backstress.

HR-ESBD measurements on the monocrystal copper cantilever [20]
found the creation of complex dislocation structures, caused by changes
in the direction of some of the GND that remain instead of recombining
during straightening. In this article, we attribute to these dislocations
the excess of hardening generated.

This study proposes to consider these dislocations as responsible
for the unexpected hardening observed by [19] during initial cycles.
Because developing a dislocation dynamics code to calculate the new
orientation of the GND could be complex and computationally expen-
sive, an alternative was to approximate them as randomly oriented and
transform these GND into SSD.

Apgp = MApgypl  GE oGy p - PGNp < 0) (5.10)

where Apggp is the change of SSD density, 4pgnp is the change of
GND density, 4 is the percentage of GND density converted to SSD
density. The SSD density increment causes hardening through the
Taylor hardening (Eq. (5.4)).

5.3. Finite Element Method (FEM)

The bending and straightening of the above models were simulated
using finite element method. The x-axis displacement was applied over
two lines of nodes on opposite faces of the cantilever at 17.3 pm
from the base (see Fig. 3(a)). The line of nodes were used instead of
simulating the indenter to simplify the calculations after finding similar
results in the comparative study of Appendix E.

The following boundary conditions were imposed on the model
during the successive cycles:

1. Bending obtained by displacing the cantilever -3 um along the x-
axis in the indentation region during 3 s (as in Demir et al. [46]).

2. 3 s rest by deactivating the load.

3. Straightening obtained by displacing the cantilever 3 pm along
the x-axis in the opposite direction in the indentation region
during 3 s.

4. 3 s rest by deactivating the load.

15,600 quadratic tetrahedral elements (C3D20) were applied in
simulations. For further details about convergence see Appendix C. The
parameters of the Bauschinger models were adjusted using the Nelder—
Mead optimization algorithm [47]. The optimization minimizes a dis-
tance function between the force-displacement values obtained from
experimental data and those derived from simulations [48]. Nelder—
Mead was chosen among other optimization methods due to its sim-
plicity of use by not requiring mathematical derivatives of the distance
function and its rapid convergence in a limited number of iterations,
a crucial factor given the computationally intensive nature of FEM
simulations.

The parameter values p; used to adjust the models are defined by:

: J | Frep(u.p) — Fexp(u) | du
p; = arg min z
Pi cycles / | FExp() | du

(5.11)
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where Fpp,, is the force obtained in the model, Fpyp is the force
measured experimentally, and u is the displacement of the indenter or
the displacement of the nodes in the case of the FEM model.

6. Results and discussion

This section presents the results derived from the Bauschinger mod-
els applied to the cantilever experiment. The results obtained from the
Armstrong-Frederick based models are detailed in Section 6.1, while the
results from the GND-based models are in Section 6.2.

As mentioned in Cantilever Experiment (Section 2), slip bands are
formed during the 1st bending due to the activation of dislocation
sources [49], but their impact during formation is extremely complex.
For this reason, our analysis focuses on the subsequent 2nd and 3rd
cycles, where no additional slip bands are created. Once the most
suitable models are selected and their parameters adjusted, they will be
applied to the 1st cycle trying to estimate the impact associated with
the slip bands’ formation.

6.1. Armstrong Frederick based models

A-F relate the slip to the hardening and backstress, the accumulated
slip y for a slip system is defined through the Schmid factor and the
CRSS (z.) of the slip system [28].

Fig. 3(b) shows the initial vector components of the stress during
cantilever modelling (o, = [52 1], 6, = [5 2 21], on crystal coordi-
nates). We can observe how the tensile load o, dominates o, as we
approach the cantilever base (blue zone).

Appendix D includes the table with each slip system (n?, s?), their
Schmid factor, and Fig. D.1 shows the accumulated slip y during the
2nd bending, demonstrating that the main slip activity comes from the
two slip systems with the highest Schmid factor, which are shown in
more detail in Fig. 4 for the 2nd and 3rd cycle (slip system (111)[101]
with Schmid factor 0.49, and slip system (111)[101] with Schmid factor
0.43).

Furthermore, in Fig. 1(b), we can identify two different directions
in the slip bands, which seems to confirm the result of our model with
two clear main slip systems as responsible for the formation of the
hardening and backstress.

Table 6.1 includes the parameters that have been calibrated for
the A-F models using the Nelder-Mead optimization algorithm (Sec-
tion 5.3, Eq. 5.3). Given that copper has a face-centred cubic structure
with symmetry in its crystalline lattice, the properties are uniform
across the different slip systems. The initial CRSS ¥ = 43 MPa was
adjusted to be the same for all models, this value takes into account all
the previous hardening suffered in the previous deformation (1st cycle
and sample treatment), explaining why it deviates from the values of
the literature (19-25 MPa [50]).

Bauschinger Hardening Parameters adjusted
model model
A-F with None A =2050 MPa s7!,
saturation Ap=30s7!
(Eq. (5.1))
A-F with no None A =2050 MPa s~!,
saturation Ap=0s7!
(Eq. (5.1))
A-F (Eq. Linear (Eq. A =1030 MPa s,
(5.1)) (5.5)) Ap=25s71,

k = 1970 pym~2
A-F with no Voce-type A =1150 MPa s71,
saturation (Eq. (5.7)) hg =400 MPa,
(Eq. (5.1)) Ap=0s7!,7b/s =0
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after 3rd bending. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5 compares the force-displacement profiles of the 2nd and 3rd
bending/straightening cycles of the A-F models with the experimental
data. The initial A-F model (green curves), defined by Eq. (5.1) of
Section 5.1, exhibits favourable agreement with the experimental data
(blue curves) during the bending/straightening of the 2nd cycle (Fig.
5(a, b)), but there is a notable absence of hardening during the 3rd
cycle (Fig. 5(c, d)). This limitation is attributed to the saturation term
Ap, which maintains the value of y“ constant once it reaches y¢ =
A/Ap (Eq. (5.1)). While the A-F model can be effective in simulat-
ing cyclic fatigue experiments, it proves inadequate for initial cycles
characterized by large strains in opposite directions without saturation.
This limitation is evident in our case, where there is isotropic hardening
between cycles.

Similar behaviour was observed in the model proposed by Ohno
and Wang (Section 5.1), which differ mainly in the curvature of the
force-displacement representation (depends on the exponent “M” of
the Eq. (5.3)) until it stabilizes at y* = A/Ap and then remains
constant. A-F model without saturation (A, = 0) is represented in
(purple curves). The notable increase in hardening during 2rd bending

(Fig. 5(a)) results in an excessive softening of the 2rd straightening
(Fig. 5(b)). Furthermore, there is no curvature in the force-displacement
graph which is similar during the 2rd and 3rd cycles. This similarity
between cycles demonstrates the cyclic nature of the model, which is
unable to capture the increased hardening during the 3rd cycle.

The Chaboche model [41] aggregates various backstresses y;, de-
rived from both the Armstrong-Frederick (A-F) model with and without
saturation.

Ng
= E;ﬁi‘ X = Ay — Api 9| xf  where Ap, = 0 for some y.
k=1

(6.1)

The results would reflect a mixture between the green and purple
curves in Fig. 5. In Fig. 5(c), the experimental force-displacement slope
during the 3rd bending closely resembles that obtained during the 2nd
bending. The Chaboche model is expected to exhibit a steeper slope
compared to the A-F model during the 3rd bending. However, this slope
would not be similar to that obtained during the 2nd bending, as certain
backstresses y; become saturated during the 2nd cycle, resulting in
some ! =0.
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this article.)

Another approach was to combine A-F models with Linear Taylor
hardening (orange curves, Section 5.1.1). Although the 2nd bending
cycle (Fig. 5(a)) demonstrates good agreement with the experimental
data, a reduction of the backstress term, y“, was necessary during the
calibration of the model to avoid excessive hardening. However, this
reduction in y? in conjunction with linear hardening produces a higher
yield strength during the 2nd straightening compared to experimental
data. Furthermore, the 3rd bending cycle exhibits insufficient harden-
ing compared to the experiment, since the linear Taylor hardening is
N /7 (see Eq. (5.4)).

With the A-F models without saturation, the same shape was ob-
served between the 2nd and 3rd cycles (bending and straightening);
however, the saturation of the force-displacement curve during
straightening was less than the experimental curves, and there was no
hardening between cycles. The introduction of linear Taylor harden-
ing increases the curvature of the force-displacement curves during
the straightening of the cantilever, but it does not provide enough
hardening during the 3rd bending.

proportional to

Finally, the A-F model was combined with Voce-type hardening with-
out saturation (black curves, Section 5.1.2, Eq. (5.7)). The results agree
well with the experiment, demonstrating the necessity of including
isotropic hardening in A-F models.

Clarification is necessary about the saturation of the Voce-type hard-
ening. Although in our parameterization there is no saturation (4, =0
in Eq. (5.1) and 7./s; — 0 in Eq. (5.6)), saturation is necessary for
fatigue experiments of many cycles [2,41]. The saturation is negligible
for the slip, y?, accumulated during the first cycles (A/Ap and s, are
much higher than the stresses reached during the experiments), but it
is necessary to recalculate it once there are more cycles with more slip
accumulation.

6.2. Orowan-Sleeswyk models

The GND densities of the two most active slip systems (111)[101]
and (111)[101] during the simulations are shown in Fig. 6. They were
calculated by solving the Nye tensor in its matrix form (see Section 4),
the results show the highest concentration in the base of the cantilever,
since it is the region where the curvature is the highest.

During the 2nd bending, it can be observed how a slip band of
positive GND is formed in both slip systems (see Fig. 6(a, b)). Applying
the formulation of Dai et al. [51] for small strains, we can check the
sign of the edge GND using an analytical expression.

1
O?;ND,B = T vy - st (6.2)

For (1 1 1)[1 0 1], the direction of Vy¢ is along —x (see Fig. 4(a))
that corresponds to [5 2 21] in the crystal system for the Euler angles
¢, = 260.0°, @ = 101.1° and ¢, = 248.2° [19]:

sign(ogyp) = —Vr*-s?=~[5221]-[1 0 1]=+ (6.3)

For (1 1 1)[1 0 11, the direction of Vy? is +x (see Fig. 4(a, b)) that
corresponds to [5 2 21]:

sign(ogyp) = —Vr-s*=—[5221]-[1 0 1] =+ (6.4)

The same procedure can be used for the sign of GND during the 3rd
bending, in this case, pgnp < 0.

Fig. 6 shows a high concentration of GND at the base of the
cantilever during the 2nd and 3rd bending cycles, reaching densities
of ~+130 pm~2 for (1 1 1)[1 0 1] and ~ +160 yum~2 for (1 1 1)[1 0 1].
The maximum total value of GND (the sum of all GND) is ~ [103| pm~2,
a value of the same order of magnitude as the values obtained through
KAM images [19]. During 2nd and 3rd straightening, the GND density
was very low. This happens because the GND is calculated from the
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plastic strain gradient, F,, and when the cantilever returns to its
original position, the strain disappears.

Fig. 7 shows the force-displacement curves for the
Orowan-Sleewyck model with and without SSD modification during the
2nd and 3rd cycles of the experiment.

The golden curve represents the force-displacement obtained from
the Orowan-Sleeswyk model. There is a good match with the experi-
mental data during the 2nd bending Fig. 7(a) presenting slightly low
yield stress but reaching the maximum force measured experimentally.
However, during the 2nd straightening (Fig. 7(b)), we observed a lower
strain hardening than experiments and the maximum force reached
is approximately the initial yield value presented in curve Fig. 7(a),
which is expected since this force occurs when the beam is straight and
ponp ~ 0 pm~2.

The 3rd cycle is shown in Fig. 7(c) (bending) and Fig. 7(d) (straight-
ening), the shape of the curve is similar to the 2nd cycle with slightly

more hardening during bending and more backstress during straight-
ening, these shapes are reasonable since the deformation is similar but
in opposite direction. The slightly higher hardening can be attributed
to the GND that remain in the corners after the previous cycle.

Table 6.2 includes the parameters that have been adjusted using
the Nelder-Mead optimization algorithm (Section 5.3). The Orowan-
Sleeswyk models were calibrated with a geometrical factor C; = 3.6
(Eq. (5.8)). For comparison, the value reported by Sleeswyk with a low
carbon steel alloy [10,52] was C; ~ 10. In both cases the material
was FCC and there were bands (slip for copper and Liidder for steel)
with pgyp ~ 10° pm? around them. Nevertheless, the model seems
incomplete when we compare straightening curves with the exper-
iment, which presents an excessive hardening no explained for the
Orowan-Sleeswyk formula (Eq. (5.8)).

We examined the possibility that dislocations do not disappear
during straightening. Ugi et al. [20] did HR-ESBD measurements of the
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monocrystal copper cantilever, and they observed that during straight-
ening some GND changed their orientation, forming complex structures
whose contribution to strain hardening ~0 (because dislocations do not
have a clear orientation). In general, only ~25% GND were recombined
instead of total recombination, as shown by the Orowan-Sleeswyk
model combined with the GND calculus model (see Section 4).

GND model

Orowan-Sleeswyk (Eq. (5.8))
Orowan-Sleeswyk (Eq. (5.8)) with SSD
(Eq. (5.10))

Parameters adjusted

C,=36
C,=3.6and 1=0.72

Orowan-Sleeswyk model with SSD (red curves) includes a representation
of the previously mentioned complex dislocation structures. As dis-
cussed in Section 5.2.1, we approximate these structures as increase
in the SSD density, giving a random orientation to these GND when
they change. The hardening produced by the SSD increment is given by
Taylor equation (Eq. (5.4)). The percentage of GND density converted
to SSD density during straightening was adjusted to 72% (parameter
A), a value close to the ~75% GND that remain after straightening in
the experiment described in [20].

The force-displacement profile shows good agreement with the ex-
perimental data (Fig. 7) that reproduce the hardening expected during
straightening. The highest mismatch is presented in the 3rd straight-
ening, where the experimental slope is lower than the rest of the
straightening cases; the reason that we found most probable comes
from the indentation process, which is not perfectly perpendicular after
3 consecutive cycles and requires an adaptation of the cantilever to the
indenter shape, reducing the stiffness of the structure.

6.3. Modelling bending/straightening 1st cycle

Once the parameterization of the models was adjusted for the 2nd
and 3nd cycles, where slip bands are completely formed, they were
applied to the 1st cycle to estimate the impact associated with the
slip band formation process. The models and parameters applied were
those that have proven capable of reproducing the Bauschinger effect
during initial cycles: A-F combined with Voce-type model and “modified”
Orowan-Sleeswyk model by SSD density conversion. For modelling the 1st
cycle only the parameter CRSS was changed to 30 MPa, which differs
from the 43 MPa of the 2nd cycle. The increase in the 2nd cycle is due
to the hardening during the 1st cycle.

Fig. 8(a) presents the force—-displacement results from the 1st bend-
ing. Experiment results show less hardening (~540 pN) than simulations
(~950 pN for Orowan-Sleeswyk + SSD conversion and ~1100 pN for
A-F+Voce). The experimental curve also exhibits several drops or dis-
continuities, with the largest drop ~1000 uN. These drops, attributed
to slip bands formation (see Fig. 1b), appear responsible for the dif-
ferent stress—strain experimental response in 1st cycle compared to the
2nd and 3rd. Confirming this hypothesis, our simulations, which do
not include the slip bands effect, show similar hardening in the 1st,
2nd and 3rd cycles. Once formed, the slip bands act as obstacles to
dislocations [12], increasing the hardening of posterior cycles.

Fig. 8(b) presents the force-displacement results from the straight-
ening process. The absence of drops indicates that the slip bands
formation mainly occurs during the bending of 1st cycle. These re-
sults discard the hypothesis that the force drops are due to cantilever
adaptation to the indenter, as the cantilever must also adapt during
the 1st straightening to the indenter on the opposite beam face. The
experimental data and simulations show good agreement.
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The effect of slip bands on total GND distribution is analysed by
comparing simulated GND density (Fig. 9) with experimental estima-
tions from kernel average misorientation (KAM) analysis [46]. KAM
data was calculated from the misorientation gradient of each EBSD data
point of the Cu cantilever relative to its first, second and third nearest
neighbour points. It measures local lattice curvature, and thus, GND
density. The calculation of the GND density from the lattice curvature,
as described in [53], uses elastic rotation gradients to determine the
incompatibility of the lattice (valid only for small deformations [54]),
employing L1 minimization to identify 9 unknown GND densities that
accommodate a given lattice curvature. In contrast, our model uses the

plastic deformation gradient F, and a restricted solution for 18 possible
GND densities described in [22].

Fig. 9 shows an “X-shape” GND distribution in both simulations
and KAM analysis. The simulations exhibit a more uniform distribution
across the cantilever, while the KAM analysis reveals higher concen-
trations within the slip bands. During straightening, both simulations
and KAM analysis show a significant reduction in GND density at
the cantilever’s corners and edges. The KAM image shows high GND
concentrations due to the slip bands but it is noteworthy that the KAM
analysis is designed for small strains.
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Although slip bands were not directly simulated, the model repro-
duces a very similar GND distribution, suggesting it represents a state
preceding the abrupt slips observed believing it could be obtained
experimentally using a lower strain rate. While the geometric effect
of the slip bands in Egs. (5.8) and (5.10) is evident, the current lack
of activation of dislocation sources [49] prevents separating this effect
from the constants C,; and A.

We conclude that our models still have room for improvement. It
represents a step towards creating shape and size-independent models
(due to the use of GND), but requires considering dislocation sources
to model and predict GND concentration.

6.4. Comparison of A-F model with Voce-type hardening and Orowan-
Sleeswyk model with SSD

The force-displacement profiles of both models demonstrate that
the two alternatives are able to reproduce the Bauschinger effect during
initial cycles (Figs. 5, 7).

The Orowan-Sleeswyk model with SSD conversion introduces the
physical concept of dislocations such as GND and SSD and their evolu-
tion. These models allow us to better understand the internal processes
in the material for more complex experiments or other materials.
On the other hand, the A-F with Voce-type hardening is based on a
mathematical approach that considers the relationships between stress,
slip y, and different parameters that need adjustment.

The Orowan-Sleeswyk model requires solving Nye’s dislocation ten-
sor, making it computationally more complex and prone to convergence
issues (especially at the corners), while the A-F model performs better
for coarser meshes and is more practical if the goal is to model material
fatigue over multiple cycles.

Numerous studies have corroborated that hardening saturates after
several cycles or higher strains [2,41]. In the initial cycles, there was no
saturation, so adjustment of the saturation parameters in the A-F model
with Voce-type hardening was not necessary (A, ~ 0 in Eq. (5.1) and
7./s, ~ 0 in Eq. (5.6)). However, when the models are used in a cyclic
regimen, the A-F with Voce-type hardening requires calibration of four
parameters. In contrast, the modified Orowan-Sleeswyk model does not
need additional parameters since the hardening and Bauschinger effect
are proportional to /pgyp, attenuating the slope for higher values of

PGND-

6.5. Improvement to the Orowan-Sleeswyk model with SSD after multiple
cycles

We propose enhancements to the Orowan-Sleeswyk model with SSD
conversion, incorporating strain rate influence, slip bands effects and
cracking due to fatigue accumulation. These enhancements are derived
from a literature review and require validation through additional
multi-cycle cantilever experiments.

» Strain rate influence: Comparing the experiments of the data used

in Demir et al. [19] and Ugi et al. [20], the load rate was different.
In Demir et al. the load rate was 1 pm s~! for a 25.4 x 8.64
X 7.05 pm cantilever, while in Ugi et al. the load rate was 5
nm s~! for a 20.6 x 5.0 x 5.0 pm cantilever. The difference in
the strain rate might be responsible for less isotropic hardening
during the straightening in Ugi et al. since there is more time for
the dislocations to recombine.
However, this lower strain rate also led to fewer slip band forma-
tions in the Ugi et al. cantilever, occurring only at the cantilever’s
corner. Slip bands play an important role as dislocation obstacles
increasing the strain hardening during the initial cycles but also
in dislocation recombination by reducing hardening after multi-
ple cycles (reaching dislocation density saturation) and initiating
fatigue cracks, as shown in [55,56].
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The SSD conversion mechanism (Eq. (5.10)) should be positively
correlated with the strain rate, however, it also should be pos-
itively correlated with any dislocation saturation term derived
from slip band formation.

Slip Bands effects: Essmann et al. [57] identified slip bands in
single-crystal copper during uniaxial loading fatigue experiments
and subsequently proposed the EGM model [55] to explain the
slip bands formation, dislocation recombination, and crack de-
velopment over multiple loading cycles. The formation of slip
bands is attributed to the interaction between strain with material
extrusions and intrusions. During the initial loading cycles, the
dislocation structure exhibits a disorganized pattern, resulting
in an accumulation of dislocations over consecutive cycles. This
process reaches saturation after approximately 50 cycles, in which
steady-state cyclic deformation is established due to dislocation
recombination within the slip bands, achieving a balance between
dislocation multiplication and recombination [58].

During steady-state, dislocations form intricate clusters called
“veins” outside the slip bands, similar to structures observed in
the early cycles. Within the slip bands, edge dislocation density
varies, forming high-density and low-density areas known as
“cells”. The cell characteristics may differ in cantilevers compared
to uniaxial loading experiments due to curvature effects, which
create distinct tensile and compressive regions separated by a
neutral axis.

Modelling dislocation recombination through slip bands can be
achieved by incorporating an attenuation term inside Eq. (5.10).
However, accurate local strain prediction after multiple cycles
requires modelling slip bands, including both dislocation sources
(extrusions and intrusions) [49] and the recombination mecha-
nisms that occur inside the slip bands [59].

Cracking due to fatigue accumulation: Strain accumulation within
slip bands leads to crack initiation when edge dislocations from
separate slip systems recombine. The extrusions or intrusions
must be left over debilitating the structure [58]. Cracks can form
at the interface between slip bands and the surrounding material
or in the rugosity that is formed in the surface of the material
due to slip bands [55]. In polycrystals, cracks might also occur at
crystal interfaces [60]. In cantilevers, the neutral axis of curvature
acts as a dislocation barrier, potentially functioning similar to
polycrystal interfaces.

In summary, understanding strain rate effects on fatigue accumu-
lation, slip bands and crack formation is crucial for enhancing the
Orowan-Sleeswyk model with SSD conversion. The literature shows that
loading rate variations affect slip band formation and dislocation be-
haviour, which are crucial for crack development. Additional cantilever
experiments with extended cycles are needed to validate these proposed
improvements and expand our understanding of dislocation processes.

7. Conclusions

In this study, we applied well-established models in cyclic de-
formations to reproduce the Bauschinger effect observed in a cop-
per monocrystal cantilever experiment during the initial bending and
straightening cycles. These models were implemented with the
UKAEA’s Crystal Plasticity Finite Element code (OXFORD-UMAT);
UMAT files, documentation, and examples are available in the GitHub
link with open public access [24]. The principal findings are as follows.

» The Armstrong-Frederick model and their variants (Chaboche, Ohno
and Wang) failed to replicate the experimental data. The pa-
rameters necessary to attenuate the straightening phase result in
excessive saturation during subsequent cantilever bending, reach-
ing a point where the resistance no longer increases. While these
models are very useful for understanding multiple deformation
cycles, they are not suitable for reproducing the initial cycles.
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» The combination of Armstrong-Frederick and Voce-type hardening
models has proven effective in simulating the initial cycles. The
results reveal the confluence of two forms of hardening: the re-
versible type represented by the Armstrong-Frederick model, which
arises during bending and contributes to the Bauschinger effect,
and the irreversible type represented by the Voce-type hardening
model.

The Orowan-Sleeswyk model failed to replicate the experimental
data. Although the hardening is appropriate during the bending,
the values obtained during the straightening are well below the
experimental results. This discrepancy can be attributed to the
near-zero density of geometrically necessary dislocations (GND)
when the cantilever is straight, as per the GND formulation.

In this study we propose to enhance the Orowan-Sleeswyk model
by integrating the conversion of certain GND into statistically
stored dislocations (SSD). This alternative has proven to be effec-
tive in simulating the initial cycles. According to recent research
suggesting that a percentage of GND do not recombine during
the straightening phase, but rather reorient, leading to increased
hardening, our innovation involves considering that a percentage
of the GND density reduced is converted to SSD density and
incorporating it into the model.

Both models: Armstrong-Frederick with Voce-type hardening and
Orowan-Sleeswyk with SSD are valid alternatives with similar ac-
curacy to reproduce the hardening and Bauschinger effect during
the initial cycles. Some of the most significant differences in the
choice of one or the other are: Orowan-Sleeswyk with SSD allows
us to better understand the internal physical mechanisms of the
material and is easier to adjust because there are no saturation pa-
rameters as the kinematic hardening is proportional to the square
root of the GND density, however, it is more computationally
complex and prone to convergence issues. On the other hand,
Armstrong-Frederick and Voce-type hardening works better with
coarser meshes but it is complicated to adjust several saturation
parameters that vary after several cycles or big strains.

Future research derived from this study should focus on two main
areas: Studying how slip bands formation affects the hardening
and Bauschinger effect across initial and posterior cycles, and
investigating the impact of GND and SSD in polycrystalline ma-
terials. Additional cantilever experiments with extended cycles
will be necessary to validate and expand our understanding of
dislocation dynamics.
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Appendix A. Crystal to sample transformation

Crystal to sample transformation, g, defines the passive transforma-
tion from the crystal to the sample reference frame (see Eq. (A.1) which
is given in Box I). g is computed by the Bunge angles (¢, @, ¢,).

Appendix B. Rotation matrix for elastic constants

The transformation of the elastic matrix in the crystal reference C,
into the elasticity matrix in the deformed configuration C is given by
C = [R] [Cy] [RT".

[R] a 6 x 6 special transformation matrix 6 x 6 constructed from
the crystal to the sample transformation matrix (g;;) [34] (see Eq. (B.1)
which is given in Box II).

Appendix C. Convergence study

Fig. C.1 illustrates the convergence study of the cycles for different
mesh sizes:

Appendix D. Slip systems activation

The activation of the slip systems depends on the Schmid factor m
and CRSS. The Schmid factor (m) for a stress ¢ is given by the product
m=(c-s5%-(c-n%/(lo-s%-|o-s?), where n* and s are the normal
and slip direction of the slip system, respectively. The calculation of
the Schmid factor for the main stress component o, in the cantilever
experiment (see Fig. 3(b)) is presented in Table D.1:

The Schmid factor is higher in slip systems (1 11) [10 1] and (11 1)
[1 0 1]. In Fig. D.1, we can observe the amount of slip after applying
the second bending. We can see how y decreases in subsequent slip
systems, being almost imperceptible compared to the two main ones.
The explanation for this occurrence is that the plasticity generated by
the slip of (1 11) [10 1] and (1 1 1) [1 0 1] induces stress relaxation,
preventing the activation of subsequent slip systems. For this reason,
we focus our analysis of slip and dislocations only on the first two (see
Figs. 4 and 6).

Table D.1
Schmid factors of slip systems respect to o, = [5,2,1].

Schmid factor
respect to
o, =1[5,2,1]

0.49
-0.43
0.38
—-0.32

Slip normal Slip direction

[1,0,1]
[1,0,1]
[1,1,0]
[1,1,0]
1) [1,1,0] 0.24
1) [0,1,1] -0.24
[1,0,1] -0.21
1) [1,1,0] -0.19
[1,0,1] 0.16
[0,1,1] -0.16
[0,1.1] 0.1
[0,1,1] —-0.02
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cos @ cos @, — sing; sing, cos @ sin @ cos @, — cos @, sin @, cos P sin @, sin @ 4
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Fig. C.1. Convergence study for 2nd and 3rd cycles.

Appendix E. Comparison of Node Line and indenter

In this section, we analyse if incorporating the indenter into the
model significantly alters the results compared to a line of element
nodes (Node Line) as a substitute for the indenter. Modelling the inden-
ter provides a more accurate representation of the contact mechanics,
including stress distributions and potential deformation of both the
indenter and the material being tested. However, Demir et al. [19]
determined that the volume affected by the indenter contact is very
small (2 pm®) compared to the deformed volume of the cantilever (180
um?), suggesting that its effect can be neglected.

In our models, the indenter was represented with a spherical tip
of approximately 5 pm of radius. In Abaqus, the contact was mod-
elled with “hard normal” and “rough friction”. Fig. E.1 compares the
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force—displacement responses of modelling the indenter and using the
Node Line representation. The results demonstrate minimal differences
between the two loading methods.

The spherical indenter exhibited slightly higher resistance, poten-
tially due to its contact point of 1.5 pm of radius. This contact point
generates less torque and promotes greater force dissipation in the
contact area compared to the distributed load of the Node Line, thus
requiring more force to achieve equivalent displacement.

Fig. E.2 presents the stress profiles of the indenter and the Node
Line. The continuous Node Line applies a distributed load, which
creates a larger moment arm relative to the cantilever’s fixed end. In
contrast, the spherical indenter applies a concentrated force, resulting
in a smaller effective lever arm. This localized pressure in the contact
region induces higher local stress concentrations, as evidenced by peak
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(1,1,1) [1,0,1] (1,1,1) [1,0,1]

(1,1,1) [1, 1,0] (1,1,1) [1,1,0]

(1,1,2) [0,1,1] (1,1,1) [0,1,1]

Fig. D.1. Accumulated slip y after the 2nd bending of all the slip systems.
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Fig. E.1. Comparison of force-displacement response using a line of nodes or an indenter during the 2nd cycle. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. E.2. Stress profile of the cantilever after the 2nd cycle with Node Line (left) and Indenter (right).

stress values that are nearly two orders of magnitude compared to those
observed in the Node Line simulations (as indicated by the maximum
values on the colour gradient scale in Fig. E.2).

Using an indenter instead of a Node Line causes convergence issues
in simulations when the indenter detaches from the sample, typically
occurring between cycles. This may be due to the “rough friction” con-
tact, which may not effectively handle the sliding of the indenter during
unloading. As a result, the Node Line is a more practical approach for
modelling the cycles with a reduced loss of precision.
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