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Abstract. Magnetic stochastic perturbations can strongly influence cross-field
transport in high 8 tokamak plasmas. The impact of stochastic magnetic fields on
electron heat transport in MAST/MAST-U is studied over a range in collisionality.
Different formulae, based on the Rechester-Rosenbluth and the semi-empirical
Rebut-Lallia-Walkins models, are used to describe the stochastic field contribution
to electron heat transport, and these expressions are used to supplement TGLF
reduced model predictions of the transport from electrostatic turbulence. This
more complete anomalous transport model is implemented in the JINTRAC code,
and applied to transport simulations of the flat-top phase in MAST/MAST-U.
The different ranges of validity of the stochastic transport models are briefly
reviewed, focusing on the length-scales involved in the transport process. The
principal relevant length-scales have been calculated using the plasma equilibrium
characteristics, and used to determine the most appropriate stochastic transport
model that is then applied in each shot. This analysis strongly suggests that
stochasticity is an important transport mechanism in spherical tokamaks, and that
this must be included to model ST plasma scenarios where strong electron heat
transport is not described by other instabilities. On the basis of obtained results
the importance of stochasticity for the STEP device has been also discussed.
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1. Introduction

Magnetic confinement fusion (MCF) research has
largely focused on the design and optimisation of
conventional aspect ratio tokamaks, but in parallel
other configurations of devices including stellarators
[1] and spherical tokamaks (STs) [2], have also been
developed.  These latter configurations could, in
principle, obviate some of the engineering and more
purely scientific challenges associated with delivering
fusion energy from MCF devices.

STs offer several practical advantages including:
radial compactness; potentially lower cost components;
and improved plasma stability that allows operation at
lower magnetic field compared to traditional tokamaks.
Moreover, low aspect ratio and enhanced stability at
high elongation gives ST's access to operating regimes
where a large fraction of the total plasma current is
the self-driven bootstrap current. STs can operate
at high [ (where 8 is the ratio of plasma pressure
to magnetic field energy density), and have achieved
stable operation across a wide space in x and 3/l;
[3, 4], with energy confinement times that, while
broadly consistent with multi-machine scaling laws,
scale favourably with collisionality [5, 6].

The interest in ST's has led to the construction of
several machines in the past decades, including START
[7], NSTX [8, 9], Pegasus [10], MAST [11], GLOBUS-
M [12] and -M2 [13], MAST-U [14], ST40 [15], NSTX-
U [16]. More recently, the UK has embarked on the
STEP project to develop an ST-based fusion power
plant (FPP) concept, with a major radius R ~ 3.6 and
an aspect ratio A ~ 1.8, with the goal of operating
in a fully non-inductive regime and generating net
electricity with a fusion power Py ~ 1.56GW [17]. The
design of this reactor relies on experience gained from
building and operating compact spherical tokamaks,
such as MAST and MAST-U, that have found how
challenges for STs differ from those facing conventional
tokamaks.

Turbulence generally dominates transport in
tokamaks, but the nature of this turbulence depends
on plasma parameters and can therefore be extremely
diverse. In particular, electromagnetic effects and
magnetic fluctuations become more important at
higher pressure gradient and at higher S values, that
are more typically achieved in STs. Consequently
it is to be expected that in STs, especially at
high 3, electrostatic turbulence will be supplemented
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and potentially dominated by turbulence that is
electromagnetic in character.

Magnetic fluctuations can have non-negligible
transport implications, and often must be accounted
for in the modelling of ST plasmas. In STs the
turbulence is subject to stabilising effects arising
from strong toroidicity reducing the impact of bad
curvature, and relatively large E x B shearing rates
that act to de-correlate turbulent cells [18]. However,
other kind of instabilities such as Kelvin—Helmholtz
(KH) can destabilize the E x B shear [19, 20, 21, 22]
as it have been observed in gyrokinetic simulations of
strongly rotating plasma in ST geometry configuration
[23].

In STs it is often reported that the ion heat
transport is close to neoclassical level [6] (although
this is relatively large compared to high performing
plasmas in conventional tokamaks) and that electron
heat transport dominates the heat losses. For this
reason the electron heat transport channels in STs from
ETG and MTM turbulence have received particular
attention [18, 24, 25, 26]. Nonlinear simulations
of electromagnetic turbulence have proved more
challenging computationally than for electrostatic
turbulence, but a few such simulations studies have
been performed for ST experiments and conceptual
FFPs [26, 27, 28].

Microtearing instabilities, MTM, offer one mecha-
nism that could be responsible for electron heat trans-
port in STs, as these saturate at large amplitudes at
the lower magnetic fields in spherical tokamaks. MTMs
are electromagnetic instabilities, and resemble high-
wavenumber tearing modes [29], and are so-named be-
cause of the mode’s characteristic breaking of equilib-
rium magnetic field lines to generate localized magnetic
islands. There are several analytic theories of MTM
instabilities in different regimes, but the drive mecha-
nisms are less well validated against experiments than
those associated with kinetic ballooning modes (KBM)
or electrostatic instabilities. The analytic theories of
MTDMs generally apply in idealised regimes, and nu-
merical investigations have proved essential for explor-
ing this instability in the conditions of ST experimental
plasmas. Gyrokinetic studies have demonstrated that
microtearing instabilities can play significant roles not
only in spherical, but also in conventional aspect ratio
tokamaks [27, 29, 30, 31]. Moreover, gyrokinetic simu-
lations show that MTM is unstable over a wide range
of collisional regimes [32].
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The saturation of MTM turbulence and depen-
dencies on collisionality and temperature gradient have
been studied numerically in [26, 28, 33]. Depending on
local equilibrium conditions, microtearing mode turbu-
lence can be sensitive [27] or insensitive to [30] equilib-
rium E x B flow shear stabilisation effects, and this
may be due to differences in magnetic shear [34, 35].
These subtle influences on the saturation of microtear-
ing modes are probably related to a global stochastic
behavior of the magnetic field lines, and have an im-
portant impact on the associated transport.

Reduced models for the core transport from
MTM turbulence are required for integrated transport
scenario modelling, but are not yet highly developed
or validated against experiments. Previous transport
simulations applying the reduced core transport
model TGLF [36]f to MAST and NSTX discharges,
underestimated the electron transport to varying
degrees, indicating that other transport mechanisms
may be playing an important role in electron heat
transport [37].

In a recent extension of previous studies, transport
simulations using the TGLF model and NEO for the
neoclassical transport were found to be consistent
with experimental data from two NSTX discharges
dominated by electrostatic turbulence, one in L-mode
and one in H-mode [38].

It is important to note that there is no exhaustive
theory to describe turbulent diffusion of plasma in a
stochastic magnetic field. This problem involves the
interaction of different scales in turbulent transport
and represents a very fascinating subject in plasma
physics. In particular, transport in such an anisotropic
medium requires the interplay of both longitudinal and
transverse correlation mechanisms; an interplay that
lies at the heart of the important model developed
by Rechester and Rosenbluth (RR) to capture the
essential physics [39, 40]. Other approximate
theoretical and semi-theoretical models, such as those
due to Rafiq [41, 42] and Rebut-Lallia-Watkins [43]
respectively have been developed. A robust test of the
stochastic transport models against a large common
dataset would be highly desirable, but this does not
yet exist.

To date these reduced stochastic models have been
used to predict transport in a very modest number of
ST discharges, and most publications have tested only
a single model. Stochastic electron heat transport from
MTM turbulence has been estimated for an NSTX
discharge in Ref. [44], using an empirical modification
of the RR model that includes an impact of the

i While the TGLF model includes magnetic fluctuations, the
model was developed to describe turbulent transport from
electrostatic turbulence, which dominates transport in the
gyrokinetic simulations upon model is based. TGLF does not
capture transport from MTM turbulence.
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density gradient. The role of density gradient is still
not clear in stochastic theory applied to tokamaks.
The normalised density gradient scale-length, R/L,,,
is included in the RLW model, and gave reasonable
matches to T,;, at radii and times where gyrokinetic
calculations predict unstable MTMs [45] for NSTX
shots. It has more recently been reported that
including a model for stochastic transport from MTMs
in the multimode model improves transport predictions
for a high collisional NSTX discharge [42].

A high-fidelity reduced model for core transport
from MTM turbulence is needed to complement models
for other classes of turbulence. Omne of the main
goals of this paper is to provide a more complete
transport model for use in the integrated modeling
tools widely used for tokamak scenario prediction, like
JINTRAC [46] and ASTRA [47]. In this work we
implement reduced models of stochastic field transport
in JINTRAC, where these can be coupled with TGLF.
Transport calculations with this more complete model
are performed to predict equilibrium ion and electron
temperature profiles.  These predictions are then
compared with measured profiles in the flat-top phase
of experimental discharges from MAST/MAST-U.

The rest of this paper is structured as follows. In
Sec. 2 we describe the physics basis of reduced models
of stochastic transport, emphasizing main model
assumptions and regimes of validity. Brief descriptions
of the JINTRAC transport suite and the reduced
transport model, TGLF, follow in Sec. 3 and Sec. 4,
respectively. Then Sec. 5 describes the MAST/MAST-
U discharges selected for transport analysis, and
Sec. 6 compares transport model predictions for
these discharges against the experimentally measured
profiles. Finally the conclusions are developed in Sec.

7.

2. Stochastic models

Perturbations of the magnetic field can have a big
impact on transport processes in tokamak devices, and
affect the plasma equilibrium and its evolution. If the
magnetic perturbations involve reconnection and are
sufficiently strong, they destroy magnetic flux surfaces
and can generate stochastic magnetic field regions. The
locus of points at the intersection of the magnetic field
with a poloidal cross-section of the plasma is no longer
a smoothly defined curve belonging to a particular
magnetic surface, but becomes an area-filling set of
irregular random points. The magnetic field becomes
stochastic at the surface ¢ = m/n (where m and n are
integer poloidal and toroidal mode numbers) when the
adjacent width of the magnetic island, w; given by:

JBr 1 \1/2
i =4 57 1
v (Bgndq/dr> (1)
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exceeds the distance between rational surfaces, d7¢s:

1
Orres = ndq/dr 2)
The stochasticity condition, w; > 07pes(r),
requires:
B _1r11 (3)
By = 42R¢%ns
where safety factor ¢ ~ rBy/RBy and magnetic shear
s = r/qdq/dr. The stochasticity threshold in Eq. 3
is exceeded at a critical mode amplitude that depends
on toroidal mode number, safety factor, and magnetic
shear. The relative amplitude of magnetic fluctuations,
0B/ By, increases with 3, and this is often sufficiently
large in STs to exceed the stochasticity threshold.
Different reduced models have been developed to
describe stochasticity, though this is a complicated
problem that is far from fully understood. The basic
assumption is to consider an equilibrium magnetic field
By perturbed through a radial stochastic displacement
dx in the direction perpendicular to Bg corresponding
to a magnetic field perturbation of amplitude § B. The
equation of the perturbed field line relates dz to the
parallel length, [},, of the perturbation in the Bg
direction:

ox 0B
== @)
by Bo
By assuming that [, length is traveled with a v
velocity in a time 6t = [j,/v we can write for the
diffusion coefficient along the perpendicular direction:
52 0B\ 2

D. :—:(—) L0 = Dy,

1= = \g) ey v (5)

where D,, is the magnetic diffusion coefficient that
has the dimension of a length. The D,, coefficient
provides a measure of the stochastic behavior of the
magnetic field via the unknown longitudinal length
scale [),. The quantity v in Eq. 5 is a characteristic
velocity associated to the event. This velocity could
be, for example, the velocity of an electron that moves
along the magnetic field with a gyroradius equal to
p.. However, at the place to consider a single particle,
it is important to generalize previous considerations
via a statistical approach by considering a collective
behavior of the plasma.

2.1. Kadomsev and Pogutse model

By considering collisional effects in the framework
of a diffusive plasma, Kadomsev and Pogutse in
Ref. [48] developed a model able to describe the
stochastic dynamics establishing a relation between
the perpendicular direction characterized by a collision
decorrelation length and the parallel z direction with
a Dy diffusivity.
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This model can be introduced by defining [, . as
the perpendicular displacement required for a particle
to transfer to an uncorrelated field line. In the
decorrelation time §t required for this transition, the
particles diffuses along the longitudinal direction over
a length l|| = \/DH(Stl.

Fig. 1 illustrates this mechanism whereby a
particle trajectory transfers from one perturbed field
line to an uncorrelated one when the perpendicular
displacement from the initial field-line exceeds ..
The circle in Fig. 1 represents the Larmor orbit of an
electron of radius p. In this model p. = O(l_.) < Ar,
where Ar is the maximum separation between the
distinct field lines. Defining a transverse diffusion

Figure 1. Stochastic perturbed magnetic field lines that
approach each other at a decorrelation distance [ . generally
of the order of the electron Larmor radius pe allowing an
electron the possibility to jump from one line to another line
via collisional process. The maximum distance between the
magnetic field line is represented by Ar.

coefficient D| = lic /0t , allows the decorrelation time
to be expressed:

it
ot === 6
L=, (6)
Substituting for the decorrelation time into the parallel
diffusion equation, I = /D)0t L, gives:
D\ 1/2
1=\p,) "~ (7)

Now the effective velocity of particles parallel to
the magnetic field v = I/t , can be expressed using
(7) as:
p= YIUDL 5)

llc
We can captures the collective diffusive process for a
collisional plasma by substituting Eq. 8 into Eq. 5 to
obtain:

(D Dl)l/z

Hli (9)
le

This formula describes collisional particle motion in

terms of diffusion both parallel and perpendicular to

Deff = Dmv = Dm
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the perturbed field, and particles transfer to uncorre-
lated field lines when the perpendicular displacement
exceeds [ .; this dynamics gives rise to anomalous
transport in the radial direction. The model is “col-
lisional” in the sense that the perpendicular displace-
ment of particles, between distinct magnetic field lines,
is assumed to be completely due to collisional pro-
cesses. However, collisional transport is not the only
process that can decorrelate particles from magnetic
field lines.

2.2. Rechester-Rosenbluth model

In the same year as [48], Rechester and Rosenbluth
described an alternative more efficient decorrelation
mechanism [39, 40]. RR highlighted that in a
stochastic field, two neighboring magnetic field lines
separated by a perpendicular distance x4, at one
location, become exponentially separated on advancing
in the direction of the magnetic field; i.e. the
separation between particles, z(t), following field-lines
initially separated by x4, increases with the parallel
displacement z(t) according to:

z(t) = xge*M/1x (10)

where [, the Kolmogorov length scale, is an important
parameter characterizing the chaotic motion of the
magnetic field. This scale contains “information”
associated with the trajectories of the system, and
is related to the dynamic entropy [49, 50]. The
Kolmogorov statistical approach is adopted and
extended by RR to a deterministic stochastically
unstable system in which [ is determined also from
the geometrical configuration of the magnetic field;
in tokamaks the field geometry is characterised by
the magnetic shear, which changes in the radial
direction. In the Rechester-Rosenbluth mechanism the
decorrelation of the magnetic field experienced by a
particle, arises primarily because of the divergence
of the magnetic field lines, with collisions playing a
modest but yet essential role in seeding the process.
Consider field lines passing through a small
circular area A = w2 of radius z4 in the poloidal
plane of a tokamak plasma. The fields passing through
the circle at z = 0 diverge and the outer radius of
the locus of the field lines increases as x(z) = zqe?/!'¥
from Eq. 10. From conservation of magnetic flux it
follows that as the fields expand, this locus must also
develop increasingly fine scale dendritic structures (of
width 6 ~ xde_z/lf‘) in the perpendicular plane as
z increases. We apply this argument to field lines
bounded at z = 0 by a circle of radius [, ., where [
characterises the field decorrelation distance, to find
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that the separation between uncorrelated fields, r.(z),
narrows with z as:

72/[1(

(11)
Assuming collisional particle trajectories governed by
parallel and perpendicular diffusion:

re(z) =11ce

T = DJ_t qu/DHt (12)
it follows that:
D,
r=,]l—==z (13)
\/ Dy

In the limit where stochasticity plays no role,
i.e. lg = oo, the decorrelation length [ . is accessed
through collisions alone. Setting r(l.) = l1. using
Eqn.13 directly gives the Kadomtsev and Pogutse
result of Eq.6, [j. = l1./D) /Dy [51].

Now let’s consider an element of plasma of
perpendicular thickness § in a stochastic magnetic
field. The collisional particle trajectories are governed
by Eq.13, and follow correlated fields described in
Eq. 11. At increasing z the element thickness, ¢,
of the correlated plasma is simultaneously subjected
to narrowing by stochasticity and to expansion from
particle collisions, so that:

dd 1) D,
= - _Z -, 14
The typical thickness of this correlated region of
plasma is estimated from when these opposing

influences balance; i.e. when % =0 at:

D,
0=l | —
\' D

Now ¢ = rc(l)c), so we obtain the parallel correlation
length /| by combining Eq.11 and Eq. 15 to give:

(15)

L [D
g \| D1

l”C:lK In (16)

This gives all the information required to determine
the stochastic diffusion coefficient from Eq. 5. The
characteristic velocity, v = D) /l|. arises from parallel
diffusion (and is obtained using v = I./dt together
with Dy = [f /dt). From Eq. 5 we have:

§B\”
Desy = Dy = (B) ﬁDll

Substituting Eq. 16 into Eq. 17 gives the general
expression for the RR model transport diffusivity. In
Sec.3.1 Eq. 17 will be used as the basis of RR-based
models in collisional and collisionless limits in JETTO.

The RR model establishes different scales that are
fundamental to stochastic transport (e.g. e, l1c [p,
and {x) but does not quantify all of them, which is the

(17)
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price paid for the RR model’s simplified description
of stochastic transport.  Appropriate models are
needed to independently estimate these scales from the
characteristics of the plasma configuration, and this
represents the main difficulty in exploiting the model.

2.3. Rebut-Lallia- Watkins model

As discussed in Sec. 2, if magnetic islands are
sufficiently large to overlap they generate stochastic,
or ergodic, magnetic field regions. The Rebut-
Lallia-Watkins (RLW) model [43] is a semi-empirical
description of plasma transport under such conditions,
and its model predictions have been compared with
measured profiles from an NSTX H-mode plasma [45].

The RLW model is based on dimensionless
plasma parameters, and was first developed to
predict plasma profiles in ohmic and L-mode JET
discharges by exploiting an analogy between fluid
and plasma turbulence. In fluids the dimensionless
Reynolds number R., which characterizes the relative
importance of momentum transport by convection and
by viscous diffusion, allows to fix the transition from
the laminar to the turbulence regime when R, exceeds
a critical value, R... The corresponding change in
radial heat and particle flows observed in fluids is
also observed in tokamaks by considering this latter
as an open thermodynamic system in which heat flow
could influence its stability. Thus, the RLW model
determines a critical temperature gradient |VT|. for
a plasma, equivalent to a critical Reynolds number
to define the development of turbulence due to a
stochastic instability in a tokamak:

dT, e 1/ nJB3\05
T,|. = ’ —0.06 7( ) 8
VIl =1 . Gromt®)05 g \n705) (19

where 7 is the Spitzer resistivity and J is the current
density. When the electron temperature gradient
exceeds |VTe|. the electron transport becomes:

o, (1= /iJR) (T.\05
Xy = 056 Vi — g — (77)
(LTt o
T, dr ne dr /dg/dr
VIt Z (1 _ |VTe|c)

VT
H(|VT€‘ - |VTe|c)

2

(19)

where the Heaviside functions, denoted H(..), trigger
anomalous transport above the critical electron
temperature gradient in regions with dg/dr > 0.
Moreover, if dg/dr changes in sign from positive
to negative value, X, becomes zero. The RLW
model is also sensitive to the density gradient; indeed
while the model only triggers transport above a

6

threshold in V7., the ensuing transport is twice
as sensitive to the logarithmic density gradient as
to the logarithmic electron temperature gradient.
(This transport sensitivity to density gradient is not
present in the RR models of stochastic transport
discussed above.) Although the modelled microtearing
transport level in Eq. 19 is strongly dependent on
Nne, 1., T;, q, and their gradients, there is no clear
dependence on either collisionality or 8. which should
also influence microtearing-induced transport. Some of
these dependences are implicitly in the critical gradient
of Eq. 18, but this has virtually no effect on transport
when the temperature gradient exceeds the critical
threshold across the radial cross-section (as for the
NSTX shot analysed in [45]). §

All of the models for stochastic field transport
described in Section 2 have been implemented in
the integrated modelling tool JINTRAC. Transport
calculations using these stochastic transport models,
together with models like TGLF to describe the
transport from electrostatic turbulence, to test and
validate these models against experimental data from
MAST and MAST-U, will be reported in Section 6.

3. JINTRAC code

JINTRAC [46] is a popular transport simulation tool
used by the fusion community to model and optimize
tokamak plasma scenarios, and to make predictions for
future devices. It incorporates a wide range of physics-
modules to model different aspects of the tokamak
plasma discharge, and the various modules can be
selected and configured via a convenient bespoke JAMS
interface. This is extremely flexible and facilitates
a wide range of simulations with different levels of
complexity and fidelity.

Here we exploit JETTO, the core transport solver
at the heart of JINTRAC, to model the transport
evolution of fixed-boundary plasma equilibria. JETTO
solves the plasma fluid transport equations for
quantities that are averaged over magnetic surfaces
I, and requires the 2D plasma equilibrium for a
prescribed boundary in the poloidal plane. The 2D
equilibrium is either computed self-consistently using
JINTRAC’s internal equilibrium module ESCO, or
taken from an external calculation (e.g. by EFIT
or CREATE). JETTO can be used to model a wide
variety of tokamak transport problems of interest.

§ RLW model predicted T, profiles were reported in [45] to be
in good agreement with measurements from an NSTX discharge
at times when gyrokinetic simulations revealed MTMs to be
unstable and dominant, but less well for times when MTMs were
stable or sub-dominant.

|| JETTO solves 1D transport equations for the plasma radial
profiles together with a 2D equilibrium equation, following the
standard 1.5D approach to model transport in tokamaks.
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The transport matrix contains the various contri-
butions to the fluxes of heat and particles, and its coef-
ficients must be calculated for each species. This con-
tains contributions from both neoclassical and anoma-
lous transport. The neoclassical transport contribution
is calculated independently using the NCLASS module
and this is added to the anomalous transport. Cal-
culation of the various transport coefficients requires
as inputs: density, temperature, momentum and the
gradients of these quantities for electrons and all ion
species, and the Grad-Shafranov equilibrium (which in-
cludes the magnetic shear and ¢ profiles). The trans-
port models are computed within JETTO at each time
step to obtain the transport matrix, and the profiles are
evolved forwards in time by inverting a matrix equation
using the Transport Code Interface, TCI, [52].

The following anomalous transport models are
available in JETTO and will be used in this paper’s
simulations: Bohm/gyroBohm [72] and TGLF [36, 53,
54]. In this paper we will additionally include the RR
and RLW models of transport from stochastic magnetic
fields, and we will specify regions of validity for the RR,
models.

3.1. Implementation of the reduced stochastic models
in JINTRAC

In order to implement stochastic models in JINTRAC,
different assumptions and approximations have been
done. For convenience we rewrite Eq. 7?7 to make the
magnetic diffusivity dependence on §B/Bj explicit:
D|| 0B\ 2 DH
Degr =Dy > = (BT)) .
Nonlinear drift-kinetic theory of the stochastic turbu-
lence suggests saturation occurs at amplitude [55]
0B pe
B Ly
where p. is the thermal electron gyroradius and Lp
is the electron temperature gradient scale length.
Eq. 21 has been obtained in Ref.  [55] in the
framework of a drift-kinetic theory. While gyrokinetic
simulations of MTM turbulence performed with GENE
at conventional aspect ratio [30, 56] and with GYRO
and CGYRO for STs [33, 26], are broadly consistent
with Eq. 21 across a range of parameters, 0 B/B is also
strongly sensitive to other plasma parameters including
Be, Vei, flow shear, and other equilibrium quantities
[33, 26]. There are several possible approaches to
improve on 6B/B from Eq. 21:

(20)

(21)

e more detailed reduced models for §B/B may
emerge from nonlinear gyrokinetic simulations;

e Rafig’s reduced model of stochastic transport from
MTMs [41] estimates 0B/B from a nonlinear
dispersion relation in simplified geometry that is
independent of Eq. 21;

7

o the TGLF model can provide an estimate of §B/B
(though TGLF does not reliably capture MTMs).

In future work we will compare alternative approaches
to modelling 6B/B. Length-scale parameters /|, and
ljjc are also required in Eq. 20. We assume I,
to be of the order of the major radius, R, of the
tokamak [27, 44], and estimate [|. from experimental
conditions using the analytic formula of Eq. 27 as
discussed in Sec.6. Thermal conduction coefficients
come from kinetic theory, which gives Dﬁ” ~ Xi’z o
T.iTei/me where 7., is the electron/ion collision
time, and Dj_l ~ XT o< Tei/Me,iw? ;Tei where
We,; is the electron/ion gyrofrequency for species e,
along parallel and perpendicular direction respectively.
Results of the kinetic theory on the thermal conduction
coefficients allow to have Dﬁ’l ~ X|€|’1 X TeiTei/Me

and D' ~ x7" o« T.;/(mew?,;7e;) for species e,i
along parallel and perpendicular direction respectively.
Thus, we can write for electrons:

2
TeTe 9 v,

o e 29
e ~ VeTei ™~ Vs (22)

Dfi ~ xf = 3.16

We assume the following expression for the electron-ion
collision time:
2m2.5(kBTe)3/2

€
Tei = 2>

2
ngfnie4 InA (23)

where €y is the electric susceptibility and InA is
the Coulomb logarithm. By observing that v27.; ~
V2 Vi ~ VeAm fp, Eq. 20 becomes:

Pe 2 )\mfp
Lr ) Ry, ——

This equation has been adopted as collisional model of
the RR theory. In Ref. [39] it is emphasized that Eq. 24
works well when [j|. > Appp. Then, Eq. 24 predicts a
transport that is more or less Ay, fp/1||c time than that
one of the collisionless regimes. For collisionless model
we have:

o Pe \? 2 r
v (f5) (1 f)
where the last right term is a parameter related to the
fraction of passing particles [57, 58]. The adoption of
fp is also supported by gyrokinetic simulations devoted
to investigate stochastic regime [59]. It is interesting to
observe that the RR model has not a density gradient
dependence, where the RLW model presents a factor
two in front to the density gradient dependence with
respect to VT,.

Concerning the RLW model, in JETTO the
Heaviside function of temperature gradient that
appears in the RLW heat diffusivity of Eq. 19, is
replaced with:

Xe R ( (24)

lje

(25)

H(VT.| - |VT.|e) = % {tanh (% - %) + 1] (26)
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where a = 0.9 and b = 0.01 are parameters in
a hyperbolic tangent representation of the Heaviside
function that regulate the position of the critical
gradient and its steepness on threshold. This
smoothed representation improves numerical stability
with respect to discontinuous changes in time of
transport close to threshold.

4. TGLF code

The trapped-gyro-Landau-fluid (TGLF) code is a first-
principles-based quasi-linear reduced core transport
model that was developed to describe anomalous
transport from predominantly electrostatic turbulence.
TGLF solves linearised gyrofluid equations that
account for kinetic effects including Landau damping,
gyro-averaging, electron-ion collisions, impurities,
trapping and other toroidal geometry effects. TGLF
describes turbulent transport from various classes of
microinstabilities including ion temperature gradient
modes (ITG), electron temperature gradient modes
(ETG), and trapped electron modes (TEM). TGLF
calculates magnetic fluctuations so can also compute
the linear properties of electromagnetic modes like
kinetic ballooning modes (KBMs) and Alfvénic ITG
modes, that may be important for transport in higher
[ regimes. Physics properties of the dominant linear
eigenmodes are calculated by TGLF’s gyro-fluid solver,
and this is supplemented by saturation rules to set
the model transport fluxes. These saturation rules
were tuned to fit turbulent fluxes from databases of
nonlinear gyrokinetic simulations across a wide range
of plasma conditions. Several different saturation rules
have been developed and released as this database has
expanded: SATO [60], SAT1 [61], SAT2 [62], and SAT3
[63].

While TGLF captures some electromagnetic
modes linearly, its saturation models (which is
obviously critical to transport prediction) are tuned to
gyrokinetic simulations of predominantly electrostatic
turbulence. TGLF has been used routinely to model
anomalous transport in conventional aspect ratio
tokamaks like JET and DIII-D, including high 3,
steady state plasma scenarios [65, 66, 67].

TGLF can describe transport contributions from
electrostatic turbulence in spherical tokamaks, and
there have been several comparisons of TGLF
predictions against data from ST discharges [68, 38].
We note that first transport simulations for NSTX
[38] using NEO for the neoclassical fluxes together
with TGLF(SAT1) are found to be more stable than
those using those using NEO with TGLF(SAT?2),
and that TGLF(SAT2) simulations for an NSTX H-
mode were found to over-predict the contribution
of low-k modes to the total turbulent flux whilst
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those using TGLF(SAT1) were consistent with power
balance analysis [38]. A key limitation of TGLF,
however, is that it does not include stochastic field
transport generated by microinstabilities like MTMs.
This is addressed here by supplementing TGLF with
other models to describe the missing transport from
stochastic magnetic fields. In this work TGLF is
mainly run with the SAT1 and SAT2 saturation rules€,
and the anomalous fluxes are supplemented using the
reduced models of stochastic field transport described
in section 2.

5. Experimental data selection and data
analysis

In this work stochastic models have been supplemented
with TGLF, for the first time, to make transport
predictions for MAST and MAST-U plasmas. This
section discusses the selection of shots for this analysis.
Key parameters for MAST and MAST-U are: major
radius R = 0.85m, minor radius a« = 0.65m,
plasma current I, I, < 1.3,2MA, magnetic field

) TPMU

B,,,B,,, £0.52,0.75T and pulse length T},,,,Tp,,, <
0.6, 5s. Where quantities differ between these devices,
these are distinguished using the subscripts M and
MU. Longer pulse lengths should give MAST-U
longer and steadier flat-top phases than were accessible
in MAST. We also note that at constant pressure,
the lower magnetic field in MAST increases S and
the likely impacts of transport from stochastic fields.
Transport analysis and model validation is more robust
when it is applied using data to steady state shots
with optimal stability conditions. This first analysis
focuses on a small number of such discharges, but after
verifying this approach it can be extended to a broader
database of discharges in future work. We have selected
experimental discharges, where the variation in time on
temperature and density at p, = 0.5 in the middle of
the radial domain (which we label g) is characterized
by G = 1/g(dg/dt) < 3s~!. We have applied
this selection criterion to high fidelity interpretive
TRANSP simulations from MAST and MAST-U to
find the most suitable discharges that are analysed
in this paper. Four discharges that survive these
selection criteria will be used in this paper at particular
times, and these are: #22664, #22769 from MAST;
and #46978, #47003 from MAST-U. We have also
required that thermal transport is not strongly affected
by Magnetohydrodynamic (MHD) instabilities in the
period of interest. To illustrate this, Fig. 2 shows the
time evolution of %% for MAST-U#47003, and Fig. 3

9 SAT1, described in [61], replaces flow shear quench rule of
SATO [60] with a spectral shift model and accommodates findings
from the first multi-scale gyrokinetic simulations, while SAT2
[62] refines SAT1 to accommodate more detailed analysis of
spectra from nonlinear GK simulations.
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shows the corresponding profile measurements and the
TRANSP fits that were used. In particular, figure
shows profiles of electron temperature (red color), ion
temperature (blue color) and density (green color) at
t = 0.451s. In the same way, Fig. 4, Fig. 5 and
Fig. 6 show profile comparison between experiments
and TRANSP fits for shots #46978 MAST-U at ¢t =
0.615s, #22664 MAST at t = 0.23s and #22769 MAST
at t = 0.2s respectively.

10 Te™'dTe /dt
TidTi /dt ]
den'd(den)/dt |

0.45 0.50 0.55

time [s™']

0.40

Figure 2. Time evolution of G = 1/g(dg/dt) quantity that
represents the average along the radial domain for electron
(red), ion (blue) temperature and density (green) profiles for
the MAST-U case 47003.
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Figure 3. Comparison of density (green), electron (red),

ion (blue) temperature profiles between experimentals and
interpretative TRANSP fit at the selected time t = 0.451s in
the flat-top phase for the MAST-U case #47003.

The radial profiles have been measured by using
different diagnostic systems. The electron plasma
temperature and electron density have been obtained
using the Thomson scattering system, which measures
from the high field side to the low field side, along the

Temperature [keV]

Figure 4. Comparison of density (green), electron (red),
ion (blue) temperature profiles between experimentals and
interpretative TRANSP fit at the selected time ¢ = 0.615s in
the flat-top phase for the MAST-U case #46978.
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Figure 5. Comparison of density (green), electron (red),

ion (blue) temperature profiles between experimentals and
interpretative TRANSP fit at the selected time ¢ = 0.23s in
the flat-top phase for the MAST-U case #22664

plasma midplane. The toroidal rotation profiles have
been determined by Charge Exchange Recombination
Spectroscopy, and the impurity concentration was
estimated by the effective plasma charge (Zf¢).
Radiated power profiles have been measured by the
bolometer diagnostic.

All the kinetic and MHD equilibrium reconstruc-
tion have been obtained through running TRANSP
and EFIT integrated workflows using the OMFIT
framework. The magnetic equilibrium configurations
are shown in Fig. 7, where from left to right there is a
clear gradual increase in the elongation from x = 1.73
to k = 2.15. Safety factor profiles are plotted in Fig. 8.
In all selected shots, the minimum safety factor ¢ is
above unity and no sawtooth activity has been de-
tected. For these cases no kinks, fishbones, or tearing
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Temperature

Figure 6. Comparison of density (green), electron (red),
ion (blue) temperature profiles between experimentals and
interpretative TRANSP fit at the selected time ¢ = 0.2s in the
flat-top phase for the MAST-U case #22769
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Figure 7. Magnetic configuration for MAST cases 22664
(t = 0.23s) and 22769 (¢t = 0.2s) and MAST-U cases 47003
(t = 0.451s) and 46978 (t = 0.615s). It is possible to appreciate
the change in elongation for the different cases.

Figure 8. Safety factor profiles for MAST cases 22664 (t
0.23s) and 22769 (¢ = 0.2s) and MAST-U cases 47003 (¢
0.451s) and 46978 (t = 0.615s).
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modes have been detected in the neutron rate or by
the Mirnov coils signals.

Values of elongation and q are reported in Table 1
together with the other main plasma parameters such
as plasma current [, vacuum toroidal magnetic field
on axis By, inverse aspect ratio etc.

The MAST discharges are in L-mode and were
produced as part of a collisional scan to test
the sensitivity of confinement, and they have been
discussed in [5]. These latter together with MAST-
U cases have been selected with the goal to explore a
certain range of collisionality that represents a good
parameter value for the applicability of the stochastic
model. The MAST-U cases are in H-mode regime.

6. Results

Here we describe results of JINTRAC calculations us-
ing a variety of stochastic transport models to supple-
ment TGLF (using SAT1 and SAT2) in the JETTO
transport solver. Simulations have been performed for
the prediction of electron and ion temperature profiles,
T, and T;, with density and rotation set to fit the ex-
perimentally measured profiles, and impurity density
profiles estimated using the measured Z.f¢. Our sim-
ulations have additionally required as inputs the mag-
netic equilibrium configuration, and temperatures at
the boundary point fixed at r/a = 0.9. Table 2 gives
the characteristic mid-radius values of some key plasma
parameters from each discharge.

The selected shots span a range in collisionality
(indeed the selected MAST discharges are from the
extremes of the collisional scan described in [5]), which,
as discussed earlier, is an important parameter in the
transport processes from stochastic fields.

To make an initial assessment of the possible
importance of radial stochastic transport, we can
compare magnetic island width, w;, estimated using
Eq. 1 for a given toroidal mode number, n, with the
distance between rational surfaces, 075, from Eq. 2.
This comparison also requires knowing the amplitude
of the magnetic fluctuation, which can be estimated
using the Drake ansatz of Eq. 21. Fig. 9 shows this
comparison for #22664 for n = 6 and n = 16. We
observe that around r =~ 0.4 for toroidal number
n = 6 (red line), the quantity w; becomes larger
than dr,..s and consequently we expect that stochastic
process could become important. By increasing n value
the threshold stochastic condition shifts toward lower
values of r, as shown in Fig. 9 for n = 16 (blue
line). This behaviour is typical in the MAST/MAST-U
discarges we have analysed.

The ratio between w; and dr..s is a good
approximation of the so called stochastic parameter.
This parameter have been introduced in Ref. [64] and
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Table 1. Values of parameters for the MAST shot 22664, 22769 (L-mode) and MAST-U shots 47003, 46978 (H-mode). We report
the following quantities: current I, vacuum toroidal magnetic field at geometric axis Bp, Mach number M, auxiliary power PyBr
from NBI, qg5, Zess, B = n(Te + T4)/[B3/(2u0)], elongation x and inverse aspect ratio e = a/R.

Shot num I,(kA) Bo(T) M  Pnxpr Qo5 Zefy B K €
886 0.50  0.35 3.2 72 1.3 0.067 1.73 0.71
22769 592 034 032 30 9.6 13 0.094 180 0.7
47003 730 0.66  0.19 1.3 7.8 1.5 0.051 2.00 0.81
16978 750 0.60  0.25 3.0 85 1.5 0.060 2.15 0.75

Table 2. Values of parameters for the MAST shots 22664, 22769 (L-mode) and MAST-U shots 47003, 46978 (H-mode)All the value
have been calculated in the middle of the radial domain. We report electron Te and ion 7T; temperatures, density ne, ion p; and
electron p. Larmor radius, mean free path A, s, electron-ion collisional frequency v.;, longitudinal decorrelation scale ch.

Shot T, [eV] T;[eV] mne(1019m=3) pi [m]

Ampp)m]  (vei) [s71 (e} [ml

Pe [m}

600.0 683.3 3.2 1.1-1072

22769  361.6 438.5 3.4 1.3-1072

47003  570.1 616.0 4.7 7.7-1073

16978 541.8 595.0 4.64 8.3-1073

0.10[™
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0.06 [t}

0.04 [\

distance

0.02}

0.00¢L s ‘ ‘ e
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Figure 9. Comparison between magnetic island w; and distance
between rational surfaces 6ryes for n = 6 (red lines) and n = 16
(blue lines). The curves referred to the 22664 MAST case.

could be used to give an estimation of /|, quantity via

the following analytical expression:
TR

In [rw; /(207 1es)]

It is important to note that Eq. 27 has been derived

for one single n mode [39]. The general espression for

lje = (27)

1.6-10~4 8.39 1.90 - 106 2.18

1.9-1074 3.07 4.02 - 10° 2.89

1.2-1074 6.78 2.10 - 10° 4.19

1.3-10~4 5.81 2.33- 106 2.86

a complete spectrum of n is unknown. However, we
expect for this case, a value of [}, lower than that one
obtained in Eq. 27. In this paper for MAST/MAST-
U we always use n = 16 to compute /)., because this
is the principal toroidal wave number that emerges in
gyrokinetic simulations of MTM turbulence in MAST
discharges [26]. It is important to point out that I,
is only weakly sensitive to this choice of n because of
the logarithmic dependence in Eq. 27. To identify the
most appropriate reduced stochastic transport model,
it is important to consider the collisional regime that
is relevant to the experimental conditions. In Fig. 10,
we compare the mean free path Ay, and the [
value calculated in the middle of the radial domain,
for each of the four discharges. Both quantities are
plotted as a function of the mid-radius collisionality
Vei, Which varies across the discharges, and Fig. 11
compares radial averages (A, rp) and ([)|c) as functions
of (v.;), where the average is performed over the region
0.45 < r/a < 0.75.

Fig. 10 and Fig. 11 clearly demonstrate that
Amfp > ljjc in the lowest collisional MAST discharge
#22664, and that this criterion is also satisfied less
strongly in MAST-U discharges #47003 and #46978.
Satisfying A, fp > [} indicates that the more suitable
RR stochastic model for these discharges will be the
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Figure 10. Mean free path A, s, and l||c parameters expressed
in meters [m] as a function of collisionality ve; in [s71].
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Figure 11. Average mean free path (A, fp) and average (I|.)
parameters expressed in meters [m] as a function of the average
collisionality (ve;) in [s7!']. Quantities are averaged between
r = 0.45a and r = 0.75a.

“collisionless” model (see Sec. 3.1). Identifying the
appropriate RR collisional regime is more ambiguous
for MAST #22769 where Ap,pp ~ [j|.. The RR-
collisionless RR._jcss model has been used in JETTO
together with either TGLF(SAT1) or TGLF(SAT2).
Thus, we first report transport simulations for
the MAST-U H-mode #47003, using the RRc¢_jess
model and TGLF(SAT1) excluding further effects
from magnetic fluctuations (TGLF (SAT1)ES). The top
panel of Fig. 12 compares T, and T; experimental
profiles (dash-dotted lines) with the transport steady
state profile predictions (continuous lines).  The
bottom panel shows the total electron and ion thermal
diffusivities, x. and x;, together with their respective
contributions from the RR._jcs model, and from
ion neoclassical heat transport, x;,,. lon heat
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Figure 12. (Top panel) Experimental data (dash-dotted

line) of ion and electron temperature profiles compared with
simulation profiles (continuous lines) for the MAST-U case 47003
in electrostatic transport model . (Bottom panel) Associated
total ion and electron diffusion coefficient x; and xe in blue and
red continuous lines respectively. Rechester-Rosenbluth xgrg
and neoclassical diffusion x;,, ., coefficients in red dashed and
blue dotted lines respectively. Diffusion coefficients are expressed
in [m?/s].

transport is entirely dominated by the neoclassical
term #47003, while electron heat transport is
dominated by stochasticity, in particular in the central
box around r = 0.4 with the peak electron heat
diffusivity xe ~ Xerr ~ 3m?/s.

Modelling the same discharge including electro-
magnetic effects in TGLF (RR_jess+ TGLF (SAT1)EM)
gives the similar temperature profile predictions il-
lustrated in the top panel of Fig. 13. The bottom
panel shows that the small change in profiles is due
to the presence of enhanced ion transport between
0.6 < r < 0.8, and comparison with Fig. 12 indicates
that this can be attributed to the inclusion of magnetic
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Figure 13. (Top panel) Experimental data (dash-dotted
line) of ion and electron temperature profiles compared with
simulation profiles (continuous lines) for the MAST-U case 47003
in electromagnetic transport model. (Bottom panel) Associated
total ion and electron diffusion coefficient x; and e in blue and
red continuous lines respectively. Rechester-Rosenbluth xgrg
and neoclassical diffusion x;, ., coefficients in red dashed and
blue dotted lines respectively. Diffusion coefficients are expressed
in [m2/s].

fluctuations in TGLF(SAT1)EM™.

RRc_less+ TGLF(SAT1)EM transport simulations
for MAST-U #46978 give the profile predictions
shown in Fig. 14. The top panel shows that both
electron/ion profiles, and especially T;, are under-
predicted. Neoclassical transport, shown in the bottom
panel, dominates the ion heat channel across most of
the radial profile, and is similar to that in MAST-
U #47003. Electron heat transport is lower than
the ion heat transport, and is always dominated
by stochasticity.  Replacing TGLF(SAT1)EM by
TGLF(SAT1)ES in the transport calculation results in

* The nature of the electromagnetic modes predicted by TGLF
EM in this region will be investigated in future work, and may
be due to the onset of hybrid-KBMs [69].
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Figure 14. (Top panel) Experimental data (dash-dotted
line) of ion and electron temperature profiles compared with
simulation profiles (continuous lines) for the MAST-U case 46978
in electromagnetic transport model. (Bottom panel) Associated
total ion and electron diffusion coefficient x; and xe in blue and
red continuous lines respectively. Rechester-Rosenbluth xgrpg
and neoclassical diffusion x;,,., coefficients in red dashed and
blue dotted lines respectively. Diffusion coefficients are expressed
in [m?/s].

extremely similar profile predictions, indicating that
TGLF(SAT1)EM is not finding significant transport
from electromagnetic modes in this discharge.
RRc—1esst TGLF(SAT1)EM transport simulations
for MAST #22664 are shown in Fig. 15. In this
discharge the temperature profiles are over-predicted
in both channels for r/a < 0.4. The RR modelled
stochastic transport coefficients are notably larger than
in both MAST-U H-mode discharges, and X%—Rless peaks
at a value of 5m?/s around r = 0.3. As for #46978,
replacing TGLF(SAT1)EM by TGLF(SAT1)ES has
minimal impact on the transport steady state pro-
files, so the significant enhancement of x. over xrgr at
r/a > 0.4 predicted by TGLF can be attributed to elec-
trostatic instabilities; ETG would be a likely candidate.
Neoclassical ion heat transport still dominates the ion
heat transport channel, but x; neo is rather lower than
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Figure 15. (Top panel) Exrp/egrimental data (dash-dotted
line) of ion and electron temperature profiles compared with
simulation profiles (continuous lines) for the MAST-U case 22664
in electromagnetic transport model. (Bottom panel) Associated
total ion and electron diffusion coefficient x; and e in blue and
red continuous lines respectively. Rechester-Rosenbluth xgrgr
and neoclassical diffusion x;, ., coeflicients in red dashed and
blue dotted lines respectively. Diffusion coefficients are expressed
in [m2/s].

in the MAST-U discharges.

For the more ambiguous collisional discharge,
#22769, with A\ppp ~ [, we adopt the following
RR-hybrid model that should be more appropriate
for describing the stochastic transport at transitional
collisionality:

XGHy = (

This model combines the RR-collisionless RR:_jess
and RR-collisional RR.,; models, and accounts for
collisionality increasing towards the edge because of
the reduction in A,,fp. Towards the edge we may
expect to find Ap,fp < [}|, which will reduce transport
coefficients by a factor Ap,rp/l||. with respect to the
RR._1ess model. Transport calculations using RR-

1 1 -1

(28)

Xerr, .., Xerr,
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hybrid + TGLF(SAT1)EM for MAST #22769 are
shown in Fig. 16. We note that transport calculations
using this model for the other discharges find no
substantial differences to the RR-collisionless results
presented in Fig. 13, Fig. 14, and Fig. 15. This is
because for these discharges A, p, > [} at least for
r/a < 0.9 after which we impose boundary conditions.

Te
Ti
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0.0 0.2 0.4 0.6 0.8

r/a

Figure 16. (Top panel) Experimental data (dash-dotted
line) of ion and electron temperature profiles compared with
simulation profiles (continuous lines) for the MAST case 22769
in electromagnetic transport model. (Bottom panel) Associated
total ion and electron diffusion coefficient x; and x. in blue and
red continuous lines respectively. Rechester-Rosenbluth xgrgr
and neoclassical diffusion x;,, ., coefficients in red dashed and
blue dotted lines respectively. Diffusion coefficients are expressed
in [m?2/s].

An extension of this hybrid model will be
developed in a future work. It is also interesting
to note that x. and xe,, are larger in the two
MAST L-modes than in the MAST-U H-modes that
we have examined. This is probably due to the
different gradients involved and, as mentioned, to the
fact that magnetic field is larger in the two MAST-
U cases. Transport calculations using RR¢_jess +
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TGLF(SAT2)EM give significantly stronger transport,
and flatter profiles: e.g. see transport calculation
results for MAST-U #47003 in Fig. 17. Comparison of
these profiles with SAT1 results in Fig. 12 shows that
SAT?2 gives higher electron (ion) heat diffusivities for
r/a > 0.5 (r/a > 0.7). In particular, we observe that
SAT2 predicted transport becomes extremely strong
in correspondence of flat ion/electron temperature
profiles when stochastic diffusivity assumes slow values.
This is confirmed by removing flat ion profile and
assuming an ion temperature profile with a gradient
different from zero in the region r/a > 0.7. In this
case, it is observed that ion heat diffusivity decreases
at values lower than 10m?/s. This represents a clear
indication of which points need to be investigated to
improve the TGLF(SAT2) model.

Concerning results related to the RLW model,
Fig. 18 shows example transport calculation results
using RLW+TGLF(SAT1)EM for MAST-U #47003.

Comparing with the experimentally measured
profiles, the modelled temperature profiles are much
flatter at mid-radius and steeper in the core. The
stochastic transport model, Xep.,, dominates the
transport, though its profile is starkly different to
that from the other RR stochastic models we have
considered: in particular there is an enormous rise
in Xep.n in the edge plasma, which is absent in
Xernr- This edge enhancement appears in Xep,w
principally due to the strong edge density gradient in
the MAST-U plasma. Reducing the amplitude of the
density gradient term in Eq. 19 would reduce the edge
transport. Strong edge density gradients are typical
in STs, resulting in RLW model predictions of very
large transport when above the critical temperature
gradient. The reason for including a density gradient
term in a model of stochastic transport in tokamaks
is not completely clear, though we note that in [44]
the authors replaced Ly with L = (L' + Ln~!)~! in
a collisional reduced model of stochastic transport and
found better agreement with the experimental estimate
of the electron heat diffusivity from an NSTX H-mode
plasma. However, there is no physical explanation for
this empirical dependence and further study is needed.

It is also interesting to note from Fig. 19 that
in MAST #22664 the temperature gradient exceeds
the RLW critical gradient for the onset of stochastic
transport of Eq. 19 across the whole radial cross-
section, and that this has been observed in all the
MAST shots we have studied.

As previously mentioned, the RLW model is only
sensitive to collisionality, current density and other
parameters, via the critical temperature gradient that
sets the threshold. Thus the RLW model confinement
scalings are insensitive to these quantities for plasmas
in MAST, where |VT.| > |VT.|. across the whole
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Figure 17. (Top panel) Experimental data (dash-dotted
line) of ion and electron temperature profiles compared with
simulation profiles (continuous lines) for the MAST-U case
47003 in electromagnetic transport model. (Bottom panel)
Associated total ion and electron diffusion coefficient x; and
Xe in blue and red continuous lines respectively. Rechester-
Rosenbluth xrr and neoclassical diffusion xj;,., coefficients
in red dashed and blue dotted lines respectively. Diffusion
coefficients are expressed in [m2/s]. The used model has been
the RR¢—jess+ TGLF(SAT2).

plasma. This the RLW model cannot explain the
strong favourable energy confinement scaling with
collisionality that has been reported by ST experiments
[5, 6, 70].

6.1. Summary of Model Validation

In order to summarize all the obtained results finalized
to have an overview about the general behavior of
the different models, we apply a systematic analysis
to all the performed simulations. Thus, we present
a systematic comparison of measured profiles from
MAST and MAST-U against transport calculation
predictions. This comparison is quantified for each
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Figure 18. (Top panel) Experimental data (dash-dotted
line) of ion and electron temperature profiles compared with
simulation profiles (continuous lines) for the MAST-U case 47003
in electromagnetic transport model. (Bottom panel) Associated
total ion and electron diffusion coefficient x; and x. in blue
and red continuous lines respectively. xgrrw and neoclassical
diffusion x;,,., coefficients in red dashed and blue dotted lines
respectively. Diffusion coefficients are expressed in [m?/s]. The
used model has been the RLW + TGLF(SAT1).

model prediction by computing the total squared
fractional error, x? to measure the quality of agreement
with the measured profile.

We briefly summarise the principal characteristics
of the method presenting the quantities used for the
analysis. If there are xp experimental data points
Dggp; to compare with theoretical predictions, to
quantify the discrepancy with data Djsoq,; of model,
we may compute the x? quantity given by:

2
D (DEwp,j - DMod,j)

2
j=1 DE%PJ

X* =

(29)

The number obtained with this procedure must be
compared with the number of degrees of freedom fd
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Figure 19. Ratio between temperature gradient and

temperature gradient threshold for the case 22664.

that is defined as the number of data points xp minus
the number of free parameters fp in the model. The
total squared fractional error per degree of freedom is
given by the reduced y2:

-2 X2 X2

fd xp—fp

Reduced %2 results are shown in Fig. 20 and
in Fig. 21 for the RRc_jess+TGLF(SAT1) and
+TGLF(SAT2) respectively and in Fig. 22 for the
RLW + TGLF(SAT1) model.

(30)
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Figure 20. Reduced x2? as a function of ve; in [s71] for
predictions obtained with the RR¢_1ess+TGLF(SAT1) model for
electrostatic (red) and electromagnetic (blue) regimes.

In this way, we are able to verify if simulation
results are sufficiently close to experiments to decide
the reliability of models for future predictions. The
best values of ¥? have been obtained for the
RRc—1esst TGLF(SAT1) model. By observing Fig. 21
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Figure 21. Reduced x2? as a function of ve; in [s™!] for

predictions obtained with the RR¢_jess +TGLF(SAT2) model for
electrostatic (red) and electromagnetic (blue) regimes.
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Figure 22. Reduced x2? as a function of ve; in [s71] for
predictions obtained with the RLW+TGLF(SAT1) model for
electrostatic (red) and electromagnetic (blue) regimes.

we can conclude that our simulations with reduced
models and TGLF are in agreement with experimental
data within the significant level of ~ 10%. For
RRc_jesst TGLF(SAT2) simulations the value is
2,0z = 0.15. Simulations related to RLW model show
too large x2,,, values and we can conclude that this
latter model doesn’t work very well for the studied
cases. Within the level of ¥2,., ~ 0.10 and \2,,, ~
0.15 we can see what is the relative difference in stored
energy W, ; = [3/2KgT. ndV :

€lsims Clexp

AW, ; = (31)

e’iewp
between experiments and simulations for ions and
electrons in the different studied cases.

These quantities are plotted in the histogram

of Figs. 23, 24, 25 for RR+TGLF(SAT1),
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RR+TGLF(SAT2) and RLW+TGLF(SAT1) respec-
tively. Electrostatic and electromagnetic simulations
are indicated in red and in blue colors respectively,
while ion and electron stored energy quantities are

indicated in lighter and darker tones. In agree-
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N 1 ]

o ODL__._._-T

~ b 4
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= , ]
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—tol L L L

22664 22769 47003 46978

Figure 23. Histogram of stored energy difference AW, ; for
the examined shots by adopting the RR+TGLF(SAT1) model.
Electrostatic and electromagnetic setup are indicated by using
red and blue color respectively. The lines corresponding to ion
and electron are indicated by light and dark colors respectively.
Thus from left to rigth we have the corresponding ion-, electron-
electrostatic and ion- and electron-electromagnetic lines.
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Figure 24. Histogram of stored energy difference AW, ; for
the examined shots by adopting the RR+TGLF(SAT2) model.
Electrostatic and electromagnetic setup are indicated by using
red and blue color respectively. The lines corresponding to ion
and electron are indicated by light and dark colors respectively.
Thus, from left to right we have the corresponding ion-, electron-
electrostatic and ion- and electron-electromagnetic lines.

ment with x? analysis the best results have been ob-
tained for RR+TGLF(SAT1) case at which we can as-



Stochastic transport in spherical tokamaks
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22769
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Figure 25. Histogram of stored energy difference AW, ; for
the examined shots by adopting the RLW+TGLF(SAT1) model.
electrostatic and electromagnetic setup are indicated by using
red and blue color respectively. The lines corresponding to ion
and electron are indicated by light and dark colors respectively.
Thus from left to right we have the corresponding ion-, electron-
electrostatic and ion- and electron-electromagnetic lines.

sociate a AW, ae = AWeas =~ 20%. Very good re-
sults have been obtained for the stored electron en-
ergy for the two L-mode cases. Moreover, we ob-
serve that the best results are related to the RR+
electrostatic TGLF version. The use of the electro-
static version gives slightly better results than electro-
magnetic version because probably part of EM effects
are considered at the same time by reduced stochas-
tic model and by TGLF. These point will be investi-
gated in a future work. However, results obtained by
coupling RR+TGLF(SAT1) appear quite promising.
Concerning the use of SAT2 we have an energy dis-
agreement AW, .o & AWe, 0 ~ 40%. Good results
have been obtained only for the MAST case 22769,
but this is only achieved for the total stored energy be-
cause radial regions where the simulated pressure ex-
ceeds the experimental profile, compensate for regions
in which simulation pressure under-predicts the exper-
imental profile. By considering results obtained with
the RR+TGLF(SAT1) model, in Fig. 26 we plot the
ratio between the averaged quantities of X.,, and X,
as a function of (A, zp)/(ljjc). The red line is referred
to the ratio (X, ,,)/(X.), whose quantities (X, ) and
(X.) are respectively averaged in the central radial re-
gion r/a = [0.45,0.75] as for (Ap,rp) and ([|c). Green
line has been obtained by considering average (X.,,)
and (X.) along the radial direction until to the bound-
ary conditions at r/a = 0.9. In this way, it is possible to
obtain a trend about the importance of the stochastic
transport played in the different scenarios. It emerges
that by moving from a more collisional regime in which
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Figure 26. Ratio between averaged quantities of X, and X,
as a function of (A pp)/({||c). The red line is referred to the
ratio of average (Xegpyz) and (Xe) respectively, in the central
radial region r/a = [0.45,0.75], while green line is referred to
the ratio of average (Xep) and (Xe) along the radial direction
until to the boundary conditions at r/a = 0.9.

(Amsp) = (ljjc) towards to a collisionless regime in
which (A pp) > ([)|c) the stochastic transport impor-
tance increases. This suggest the possibility to control
the role of stochasticity in the different scenarios in
tokamaks and in particular in STs via the parameters
involved in two important scales represented by A, fp
and [}|.. Thus, this work can be useful in the predic-
tions of ITER scenarios and in the conception of the
STEP design.

An exhaustive investigation on this latter subject
will be developed in a devoted paper. However,
in the light of this work, could be interesting to
make few estimations and briefly considerations about
the transport characteristics in STEP. Regarding the
applicability of stochastic model for STEP prediction
we can observe that the mean free path estimate for
STEP is Ay pp ~ 800m. This value can be compared
to ljjo ~ 12 m for STEP suggesting the use of
RR-collisionless model as the best model for reliable
predictions.

Preliminary results have been obtained by using
RRc¢_1ess and Bohm, gBohm models with coefficients
values for ion and electrons adopted in JET studies
and described in Ref. [72]. Bohm contribution has
been regulated by:

ag |8Pe/<9p|q2

2
BIII ne (3 )

XgB, X XB, = 2XxB.

and gyroBohm contribution has been calculated by:

vTe 0T,

XaB. & o | R | XgB, = 0.5xg8. (33)
with a9 = (Rout — Rin)/2 and p = /®/(7By).
Obtained results are very encouraging, showing
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simulation equilibrium profiles very close to the desired
ones as indicated in the top panel of Fig. 27.
Bottom panel indicates that the dominant transport
mechanism is stochastic with a small contribution due
to the gBohm effect. The impact of the stochastic
transport is in agreement with the trend obtained in
Fig. 26, according to which moving towards a scenario
with (A pp) > (l}jc), the importance of stochasticity
increases.

or_ ‘ ‘ ‘ ‘
00 02 04 06 08 1.0

£ T Xerr 1
3 ;’ Xe_BgB ’;

0.0 0.2 0.4 0.6 0.8

r/a

Figure 27. (Top panel) Comparison between SPR-45 design
point for STEP and profiles obatined by using RR¢_jess + Bohm
gyroBohm model. (Bottom panel) Transport diffusion coefficient
profiles in [m?/s] units for RR and gyroBohm parts respectively.

7. Conclusion

Electromagnetic turbulence is likely to be very
important for future plasma regimes, including at high
B and in STs, and is therefore of considerable interest
to the fusion community. Physics-based reduced
models of core transport are essential to improve
our confidence in integrated scenario modelling for
future tokamak plasmas, and these models are less
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well developed and validated for plasmas where
the core turbulence is electromagnetic in character.
Microtearing modes, for example, are expected
to generate stochastic fields that cause anomalous
electron heat transport in such plasmas.

In this work we have implemented, in the JIN-
TRAC integrated modelling suite, three reduced mod-
els of anomalous electron heat transport from stochas-
tic magnetic fields: RR-collisionless; RR-collisional;
and the RLW model. Stochastic field dynamics pro-
vide a parallel mechanism for electron heat trans-
port, which complements other transport processes
from electrostatic/electromagnetic turbulence that can
be described by the TGLF model, and neoclassical
transport that can be calculated using NCLASS. Four
steady discharges suitable for transport analysis have
been identified from MAST and MAST-U that span
a range in parameters including collisionality. We
have tested combinations of the stochastic models with
TGLF and NCLASS by performing JINTRAC trans-
port simulations for the MAST and MAST-U plasmas.
Inspection of the parameters of the MAST and MAST-
U plasmas suggests that the RR~collisionless model is
the most suitable collisional regime to describe these
experiments®™. We have also proposed a hybrid vari-
ant of the RR model to span collisional regimes. Best
transport predictions for the four discharges have been
obtained using the RR~collisionless+TGLF(SAT1)ES
model. In the framework of the transport, results show
a trend for which the importance of the stochasticity
with respect to the other electrostatic/electromagnetic
instabilities increases by increasing the (A, rp)/(l)|c) ra-
tio. This trend could be very useful in the control of
the role of stochasticity in tokamak scenarios. Replac-
ing SAT1 with the SAT2 saturation rule in TGLF ren-
ders the predictions less accurate. RLW+TGLF does
much less well than the RR+TGLF models, suggesting
that the Rechester-Rosenbluth approach more faith-
fully captures the stochastic transport.

More effort will be required to further improve and
more extensively validate reduced transport models for
electromagnetic turbulence, either within quasilinear
models like TGLF, or by complementing its approach
as proposed here for stochastic fields using RR-based
models.
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