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Abstract. Instabilities of Alfvén eigenmodes (AEs) are of significant concern because they can
enhance the cross-field transport of fusion-born alpha particles beyond the neoclassical level in
magnetic fusion plasmas. The threshold value of alpha-particle pressure for exciting AEs
depends critically on the damping rate of AEs. The damping mechanisms include kinetic
damping due to interactions with thermal particles, continuum damping due to AE frequency
crossing Alfvén continuum, and radiative damping due to emitting kinetic Alfvén waves
(KAWSs). The radiative damping is substantial and can even prevail in high-temperature burning
plasmas [1]. We revisit the radiative damping analytic theory for TAE in plasmas with low
positive magnetic shear, considering TAE with an eigenfrequency near the bottom of TAE-gap
and with poloidal harmonics of the same sign (even TAE). In contrast to earlier papers, we
provide the damping calculations in real space rather than Fourier space. This approach is
straightforward technically and more enlightening from a physics standpoint for benchmarking

numerical calculations of radiative damping.

INTRODUCTION

Magnetic fusion research has now reached the point at which burning thermonuclear
plasma becomes possible with significant populations of fusion-born alpha particles.
Consequently, there is a need to assess collective phenomena that may affect alpha-particle
confinement. Excitation of weakly-damped Alfvén eigenmodes (AEs) is of particular concern
because they can enhance alpha particle transport far beyond the neoclassical level. The
threshold value of alpha-particle pressure for exciting AEs depends critically on the damping
rate of AEs. There are three main damping mechanisms of AEs: (1) their interaction with
thermal electrons and ions, (2) coupling of Alfvén eigenmodes to the Alfvén continuum, and
(3) transformation of Alfvén eigenmodes into kinetic Alfvén waves (KAW). The last process,
dubbed radiative damping, will likely dominate in high-temperature plasmas of ITER [1]. From

the theory standpoint, the damping mechanisms are tractable individually. The goal of this



paper is to revisit the radiative damping.

We present a technique that is more compact and transparent than the past rather
intricate calculations of the radiative damping rate in Refs [2-5], where the authors used either
ballooning approximation [2, 3] or Fourier-transformed basic equations with the WKB-
approximation in Fourier space [4, 5]. In contrast, we use a real-space formalism, in which the
Alfvén eigenmode represents a smooth radially localized source that emits the short
wavelengths kinetic Alfvén waves. The WKB approximation then applies only to the emitted
wave rather than to the total field of the Alfvén eigenmode and KAW. Similar to Refs. [2-5],
the separation of spatial scales between the AE and KAW makes the radiative losses depend
on this separation exponentially. However, we find that the pre-exponential numerical factor
differs from that of Refs. [2, 5].

To be specific, we consider Toroidal Alfvén Eigenmode (TAE) in a large aspect ratio
tokamak (& <« 1) with circular magnetic surfaces in the limit of large mode numbers and low
magnetic shear (S < 1) [6]. TAEs are known to reside within gaps in the Alfvén continuum
frequency spectrum. The gap accommodates multiple TAEs when § > ¢ [7]. However, there is
only one TAE per gap when § < ¢, which we assume here to be the case. The frequency of that
mode is only slightly above the lower tip of the TAE-gap, and the mode radial width is much
smaller than the distance between the neighboring gaps. Because of that, the mode is tractable
within a single-gap approximation. Such a mode has only two poloidal components, and the
mode frequency is real in the ideal MHD limit.

The TAE radiative damping is due to two nonideal effects (finite ion Larmor radius and
finite parallel electric field). These effects couple TAE to kinetic Alfvén waves (KAW)
described by the following dispersion relation [8]:
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o =R (1+kipl.2 G+;_]] (1)

Here, i} =k’ +k,, pi2 = - is square of thermal ion Larmor radius, and the parallel wave-
i ’Bi

vector of the »-th harmonic with toroidal mode number » has a radial dependence determined

by the safety factor q (r) =rB, / RB,’

k“m(r)=%[n—ﬁ]. )

Unlike ideal shear Alfvén waves (including ideal TAE), the kinetic Alfvén waves have



a non-zero radial group velocity and, therefore, propagate across the field. These outgoing
KAWs, coupled to TAE, take away some TAE energy thus causing the TAE “radiative
damping”.

To explain the coupling between TAE and KAW, we consider Figure 1 showing Alfvén
continuum for two toroidally coupled poloidal harmonics, and the regions of KAW
propagation. First, Figure 1 shows schematically which ways the cross-field KAW energy flux
can go. The sign “+” in front of the finite Larmor radius term in (1) tells us that KAW with
poloidal mode number m can only exist and propagate above the Alfvén continuum curve with
the same m. The propagation areas of KAWs emitted at the TAE frequency are shown in grey
in Fig.1. There are two different areas in the vicinity of a TAE-gap: one for KAW with mode

number s and the other — for KAW with mode number m —1.
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Figure 1. Radial structure of toroidal Alfvén continuum with poloidal harmonics m and m-1

(same n) and the areas of propagation of KAWs with harmonics m and m-1 (shaded areas).

BASIC EQUATIONS AND SEPARATION OF SCALES

In contrast to cylindrical geometry, where there is no linear coupling between shear
Alfven modes with different azimuthal numbers, the poloidal components of the mode become
coupled in a torus. Most of the coupling is between the neighboring poloidal components. As
aresult, in the limit of low shear and large aspect ratio, each eigenmode involves predominantly
two poloidal components. The coupling creates gaps in the Alfvén continuum where the

discrete Toroidal Alfven Eigenmodes reside.



The gaps form where the local frequencies coincide for the cylindrical Shear Alfven

modes with the poloidal mode numbers  and m—1 and the same toroidal number 5, i.e.,

o=k, WV, )=k, )V (r,)> Where i Gy=[n—m/q(r)]/ R is the component of
the wave vector parallel to the magnetic field, 7/, is the Alfven velocity, and R is the

tokamak major radius. The safety factor at the gap location (7 =r, ) is

1
q(rm):(m—EJ/n. €)
For every poloidal harmonic m there is also a location 7 =, where that harmonic couples

to its lower sideband m —1. The distance between the surfaces » = and r=r, | depends

on the magnetic shear S =(r/q)dq/dr and can be estimated as

r —rm71|~rm /(nqS)~ “4)

m

Because of the low shear, this distance exceeds the width of the mode significantly, which
justifies the neglect of the m+1 component in our analysis. In other words, we treat TAE
within a ‘single-gap’ approximation. In addition, we assume that plasma pressure is
negligibly small and that the equilibrium magnetic field has circular flux surfaces.

The radiative damping of the TAE mode is associated with kinetic contributions (non-

ideal corrections) to the equations for the two coupled poloidal components of the mode (¢,
and ¢ ). These contributions are due to the finite ion Larmor radius and finite parallel

electric field. They introduce fourth order radial derivatives in the governing equations [9, 10,

6]:
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Here, the toroidicity coupling coefficient is ¢ = (5 / 2)( r/ R), the differential operator L is

defined as

dlw* ., \do m|o* ,
Lo =22 p2 |Dn MO (7
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and the non-ideal parameter is
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Without the non-ideal terms, equations (5), (6) involve two very different radial scales as

Figure 2 shows. The outer scale A” =, /m characterizes the uncoupled cylindrical
g m

harmonics ¢ and ¢ away from the gap (but still not as far as the upper sideband
coupling location . ), whereas the inner scale A" = &l « A% refers to the close vicinity

m

of the TAE-gap where there is strong toroidal coupling between ¢ and¢, .
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Figure 2. Radial structure of the poloidal harmonics in even TAE: normalized perturbed

plasma velocity versus 7/a.

The non-ideal contributions (fourth order radial derivatives) are essential only within the
narrow inner scale, where it is allowable to ignore the non-derivative terms in Eqs (5) and (6).
With this simplification, we find that the mode equations can be integrated twice and reduced
to [10]
NU”+(g+z)U+V =C,, )
NV +(g—z)V+U=-C, €))

where C and C, | are the integration constants.



We herein use the following notations:

U= %9n
oz

V = a(pmfl
0z

z=4n[q(r)—q,]/&

gz(o)z—oaé)/émf) (10)
— VA
(Do(rm)_2qR
22
x2=(4/é)3@%{3+5}«1
4r. moy |4 T,

At this point, it is instructive to mention two essential features of TAE in the low

shear limit and for ) =0. First, the normalised eigenfrequency of TAE g is very close to —1

for this mode. More specifically,

(1D

Second, the TAE with eigenfrequency below the centre of the TAE-gap frequency wg has

two dominant poloidal harmonics of the same sign, i.e., this TAE has even parity [6] with

C =C (12)

m m—1

We will explain these features for completeness by reproducing their derivation in Ref [6].
We will then use them effectively in our calculation of radiative damping.

TAE STRUCTURE FOR )\ =0.

Equations (8) and (9) become algebraic for A =(. This gives the following straightforward

inner-layer solution for ¢ and ¢ _ :

" _g(\?/,;+C;nl tan'\/lz - +%lnzz+(l—g2)‘+const, (13)
-8 -8
n - 8Cn*C, fan™ —— + Co In|z> +(1 - 2)’
el — g | +const . (14)
J1-¢’ N



As seen from Egs. (13) and (14), @, and ¢ exhibit jumps at the ther inner layer, i.e.,

. C +C
agi=-n 2=t (15)

I-g

, cC +C
Agl, =m (16)

I-g

These jumps must match the jumps in the outer solution of Eqs. (5) and (6) for ¢ and ¢ _ .

Because there is no significant coupling between ¢ and ¢ __ in the outer area, one can

ignore the small € as well as p’ there. By expanding K, (r) about the gap surface in the

low-shear limit, we rewrite Eq. (5) in the following form:

d d
4. (Pm_(P_r;:x Pu (17)
dx dx S dx

de

X
treated as a perturbation. Thus, to lowest order, we neglect this term and write the solution of
Eq. (17) as

where x = nq(r)— m +% . The term x on the right-hand side of this equation can be

o/ ==C,K,(x/5]) (18)

where K is the zeroth-order Macdonald function [11]. The integration constant C in

d(pm

equation (18) ensures that y
r

matches the asymptotic solution of Egs. (8) and (9).

We note that the lowest order outer solution is an even function of X . To find the odd

correction to ¢ , we substitute Eq.(18) into the right-hand side of equation (17) and

integrate equation (17) (with the boundary conditions ¢ (—oo) =0, (—|—oo) =0. We then find

that ¢ has a discontinuity at small values of X :

n°S
out out _
(pm x—=—-0 _(pm x—=+0 - Cm 4 (19)
A similar procedure applied to ¢ _ gives
ou ou n’S
(pm—tl X——0 - (Pm—tl X—+0 - m—1 4 (20)




By matching Egs. (19) and (20) to (15) and (16) we find the above-stated features (11) and
(12).

EVALUATION OF RADIATIVE DAMPING

The mode with C =C _ and g+1<<1 is nearly symmetric, i.e.,

U+V>>U-V (21)

It is thus convenient to rearrange Egs. (8) and (9) to

MV (U+V) +(g+1)(U+V)+2(U-V)=0 (22)
MV(U-7) +(g=1)(U-V)+z(U+V)=2C, (23)
By dropping off the first term in (23) and using (23) to express U =V via U +V in (22), we

obtain

” 2

W(U+V) +(g+)(U+V)+ S (U+V)=C,z (24)

m

We now split U+V into F + F,ie,

U+V=F+F, (25)
where
2C
ey 26)
z°4+2g+2

is the TAE spatial structure, and 7 is the radiated field to be calculated. We thus obtain the
following inhomogeneous equation to solve:

NF”+(g+ 1)F+22—2ﬁ =-\'F (27)
We note that the reduction of Egs. (22) and (23) to (27) differs from the earlier analysis of those
equations in Refs. [2-5]. More specifically, in Refs. [2-5], those equations were Fourier
transformed, taking advantage of the linear z-dependence in the coefficients, and were
combined into a second-order differential equation in Fourier representation. The authors then
used a WKB approach in Fourier space to solve the second-order equation with the ensuing

need to interpret the WKB result at low wavenumbers, where the approximation is problematic.



Our real-space derivation of Eq. (27) and its subsequent WKB solution is free from such
vulnerability because we use the WKB approximation exclusively for the short-wavelength
radiated field, for which the TAE provides a known spatially smooth source. It is then apparent
that the radiation is exponentially small because its wavelength is much shorter than the width

of the source.

We consider the following WKB fundumental solutions for homogenious Eq. (27):
1 .
v, = ﬁ exp(l(I))
1 .
Yy = ﬁ exp(—lCI))

Z (28)
b= _[kdx
g+l z’
k= +
A 27

The small value of A ensures that these fundamental solutions have very short wavelenth.

The WKB-eigenfunctions y and _represent the waves propagating in positive and

negative directions, respectively. The inhomogeneous solution can then be written as

Fz_(\ll'\lf i‘lf"lf )[\u JF"W dz—y_ JF”W dzJ (29)

—oo

or equivalently,

Fzé[\/l;exp l(I) IF exp z(I))\/— \/—exp z(I) JF exp z(D)TJ

(30)

+;[\/1;exp ld) IF exp z(I))\/— \/—exp( )JF”exp(z'@)%

Taking into account expressions (19) and (20) for the jumps in the outer solution, we now
have the following matching condition for the jumps of the inner and outer solutions in terms

of F, and F:

(2C, - zF, - zF)dz=7"SC, (31)

é'—-S



Without £, this condition, together with (26), gives the TAE dispersion relation (11) with a

real frequency.

We then need only the imaginary part of £ to calculate the radiative damping rate as a small

imaginary part of the mode frequency. The imaginary part of £ comes entirely from the first-

line terms in (30) so that

nF (szn(l)(z) J Slnd)(z ) & }

We note that

which transforms (32) to

ImF=— sin®(z) 7 sin®(z’) , dZ,J
[Jko J k)

via integrating by parts and keeping only the largest term (derivatives of @).

We now include # into (31) to obtain

22 ot
g+l=nS +ilm'[z]3dz
8 c
2
. ’s? T sin®
(mz—wé)/ewéﬂzns -] [ 2 (x) x dx

m| Y (1 e )1/4

This equation gives the following expression for the mode damping rate:

24 oo .
lz_nS Sa sin®(x) cdel

o, 16 (1422)"

where

(32)

(33)

(34)

(35)

(36)
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202
0= o (37)
NG

and

q)(x)zaj,/nyzdy. (38)

0

In order to evaluate the exponentially small integral in Eq. (36), we introduce a new
integration variable z so that x = shz. We then have

T sin®(x)

2 1/4

xdx=21mjexp igsh2z+igz}(chz)l/2 shz dz (39)
—o (1+x 0 4 2

We note that the integral in z along the imaginary axis from 0 to jx /2 is real, which allows
us to shift the integration contour upward to jr /2, 1.e., set z=ix /2+¢ to obtain

T sin®(x)
2 1/4

xdv=2Im [exp| ~i % sh2e+i% ¢~ |(isht) ” ich di (40)
L) PR

At a>>1, only small values of { contribute to this integral so that
T osin® T 2 /3
[P = 2Imjexp[—iﬁt3 —E}(it)m idt= —J—Ttexp{—ﬂ} (41)
—m(1+x2) 0 3 4 3Va 4

We finally combine Egs. (41) and (36) and (37) into

Y n’S’E { na}
0, 12 2
22
a=5 oo 42)
422,
7L2=(4/”)3sz2 Uy §+£ <1
B 42 micoéi 4 T

It is noteworthy that the exponent in the derived expression (42) for the damping rate is

roughly the ratio of the TAE inner width to the short wavelength of the radiated KAW. The

11



parametric dependence of the damping rate agrees with the result of Refs, [2-5], but the

numerical factor in front of the exponent here is 1/12 instead of 1/8.
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