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Abstract. Instabilities of Alfvén eigenmodes (AEs) are of significant concern because they can 

enhance the cross-field transport of fusion-born alpha particles beyond the neoclassical level in 

magnetic fusion plasmas. The threshold value of alpha-particle pressure for exciting AEs 

depends critically on the damping rate of AEs. The damping mechanisms include kinetic 

damping due to interactions with thermal particles, continuum damping due to AE frequency 

crossing Alfvén continuum, and radiative damping due to emitting kinetic Alfvén waves 

(KAWs). The radiative damping is substantial and can even prevail in high-temperature burning 

plasmas [1]. We revisit the radiative damping analytic theory for TAE in plasmas with low 

positive magnetic shear, considering TAE with an eigenfrequency near the bottom of TAE-gap 

and with poloidal harmonics of the same sign (even TAE). In contrast to earlier papers, we 

provide the damping calculations in real space rather than Fourier space. This approach is 

straightforward technically and more enlightening from a physics standpoint for benchmarking 

numerical calculations of radiative damping. 

INTRODUCTION 

 Magnetic fusion research has now reached the point at which burning thermonuclear 

plasma becomes possible with significant populations of fusion-born alpha particles. 

Consequently, there is a need to assess collective phenomena that may affect alpha-particle 

confinement. Excitation of weakly-damped Alfvén eigenmodes (AEs) is of particular concern 

because they can enhance alpha particle transport far beyond the neoclassical level. The 

threshold value of alpha-particle pressure for exciting AEs depends critically on the damping 

rate of AEs. There are three main damping mechanisms of AEs: (1) their interaction with 

thermal electrons and ions, (2) coupling of Alfvén eigenmodes to the Alfvén continuum, and 

(3) transformation of Alfvén eigenmodes into kinetic Alfvén waves (KAW). The last process, 

dubbed radiative damping, will likely dominate in high-temperature plasmas of ITER [1]. From 

the theory standpoint, the damping mechanisms are tractable individually. The goal of this 
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paper is to revisit the radiative damping. 

We present a technique that is more compact and transparent than the past rather 

intricate calculations of the radiative damping rate in Refs [2-5], where the authors used either 

ballooning approximation [2, 3] or Fourier-transformed basic equations with the WKB-

approximation in Fourier space [4, 5]. In contrast, we use a real-space formalism, in which the 

Alfvén eigenmode represents a smooth radially localized source that emits the short 

wavelengths kinetic Alfvén waves. The WKB approximation then applies only to the emitted 

wave rather than to the total field of the Alfvén eigenmode and KAW. Similar to Refs. [2-5], 

the separation of spatial scales between the AE and KAW makes the radiative losses depend 

on this separation exponentially.  However, we find that the pre-exponential numerical factor 

differs from that of Refs. [2, 5]. 

 To be specific, we consider Toroidal Alfvén Eigenmode (TAE) in a large aspect ratio 

tokamak ( ) with circular magnetic surfaces in the limit of large mode numbers and low 

magnetic shear ( ) [6]. TAEs are known to reside within gaps in the Alfvén continuum 

frequency spectrum. The gap accommodates multiple TAEs when  [7]. However, there is 

only one TAE per gap when , which we assume here to be the case. The frequency of that 

mode is only slightly above the lower tip of the TAE-gap, and the mode radial width is much 

smaller than the distance between the neighboring gaps. Because of that, the mode is tractable 

within a single-gap approximation. Such a mode has only two poloidal components, and the 

mode frequency is real in the ideal MHD limit.  

The TAE radiative damping is due to two nonideal effects (finite ion Larmor radius and 

finite parallel electric field). These effects couple TAE to kinetic Alfvén waves (KAW) 

described by the following dispersion relation [8]: 

 . (1) 

Here, ,  is square of thermal ion Larmor radius, and the parallel wave-

vector of the -th harmonic with toroidal mode number  has a radial dependence determined 

by the safety factor : 

 . (2) 

 

Unlike ideal shear Alfvén waves (including ideal TAE), the kinetic Alfvén waves have 
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a non-zero radial group velocity and, therefore, propagate across the field. These outgoing 

KAWs, coupled to TAE, take away some TAE energy thus causing the TAE “radiative 

damping”.  

To explain the coupling between TAE and KAW, we consider Figure 1 showing Alfvén 

continuum for two toroidally coupled poloidal harmonics, and the regions of KAW 

propagation. First, Figure 1 shows schematically which ways the cross-field KAW energy flux 

can go. The sign “+” in front of the finite Larmor radius term in (1) tells us that KAW with 

poloidal mode number  can only exist and propagate above the Alfvén continuum curve with 

the same . The propagation areas of KAWs emitted at the TAE frequency are shown in grey 

in Fig.1. There are two different areas in the vicinity of a TAE-gap: one for KAW with mode 

number  and the other – for KAW with mode number .  

 

 

Figure 1. Radial structure of toroidal Alfvén continuum with poloidal harmonics m and m-1 

(same n) and the areas of propagation of KAWs with harmonics m and m-1 (shaded areas).  

 

BASIC EQUATIONS AND SEPARATION OF SCALES 

 

 In contrast to cylindrical geometry, where there is no linear coupling between shear 

Alfven modes with different azimuthal numbers, the poloidal components of the mode become 

coupled in a torus. Most of the coupling is between the neighboring poloidal components. As 

a result, in the limit of low shear and large aspect ratio, each eigenmode involves predominantly 

two poloidal components. The coupling creates gaps in the Alfvén continuum where the 

discrete Toroidal Alfven Eigenmodes reside. 
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 The gaps form where the local frequencies coincide for the cylindrical Shear Alfven 

modes with the poloidal mode numbers  and  and the same toroidal number , i.e.,  

, where  is the component of 

the wave vector parallel to the magnetic field,  is the Alfven velocity, and  is the 

tokamak major radius. The safety factor at the gap location ( ) is 

 . (3) 

For every poloidal harmonic   there is also a location where that harmonic couples 

to its lower sideband The distance between the surfaces  and  depends 

on the magnetic shear  and can be estimated as 

 . (4) 
 
Because of the low shear, this distance exceeds the width of the mode significantly, which 

justifies the neglect of the  component in our analysis. In other words, we treat TAE 

within a ‘single-gap’ approximation. In addition, we assume that plasma pressure is 

negligibly small and that the equilibrium magnetic field has circular flux surfaces. 

The radiative damping of the TAE mode is associated with kinetic contributions (non-

ideal corrections) to the equations for the two coupled poloidal components of the mode (  

and ). These contributions are due to the finite ion Larmor radius and finite parallel 

electric field. They introduce fourth order radial derivatives in the governing equations [9, 10, 

6]: 

   (5) 

   (6) 

 

Here, the toroidicity coupling coefficient is , the differential operator  is 

defined as  

   (7) 
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 .  

Without the non-ideal terms, equations (5), (6) involve two very different radial scales as 

Figure 2 shows. The outer scale  characterizes the uncoupled cylindrical 

harmonics  and  away from the gap (but still not as far as the upper sideband 

coupling location ), whereas the inner scale  refers to the close vicinity 

of the TAE-gap where there is strong toroidal coupling between  and . 

 

Figure 2. Radial structure of the poloidal harmonics in even TAE: normalized perturbed 

plasma velocity versus r/a.  

 

The non-ideal contributions (fourth order radial derivatives) are essential only within the 

narrow inner scale, where it is allowable to ignore the non-derivative terms in Eqs (5) and (6). 

With this simplification, we find that the mode equations can be integrated twice and reduced 

to [10] 

 , (8) 
 , (9) 
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We herein use the following notations: 
 

   (10) 

 

 At this point, it is instructive to mention two essential features of TAE in the low 

shear limit and for . First, the normalised eigenfrequency of TAE  is very close to  

for this mode. More specifically, 

 . (11) 

 

Second, the TAE with eigenfrequency below the centre of the TAE-gap frequency 	𝜔! has 

two dominant poloidal harmonics of the same sign, i.e., this TAE has even parity [6] with 

 . (12) 
 

We will explain these features for completeness by reproducing their derivation in Ref [6]. 
We will then use them effectively in our calculation of radiative damping.  

TAE STRUCTURE FOR . 

Equations (8) and (9) become algebraic for .  This gives the following  straightforward 
inner-layer solution for  and : 

 , (13) 
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As seen from Eqs. (13) and (14), and  exhibit jumps at the  ther inner layer, i.e., 

 , (15) 

 , (16) 

These jumps must match the jumps in the outer solution of Eqs. (5) and (6) for and . 

Because there is no significant coupling between  and  in the outer area,  one can 

ignore  the small  as well as  there. By expanding  about the gap surface in the 

low-shear limit, we rewrite Eq. (5) in the following form: 

 

 , (17) 

 

where  . The term  on the right-hand side of this equation can be 

treated as a perturbation. Thus, to lowest order, we neglect this term and write the solution of 
Eq. (17) as 
 

   (18) 
 

where is the zeroth-order Macdonald function [11]. The integration constant  in 
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 We note that the lowest order outer solution is an even function of . To find the odd 
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A similar procedure applied to gives 

   (20) 

 

ϕm ϕm−1

Δϕm
in = −π

gCm +Cm−1
1− g 2

Δϕm−1
in = π

gCm−1 +Cm
1− g 2

ϕm ϕm−1

ϕm ϕm−1

ε̂ ρ2 k!m r( )

d
dx
x
dϕm
dx

−
ϕm
S 2

= x
dϕm
dx

x = nq r( )−m+ 1
2

x
dϕm
dx

ϕm
out = −CmK0 x / S( )

K0 Cm
dϕm
dr

x
ϕm

ϕm −∞( ) = ϕm +∞( ) = 0
ϕm x

ϕm
out

x→−0
−ϕm

out

x→+0
= Cm

π2S
4

ϕm−1

ϕm−1
out

x→−0
−ϕm−1

out

x→+0
= −Cm−1

π2S
4



 8 

By matching Eqs. (19) and (20) to (15) and (16) we find the above-stated features (11) and 

(12). 

 

EVALUATION OF RADIATIVE DAMPING 

The mode with  and  is nearly symmetric, i.e.,   

   (21) 
 

It is thus convenient to rearrange Eqs. (8) and (9) to 

   (22) 

   (23) 
 

By dropping off the first term in (23) and using (23) to express  via  in (22), we 
obtain 

   (24) 

  
We now split  into , i.e., 
    (25) 
where  

   (26) 

 

is the TAE spatial structure, and  is the radiated field to be calculated. We thus obtain the 
following inhomogeneous equation to solve: 

   (27) 

 

We note that the reduction of Eqs. (22) and (23) to (27) differs from the earlier analysis of those 

equations in Refs. [2-5]. More specifically, in Refs. [2-5], those equations were Fourier 

transformed, taking advantage of the linear -dependence in the coefficients, and were 

combined into a second-order differential equation in Fourier representation. The authors then 

used a WKB approach in Fourier space to solve the second-order equation with the ensuing 
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Our real-space derivation of Eq. (27) and its subsequent WKB solution is free from such 

vulnerability because we use the WKB approximation exclusively for the short-wavelength 

radiated field, for which the TAE provides a known spatially smooth source. It is then apparent 

that the radiation is exponentially small because its wavelength is much shorter than the width 

of the source. 

 We consider the following WKB fundumental solutions for homogenious Eq. (27): 

   (28) 

The small value of  ensures that these fundamental solutions have very short wavelenth. 

The WKB-eigenfunctions  and represent the waves propagating in positive and 
negative directions, respectively. The inhomogeneous solution can then be written as 

   (29) 

 

or equivalently, 

   (30) 
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Without , this condition, together with (26), gives the TAE dispersion relation (11) with a 

real frequency. 

We then need only the imaginary part of  to calculate the radiative damping rate as a small 

imaginary part of the mode frequency. The imaginary part of comes entirely from the first-

line terms in (30) so that  

 . (32) 

 

We note that  

 , (33) 

which transforms (32) to 

   (34) 
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   (37) 

 

and 

 . (38) 

 

In order to evaluate the exponentially small integral in Eq. (36), we introduce a new 
integration variable  so that . We then have 
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parametric dependence of the damping rate agrees with the result of Refs, [2-5], but the 

numerical factor in front of the exponent here is 1/12 instead of 1/8. 
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