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We develop an atomic cluster expansion (ACE) interatomic potential for lithium that accurately
models both the solid and liquid phase and the corresponding melting point. The predicted proper-
ties for both phases are in close agreement with density functional theory (DFT) and experimental
data from literature. The potential is able to capture the energy differences of the different com-
peting phases of the solid at 0K. It also predicts temperature dependent liquid density, viscosity,
and diffusion coefficient. The melting point is calculated using the two-phase coexistence method.
By using the ACE formalism, we also systematically investigate the contributions of different N -
body interactions and the number of radial parameters needed to separately represent both phases,
thereby shedding light on the complexity of the ACE potential needed to model solid and liquid
lithium efficiently.

I. INTRODUCTION

In order to design and build sustainable fusion reactors,
it is important to understand the behavior of lithium and
lithium-based compounds. Liquid lithium, eutectic liq-
uid lithium-lead alloy, solid lithium ceramics and lithium-
based salts have been touted as prime candidates for tri-
tium breeding [1, 2]. An additional advantage of liquid
Lithium is the possibility to use it as a coolant by ab-
sorbing the heat coming from the high neutron flux [3].
After operation, the breeder gets quenched down to cryo-
genic temperature, and liquid breeder materials solidify
in this process. Hence, it becomes crucial to understand
the temperature dependent behavior of both solid and
liquid Lithium phases under external conditions.

Several questions remain unanswered regarding the use
of lithium as a breeder, and the storage and diffusion of
hydrogen isotopes within the breeder. Experimental un-
derstanding is possible, albeit very expensive and diffi-
cult. Computational techniques such as atomistic sim-
ulations provide a safe and flexible way to analyze and
fundamentally understand such systems under different
conditions. The reliability of the results, however, is de-
pendent on the accuracy of the interatomic potential that
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drives the dynamics of the system. One also needs a
computationally affordable potential that can be scaled
to bigger system sizes.

Lithium has only been partially investigated in litera-
ture using atomistic simulation techniques, owing to the
lack of accurate interatomic potentials that span both
the solid and liquid phase. The phase diagram of solid
Li across the temperature-pressure range is quite com-
plex [4–6]. First principles density functional theory
(DFT) predicts several energetically competing phases
at 0K with the face-centered cubic (FCC) as the lowest-
energy structure [7], and body-centered cubic (bcc),
hexagonal close-packed (hcp) and rhombohedral h9R
structures only marginally higher in energy compared
to the fcc phase [8]. However, the bcc phase becomes
entropically stabilized already at 100K-200K, making it
the experimentally observed room-temperature phase [8–
10]. Accurately capturing these tiny energy differences
in an interatomic potential becomes very challenging.
Nichol et al. [11] developed an EAM potential to study
property trends in simple metals, including Li. In or-
der to also include angular terms in the formalism, Ko et
al. [12] and Qin et al. [13] developed second-nearest neigh-
bor modified embedded atom method (2NN-MEAM) po-
tentials for predicting phase transitions in solid Li. Be-
sides empirical potentials, Phuthi et al. [14], Zuo et
al. [15] and Wang et al. [16] trained machine-learning
based interatomic potentials (MLIPs) to study bulk and
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surface properties of solid Li, and high-pressure struc-
tures of solid Li, respectively. While all the above poten-
tials predict the overall behavior of solid Li quite accu-
rately, there are always certain properties that are more
challenging to capture. For instance, some of the poten-
tials fail to capture the bcc-fcc-9R energy difference, or
accurate elastic constants of bcc and fcc phases. Never-
theless, none of the potentials have explicitly been devel-
oped or trained to model liquid Li.

There has been even fewer attempts at developing
an interatomic potential to model the liquid phase of
lithium. In 2009, Belashchenko et al. [17] developed an
embedded atom method (EAM) interatomic potential by
fitting to experimental data above melting point. Cui et
al., [18] developed a more improved second nearest neigh-
bor modified embedded atom method (2NN-MEAM) po-
tential which outperformed the EAM in accuracy. Both
these potentials were unable to predict accurate values
of the temperature-dependent viscosity and self-diffusion
coefficient. More recently, Al-Awad et al., [19] devel-
oped an EAM potential that rectified these drawbacks.
By introducing a long range oscillatory form of the pair
potential, they were able to tune the potential to the ex-
perimental melting point and experimental densities, and
ultimately achieve other properties more accurately. The
applicability of the above potentials is however restricted
only to the liquid phase.

To capture both the solid and liquid phase accurately,
a more complex functional form of the local atomic envi-
ronment descriptor is required than what empirical po-
tentials such as the EAM and the 2NN-MEAM offer.
MLIPs provide us with this flexibility to model more
complex atomic systems since they are derived from com-
plex local atomic environment descriptors and hence a
larger parameter space. Several classes of MLIPs have
garnered attention over the last two decades, each with
their own sets of descriptors [20–30]. One such machine-
learning based model is the atomic cluster expansion
(ACE) interatomic potential [31]. The ACE potential
provides a complete and efficient representation of prop-
erties as a function of local atomic environment using
many-body functions. The basis set used to represent
atomic structures in the ACE formalism has been proven
to be complete in several works in literature [31–33].
Hence, in this work, we develop an ACE MLIP to model
the lithium system, by training the potential on ab initio
DFT data that includes both the solid and liquid phase.

The developed potential accurately captures the 0K
energy difference between different crystalline structures,
the temperature-dependent mechanical properties of the
solid bcc phase, and several properties of liquid lithium.
Additionally, it also predicts a melting point that is ex-
tremely close to the experimentally known value. The
formalism of the ACE potential consists of contributions
to the total energy arising from different N -body terms.
We analyze the effect of these contributions on solid and
liquid lithium properties by also training and comparing
a set of ACE potentials that include different many-body

terms. Additionally, we analyze the complexity of the
ACE potential that is needed to model both phases by
training potentials with different number of parameters.
The manuscript is arranged as follows. The computa-

tional details of building the DFT training set, training
the ACE potential, and performing molecular dynamics
(MD) simulations are provided in Section II. In Sec-
tion III, we show the results of the final fitted potential
on both phases and compare them to DFT and experi-
mental data. In Section IV, we discuss the contribution
of many-body terms, and perform a cost-accuracy anal-
ysis of a set of potentials trained with different number
of radial and angular parameters. The conclusions and
outlook of the manuscript are summarized in Section V.

II. COMPUTATIONAL METHODS

A. DFT training data

The ACE potential is trained on first principles cal-
culations based on density functional theory (DFT).
All DFT calculations are performed using the VASP
code [34] within the projected augmented-wave (PAW)
method [35, 36]. For the results shown in the main text,
the ACE is trained on DFT data that uses the gener-
alized gradient approximation (GGA) exchange correla-
tion (XC) functional by Perdew, Burke, and Ernzerhof
(PBE) [37]. The effect of the XC functional is discussed
in the Supplementary Information, where results using
the local density approximation (LDA) [38] XC func-
tional are compared to those using GGA. The DFT cal-
culations include one valence electron for Lithium. A
Methfessel-Paxton smearing method [39] with a smearing
width of 0.1 eV is utilized to approximate the occupation
function. The calculations for the training set are per-
formed on 128-atom supercells (modified accordingly for
vacancy, interstitial and non-bcc structures) with an en-
ergy cut-off of 450 eV and a 2×2×2 k -point grid. While
comparing the ACE predictions of properties to DFT,
more strict parameters (550 eV energy cutoff and 4×4×4
k -point grid) are employed.
The training set used to fit the ACE potential con-

tains both solid and liquid configurations obtained from
0K static DFT and high-temperature ab initio molecu-
lar dynamics (AIMD) simulations. To sample the solid
phase, we explicitly include 100 0K structures within a
certain volume range, for each of the four energetically
competing phases to the training set. We perform AIMD
simulations of the bcc, fcc and hcp phases at 400K for
a set of four volumes each. Additionally, we also choose
bcc structures with different number of vacancies (one
to four), with a < 111 > self-interstitial (which is the
most stable self-interstitial atom (SIA) defective struc-
ture), and with a [100] and a [110] free surface as initial
structures and perform AIMD runs at 400K. To sam-
ple the liquid phase, AIMD simulations are performed
at five different temperatures and five volumes at each
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temperature. All AIMD simulations for both phases are
run in the NV T ensemble for 1000 steps with a timestep
0.5 fs. The complete set of calculations is summarized in
Table I. In order to obtain uncorrelated snapshots, we
pick one in every ten AIMD configurations for training
the potential. Overall, the training dataset contains 2500
liquid snapshots and 4200 solid snapshots.

B. Atomic Cluster Expansion interatomic potential
- formalism

The energy of a system with N atoms can be repre-
sented as a sum of individual atomic energies, given by

Etot =

N∑
i=1

Ei. (1)

Each atomic energy is restricted to within a certain cut-
off. This locality of interactions provides a linear scaling
with system size. The atomic energies Ei can be obtained

from a combination of different atomic properties φ
(p)
i ,

which could, in principle, represent bonding, repulsion
etc. Hence, Ei can generically be expressed as a non-
linear function given as

Ei = F(φ
(1)
i , φ

(2)
i , . . . , φ

(p)
i ). (2)

In the linear ACE formalism, The atomic energy Ei is
directly expressed as

Ei = φi. (3)

However, for metallic systems, a faster convergence of the
atomic energy with many-body interactions can possibly
be achieved by employing a non-linear form representa-
tive of the Finnis-Sinclair potential[40], as given by

Ei = φ
(1)
i +

√
φ
(2)
i , (4)

where φ
(1)
i and φ

(2)
i are representative of the pairwise

repulsion and the embedding function. Each φ
(p)
i can

be expanded within the ACE formalism using a set of
atomic descriptors given by

φ
(p)
i =

∑
υ

c(p)υ Biυ, (5)

where c
(p)
υ are the expansion coefficients and Biυ the ba-

sis functions with multi-indices υ.
The building blocks for the ACE atomic descriptors

are a set of orthogonal and complete single-bond basis
functions ϕυ(r), expressed as

ϕυ(r) = Rnl(rji)Ylm(r̂ji), (6)

where Rnl are radial functions that depend on the dis-
tance from atom i to atom j, Ylm are spherical harmonic

functions depending on the direction r̂, and υ = (nlm) is
a cumulative index. The complexity of the descriptor can
be altered by choosing different values of n and l prior
to training the potential. Choosing larger values provides
more flexibility tailored towards a more widespread train-
ing dataset, but significantly increases the computational
cost of using the potential to do MD simulations. The
atomic base A, obtained by projecting the local basis
functions on the atomic density, is expressed as

Aiυ =
∑
j

ϕυ(rji), (7)

following which basis functionsA of different body-orders
ν are constructed as

Aiυ =

ν∏
t=1

Aiυt . (8)

In Equation 3, with every additional product, an addi-
tional term in the N -body decomposition of the atomic
property can be parametrized. More specifically, only
up to two-body interactions can be parametrized using
t = 1. To account for three-body interactions, one needs
to consider basis functions up to t = 2, and up to t = 3 for
four-body interactions, and so on. The basis functions in
Equation 3 need to fulfill symmetries of translation, ro-
tation, inversion and permutation. The above equation
gets reformulated as

Biυ =
∑
υ′

Cυυ′Aiυ′ , (9)

where the generalized Clebsch-Gordan coefficients C re-
move functions that are not rotationally invariant, lead-
ing to the final set of basis functions Biυ mentioned pre-
viously in Equation 5 in the expansion of any atomic

property φ
(p)
i .

In the Discussion section, we study the effect of differ-
ent many-body interactions (different values of t in Eq. 8)
on the ACE performance for predicting solid and liquid
lithium. We also discuss the effect of the index n (in
Eq. 6) on cost and accuracy of the results, and compare
the performance of a linear ACE (Eq. 3) and a Finnis-
Sinclair-type of the energy expansion (Eq. 4).

C. Atomic Cluster Expansion - parametrization

The parameters of the ACE potential are fitted us-
ing the Pacemaker package [41–43]. A cut-off of 5.5 Åis
chosen for all interactions, based on the range of DFT
interactions. From the DFT training data, 10% of the
configurations are chosen for validation. For the basis
functions, up to 3 body orders in Eq. 8 (4-body interac-
tion terms) are considered. The maximum value of the
indices n and l for each order are summarized in Table II.
Spherical Bessel-type functions are chosen to expand the
radial part of the ACE formalism (Rnl(rji) in Eq. 6),
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Solid configurations Temperature (K) Volume per ion (Å3)

BCC 0 16.54, 16.60, . . ., 23.53 (100 volumes)

FCC (108 atoms) 0 17.61, 17.66, . . ., 23.24 (100 volumes)

h9R (108 atoms) 0 14.80, 14.90, . . ., 27.02 (100 volumes)

HCP (96 atoms) 0 14.66, 14.75, . . ., 26.76 (100 volumes)

BCC bulk 400 18.01, 19.16, 20.35, 21.60, 22.90

BCC with di-vacancy 400 18.01, 19.16, 20.35, 21.60, 22.90

BCC with tri-vacancy 400 18.01, 19.16, 20.35, 21.60, 22.90

BCC with quad-vacancy 400 18.01, 19.16, 20.35, 21.60, 22.90

BCC with < 111 > SIA 400 16.95, 18.62, 20.40, 22.29

BCC with [100] surface 400 3 volumes (a=2.82 Å, 2.97 Å, 3.12 Å)

BCC with [110] surface (144 atoms) 400 3 volumes (a=2.82 Å, 2.97 Å, 3.12 Å)

FCC bulk (108 atoms) 400 16.88, 18.55, 20.33, 22.21

HCP bulk (144 atoms) 400 16.70, 18.35, 20.10, 21.97

Temperature (K) Volume per ion (Å3)

Liquid configurations

600 19.62, 20.90, 22.24, 23.62, 25.07

800 20.90, 22.24, 23.62, 25.07, 26.57

1000 20.90, 22.24, 23.62, 25.07, 26.57

1200 22.24, 23.62, 25.07, 26.57, 28.14

1400 22.24, 23.62, 25.07, 26.57, 28.14

TABLE I. Summary of the VASP calculations performed for the solid and liquid Li phases to generate configurations for the
training dataset. The first four rows are 0K DFT calculations. The remaining rows are AIMD runs which are performed for
1000 steps in an NV T ensemble at the corresponding volume and temperature. One in every 10 configurations from the AIMD
snapshots are chosen for the final training set. The supercell size is 128 atoms unless otherwise mentioned.

which lead to 360 expansion coefficients. With the above
chosen values for n, l and k, we end up with 403 basis

functions for each cluster expansion φ
(p)
i in Eq. 5. In

total, we train 1166 parameters (360 coefficients for the

radial functions, and 403 coefficients for φ
(1)
i and φ

(2)
i

each). A single-shot fitting to the training data is per-
formed using the BFGS algorithm to obtain the param-
eters.

In addition, we also train a set of ACE potentials with
different cutoffs, body order ν and nmax values to study
their impact on the solid and liquid properties. Such an
analysis is performed to understand the computational
cost that comes with choosing a stricter set of initial con-
ditions for training the ACE potential. The details are
specified in the Discussion section.

D. Molecular dynamics simulations

All MD calculations in this work are performed us-
ing the LAMMPS code [44] with the Performant im-
plementation of the atomic cluster expansion (PACE)
library [41–43]. The simulations are done on single-
crystal bulk supercells, periodic in all directions, unless
otherwise specified. Time integration is performed us-

Fitting input Value

Cut-off 6 Å

Radial basis function Spherical Bessel

ν-order 1/2/3

nmax 15/6/4

lmax 0/3/3

Number of parameters (radial part) 360

Number of parameters c
(1)
υ 403

Number of parameters c
(2)
υ 403

Total number of parameters 1166

TABLE II. A summary of details regarding the ACE
parametrization used for the results shown in the main text.

ing the velocity-Verlet algorithm [45] with a time-step of
0.5 fs. Temperature and pressure control is done using a
Nose-Hoover thermostat [46], and using the Parrinello-
Rahman method [47], respectively. Structures are visu-
alized using the OVITO software package [48].
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Energy (meV/atom) Force (meV/Å)

Training Validation Training Validation

RMSE 1.85 1.71 12.4 12.33

MAE 0.77 0.78 5.19 5.37

TABLE III. Summary of the fitting results. The chosen cutoff
is 5.5 Å, with up to 4-body interactions and nmax = 15 as the
initial specifications of the ACE potential.

III. RESULTS

A. Fitting results

The root mean square errors (RMSE) and the mean
absolute errors (MAE) of the fitted ACE on both the
training set and the validation set are provided in Ta-
ble III. The ACE predicts extremely accurate values of
the energies and forces of configurations (< 2 meV/atom
and < 13 meV/Åin error, respectively) from both the
training and validation set. We further use the ACE to
predict 0K and high-temperature properties of solid and
liquid lithium.

B. Solid lithium

1. 0K phases

The 0K properties predicted by the ACE potential are
compared to corresponding DFT or experimental data,
and results using previously existing 2NN-MEAM inter-
atomic potentials for solid lithium from literature. In
Table IV, we provide an extensive set of such properties
for the fcc, bcc, hcp and h9R phases. Here, we have also
compared the DFT results obtained in this work which
are calculated as a part of the training set generation.
The properties of the h9R phase were not calculated in
the literature of the previously existing potentials and
are hence left blank.

From the DFT results in Table IV, it is seen that the
fcc phase is the lowest-energy ground state structure at
0K, which has been previously established in literature.
The bcc, hcp and h9R are meta-stable phases, but en-
ergetically very close to the fcc phase as noticeable from
the energy differences. The ACE predicts the fcc phase
to have a lower energy than the bcc and hcp phases.
The energy difference between the bcc and fcc phase is
marginally higher (by 0.0015 eV/atom). However, the
ACE predicts the h9R phase to be lower in energy by
0.0001 eV/atom. In addition to the energy differences,
the elastic constants predicted by the ACE potential are
also in good agreement with DFT for all phases, each of
them satisfying the Born criteria [49]. Overall, the ACE

property predictions of the different phases are very satis-
fying, considering the extremely small energy differences
between the different phases. Nonetheless, the bcc phase
is known to become entropically stabilized above ≈100K.
The 0K energy-volume curve predicted by the ACE

in comparison to DFT for the four phases are shown
in Fig. 1. Here, the energies are with respect to the
equilibrium fcc energy. The hcp and h9R energies are
almost exactly reproduced, while the ACE predicts a
very marginally higher energy and softer bcc phase by
< 0.0015 eV/atom. This difference might arise from the
fact that there are several high-temperature bcc config-
urations in the training set, driving the ACE towards
predicting a slightly softer bcc phase at 0K.
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FIG. 1. Energy-volume curves of the four phases with respect
to the equilibrium 0K FCC energy predicted by the ACE
potential compared to DFT.

2. Vacancies and Self-interstitial defects

In addition to the 0K energies and phase stabilities dis-
cussed above, we also validate the 0K defect and surface
energies predicted by the ACE. We restrict these com-
parisons only to the experimentally-observed bcc phase.
Table V shows the formation energies of a mono-, di-
and tri-vacancy, six self-interstitial defects, and three
different surface energies. The ACE predicts these en-
ergies in very good agreement with DFT. The forma-
tion of vacancy clusters become increasingly higher in
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Structure Property DFT (this work) DFT/Expt. (Literature) ACE (this work) MEAM (Literature) [12, 13]

FCC

a 4.331 4.324,4.33 4.328 4.347, 4.298

Volume 20.3097 20.211,20.309 20.2676 20.536, 19.849

E coh -1.61 -1.611 -1.617 -1.63, -1.64

C11 16.4 16.2 17.3 16.02, 13.45

C12 12.5 12.5 12.9 12.13, 15.09

C44 10.1 10.4 11.9 10.92, 10.61

BCC

a 3.439 3.436, 3.44 3.438 3.451, 3.419

Volume 20.336 20.283,20.354 20.318 20.55, 19.983

E − Efcc 0.0016 0.0015 0.003 0.00054, 0.0015

C11 14.6 15.0 15.1 16.7, 16.2

C12 13.7 13.2 13.1 12.6, 13.5

C44 11.5 11.1 10.7 11.2, 8.6

HCP

a 3.061 3.058 3.06 3.075, 3.033

c 5.009 5.013 5.007 5.01, 5.015

Volume 20.3225 20.298 20.301 20.512, 19.976

E − Efcc 0.00019 0.0001 0.0001 0.0005, 0.00074

C11 26.6 22 24.8 21.1, 14.1

C12 10.9 11 10.6 12.8, 22.2

C13 5.2 8 5.8 6.3, 6.4

C33 32.1 26 30.9 27.6

C44 7.9 6 7.1 4.4, 2.8

C66 4.9 6 5.2

h9R

a 3.06 3.08 3.06

c 22.53 22.37 22.26

Volume 20.313 20.42 20.057

E − Efcc 0.00014 0.000 -0.0001

C11 19.1 19 20.2

C12 13.6 14 14.8

C13 7.5 8 6.9

C33 27.1 27 24.8

C44 6.3 5 7.7

C66 1.8 2 2.2

C14 1.1 1 1.4

TABLE IV. Properties of Lithium at 0K in the different energetically competing phases. Current DFT results and ACE
predictions are compared to results from literature. The table compares lattice constants a and c (in Å), equilibrium volume
(in Å3/atom), the cohesive energy Ecoh and the energy difference with the FCC phase E −Efcc (in eV/atom), and the elastic
constants Cij (in GPa).

energy as observed from the first row. The < 111 >
self-interstitial is the lowest-energy interstitial defect in
bcc Li. DFT predicts the {100} and {110} surfaces as
the lowest-energy surfaces. The ACE also predicts both
these surfaces as the lowest-energy although the {110} is
lower by 0.001 eV/atom.

3. Temperature-dependent properties

Next, we also use the ACE to calculate temperature-
dependent properties of solid Li. Fig. 2 shows the change
in lattice constant with temperature predicted by the
ACE, in comparison to experiments from literature. The
slope of the curve resembles experimental data, although
the absolute values are slightly smaller (by around 0.02-
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Energy
(eV/atom)

Type
DFT

(this work)
ACE

(this work)

Vacancy
formation

Mono-vac 0.457 0.439

Di-vac 0.952 0.922

Tri-vac 1.397 1.32

Self-
interstitial
formation

< 111 > 0.527 0.458

< 110 > 0.617 0.581

< 100 > 0.757 0.698

octahedral 0.81 0.778

tetrahedral 0.834 0.838

Surface

{110} 0.029 0.023

{100} 0.027 0.024

{111} 0.041 0.044

TABLE V. Comparison of certain vacancy formation, self-
interstitial formation and surface energies of bcc Lithium pre-
dicted by the ACE potential to DFT.

0.04Å). The ACE is trained on energies and forces cal-
culated from DFT using the GGA exchange-correlation
functional. The GGA functional predicts an over-binding
solid, which has been observed in literature for other sys-
tems. As a consequence, the ACE also predicts and over-
binding solid Li, which leads to slightly smaller values of
lattice constant compared to experimentally known val-
ues.
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FIG. 2. Lattice constant as a function of temperature for
the BCC phase predicted by the ACE potential compared to
experimental values.

In Fig. 3, we plot the change in elastic constants (C11,
C12 and C14) of the bcc phase predicted by the ACE

compared to experimental data from literature. The
slope of the curves are consistent, and the absolute val-
ues are accurately predicted by the ACE. All three elastic
constants decrease by 3-4 GPa from 0K to 400K, making
the bcc solid softer with temperature.

C. Liquid lithium

1. Melting point prediction

The ACE potential, which is trained on solid and liq-
uid configurations, is also used to predict the melting
point of Li. In this work, we use the solid-liquid co-
existence method to compute the melting point. The
MD calculation is performed on a 16,384-atom simula-
tion cell. In the first step, we start with pure bcc Li,
and thermally equilibrate the system at the speculated
melting point (Tguess) (conventionally, we can use the ex-
perimental melting point as the initial guess). Next the
bottom half of the simulation cell is kept frozen, and the
top half is heated from Tguess to 2 × Tguess in an NPT
ensemble, with the cell allowed to relax perpendicular to
the plane of separation of the frozen and unfrozen atoms.
The above step melts the top half of the cell. We proceed
to cool the top half, again in a similar NPT ensemble,
from 2 × Tguess back to Tguess, which still keeps the top
half of the cell melted. As the final step, we release all
atoms by relaxing the entire system in an NPH ensem-
ble. If the initial guess is close to the predicted melt-
ing point, then the system reaches a temperature while
still maintaining an approximately 50-50 coexisting solid-
liquid phase, and that temperature is the melting point
of the system as predicted by the ACE potential. If the
initial guess is too high, the entire system melts in the
final step, and vice versa. The melting point can be cal-
culated as a function of pressure by following the above
procedure, but maintaining the corresponding pressure
in the NPT and NPH ensembles.

Figure 4 shows the estimated melting point as a func-
tion of pressure predicted by the ACE potential in com-
parison to an experimental data set from literature. The
zero-pressure melting point is predicted as 451K, very
close to the experimental value of 454K. The ACE po-
tential also replicates increase and eventual tapering of
the melting point as a function of pressure. The esti-
mated values are higher by 20K around 8GPa. The bcc
phase transforms into the fcc phase around 8-10GPa,
further complicating the solid-liquid phase diagram at
those pressures, which might be a source of the error in
the ACE prediction. Further investigation and an im-
provement of the training set to include high-pressure
structures are needed to understand this discrepancy in
more detail.
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FIG. 3. Elastic constants as a function of temperature for the BCC phase predicted by the ACE potential compared to
experimental values.
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FIG. 4. Change in the predicted melting point by ACE as a
function of pressure compared to experimental values.

2. Liquid properties

The results shown for liquid Li have been averaged over
MD simulations performed on five different initial liquid
structures with different initial random seeds. Figure 5
shows the radial distribution function (RDF) of liquid
Li at 868K predicted very accurately by the ACE po-
tential in comparison to an experimental data set from
literature. As expected, the RDF of the liquid phase
is smeared out with two gradual peaks close to 3 Åand
5.8 Å.

Figure 6 shows the shear viscosity of liquid Li calcu-
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FIG. 5. Radial distribution of liquid Li at 868K compared to
experimental value from literature.

lated at different temperatures using the ACE, compared
to experimental values. The shear viscosity is calculated
using the Green-Kubo formalism, given as

η =
V

kBT

∞∫
0

dt ⟨ταβ(t)ταβ(0)⟩t0 (10)

where V is the system volume, kB is the Boltzmann con-
stant, T is the temperature, ταβ are off-diagonal compo-
nents of pressure, t is the time, and ⟨...⟩t0 is the average
over time origins. Time window averages are taken every
1 ps, by considering input values every 2.5 fs and accu-
mulating 400 correlation time windows. The predictions
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of the previously developed EAM for liquid Li [19] are
also plotted in Fig. 6 for comparison. The ACE predicts
a considerable drop in the shear viscosity of liquid Li
with temperature, which is also observed experimentally.
The absolute values of the viscosity from the ACE po-
tential are closer to experiments than the predictions of
the EAM potential.
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FIG. 6. Shear viscosity of liquid Li at volumes corresponding
to that temperature.

The next liquid Li property that we predict and com-
pare is the self-diffusion coefficient D, which is calculated
from the mean-squared displacement (MSD), as given as

D =
1

6t

〈
(r(t)− r(0))

2
〉
, (11)

where r(t) is the position of an atom at time t. The value
of D is obtained from the linear part of the MSD-time
plot. The self-diffusion coefficients calculated at differ-
ent temperatures using the ACE potential are plotted in
Fig. 7. The values and the trend of the self-diffusion co-
efficient obtained from the ACE potential fall close to ex-
perimental values. For comparison, the EAM-predicted
values are also plotted in the same figure.

Lastly, we also plot the liquid densities as a func-
tion of temperature in Fig. 8 as predicted by the ACE,
in comparison to experiments and EAM. The densities
are marginally higher than the experimental values by
around 5-15 kg/m3. This can again be attributed to the
effect of the over-binding GGA exchange correlation to
which the ACE is trained. On the other hand, the EAM
was trained to experimental values of the density, which
is why the EAM prediction falls exactly on top of the
experimental curve. Nonetheless, this does not get trans-
lated to other liquid properties that were discussed ear-
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FIG. 7. Self diffusion coefficient of liquid Li at volumes cor-
responding to that temperature.

lier, where the predictions of the ACE were closer to
experimental values. Overall, while the EAM shows a
decent performance of predicting liquid properties, the
ACE performs even better, while also simultaneously pre-
dicting solid Li and the melting points accurately.
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FIG. 8. Atmospheric density of liquid Li.
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IV. DISCUSSION

In the previous section, we developed an ACE inter-
atomic potential to predict both solid and liquid lithium
properties. The potential included up to 4-body inter-
actions with nmax = 15 in the expansion of the ra-
dial basis, and we imposed a 5.5 Åcut-off on the inter-
atomic interactions in the training set. The performance
of the potential was exceptional in predicting both the
solid and liquid phase properties and the melting point
in comparison to ab initio values. Owing to the large pa-
rameter space, the above-developed potential is roughly
two orders slower than classical interatomic potentials.
Nonetheless, one of the advantages of the ACE formalism
is to systematically investigate the effect of higher-body
interactions in a model system—in our case, lithium.
Since the number of basis functions, and subsequently
the cost of performing MD simulations become higher
with the inclusion of higher body interactions, it is cru-
cial to find an optimally performing ACE potential for
lithium in terms of both computational cost and accu-
racy.
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FIG. 9. Root mean squared errors (RMSE) in the energy
and atomic forces as a function of the N -body interactions
considered in the ACE model. Linear and Finnis-Sinclair type
of energy expansion of the ACE formalism are compared.

Figure 9 shows the the RMSE in energies and forces
during training of various lithium ACE potentials that
included increasing N -body interactions in the ACE ba-
sis (Equation 8). The change in the RMSE is shown
for ACE potentials of both the linear-type (Equation 3)
and the non-linear Finnis-Sinclair-type (Equation 4) for-
malism. It is observed that the FS-type ACE potential
(shown as solid lines in Fig. 9) converges faster in terms
of the RMSE, already by including only up to 3-body
interactions. This implies that almost all interactions
in lithium can be represented by considering only the
2−body and 3-body interactions to the atomic energy

while expanding the energy as a sum of a linear term that
signifies pairwise forces, and a square root term that sig-
nifies the embedding function. However, if the formalism
does not include an explicit embedding-type term, one
also needs to consider 4-body interactions before reach-
ing a converged error in the trained energies and forces.
The faster convergence of the FS-type formalism can also
be explained by its larger parameter space in comparison
to the linear-type for the same N -body contributions and
training data.
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FIG. 10. Root mean squared errors (RMSE) in the energy
and forces as a function of nmax that is used in the expansion
of the radial basis for the 3-body and 4-body interaction ACE
models.

In Fig. 10, we show the RMSE in energies and forces
of various ACE potentials as a function of nmax in the
expansion of the radial function (Equation 6). Apart
from nmax which corresponds to the value of n for the
two-body interaction term, the other values of n and l
are the same as mentioned in Table 2. The RMSEs are
shown only for the FS-type formalism, and while includ-
ing up to 3-body and 4-body interaction terms in the
expansion. The RMSE values converge after a value of
nmax = 15. However, the errors are already very small
while having just 6 terms in the expansion of the radial
function. While the gain in accuracy is not very signifi-
cant while going from n = 6 to n = 15, there is a consid-
erable rise in the computational cost (check Table 6) as
will be discussed later.
The other parameter in the ACE formalism that af-

fects the performance and computational cost is the cut-
off chosen for the interatomic interactions. While a larger
cutoff implies a greater accuracy in the atomic energy in
the training data, it also implies a larger number energy
and force calculations per atom per MD step with the
trained potential which increases the computational cost.
Figure 11 shows the RMSE in energies and forces of ACE
potentials fitted with different cutoffs. In the figure, we
only show the case for FS-type ACE potentials including
up to 4-body interactions with nmax = 15. The errors are
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FIG. 11. Root mean squared errors (RMSE) in the energy
and forces as a function of the radial cutoff for FS-type for-
malism ACE potentials with nmax = 15 and up to 4-body
interactions.

extremely small (< 2 meV in energy and < 13 meV Åin
atomic force) while choosing a 5.5 Åcutoff, and become
even smaller and converge to < 0.1 meV in energy at
7 Åalbeit at a higher computational cost.

The above analysis reveals that the RMSE in energy
and atomic forces of a trained ACE potential converge
to within 2meV/atom and 15meV/Åfrom ab initio val-
ues as long as we choose a non-linear formalism of the
ACE potential to include up to 4-body interactions, with
an nmax value of 15 to expand the radial basis, and a
cutoff of 5.5 Å. In fact, to obtain an ACE potential to
predict properties of only the liquid phase by training on
ab initio MD data of liquid Li (last row in Table 1), ex-
panding the energy to include as much as up to 3-body
interactions is sufficient to obtain converged properties
of the liquid phase. This has been further discussed in
the Supplementary Information.

Including higher body terms is crucial primarily in ob-
taining the correct 0K energy differences of the different
competing solid phases and the elastic constants of the
bcc and the fcc solid. This is evident from Table VI
which compares these properties for ACE potentials that
were trained with different sets of input conditions to
the same DFT training data. Including 4-body interac-
tion terms and choosing a larger nmax brings the energy
difference between the bcc, hcp and the h9r phases and
the fcc phase much more closer to DFT values. A stricter
set of parameters is also necessary for obtaining accurate
values of the 0K elastic constants, and especially the cor-
rect order of elastic constants (with C11 > C12) for the
bcc phase that satisfies the Born criterion. A significant
gain in accuracy is not observed by increasing the cutoff
to 7 Å. Similarly, adding higher body-order interaction
terms above 4 does not further improve the predictions

of the ACE potential.
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0

50

100

150

200

250

300

U
sa

ge
(s

te
p

s/
se

c)

FIG. 12. Time required to fit and the computational cost of
doing MD using the ACE as a function of N -body interactions
used in the ACE model. The fitting time is measured after
1000 iterations on a single node with 48 CPUs. The usage
time is measured as the number of MD steps per second on a
16,384-atom system on a single node with 48 CPUs.

Although considering a higher set of input parameters
(body order, nmax and cutoff) brings the ACE predic-
tions much closer to DFT, this also significantly increases
the computational cost, both for fitting, and more im-
portantly for running MD simulations with the fitted po-
tential. The increase in computational cost for different
initial conditions is compared in the last two columns in
Table 1. The values are also plotted in Fig. 12 for two
specific cases that compares the fitting time and the util-
ity (number of MD steps that can be run per second) as
a function of the body order for ACE potentials trained
with 5.5 Åand 7 Åcutoff. Both the fitting time and the
usage time are a function of the total number of param-
eters in the ACE potential. The fitting time steadily
increases with increase in the body order. By consid-
ering an expansion with more than 3-body interaction
terms, there is a steady increase in the computational
cost of the ACE potential. The ACE potentials trained
with a 7 Åcutoff are roughly twice more expensive than
the one with 5 Å. Overall, by performing such an analy-
sis, we are able to make an informed decision about the
level of the ACE potential that is needed to efficiently
model a given system. It is left up to discretion of the
MD user to choose a corresponding ACE potential based
on the accuracy and the computational cost that one can
afford. For the case of Lithium, an ACE potential that
predicts both the solid, liquid phases, and melting prop-
erties accurately requires initial training specifications as
mentioned in Table 2, which has been shown to perform
exceptionally in the Results section of this manuscript.
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ACE parameters ∆Ebcc−fcc ∆Ehcp−fcc ∆Eh9R−fcc

Elastic constants BCC Elastic constants FCC Time to fit Usage

C11 C12 C44 C11 C12 C44 (sec) (steps/sec)

2-body, 5.5 Å, n=15 0.007 0.0064 0.0015 11.1 12.8 9.9 19.4 13.3 12.1 4180 247

3-body, 5.5 Å, n=15 0.0045 0.0032 0.0029 11.9 12.1 10.9 18.8 13.5 10.9 6558 58

4-body, 5.5 Å, n=6 0.0053 0.0029 0.0022 12.0 12.2 9.7 17.9 11.1 10.1 5099 81

4-body, 5.5 Å, n=10 0.005 0.0033 0.002 12.8 13.1 11.0 17.1 13.4 12.2 6180 69

4-body, 5.5 Å, n=15 0.0036 0.0018 0.001 13.7 13.4 10.0 16.3 14.9 10.9 7019 33

4-body, 7 Å, n=15 0.0026 0.00013 0.0009 15.1 13.9 10.9 16.9 13.1 10.2 8800 21

5-body, 5.5 Å, n=15 0.0034 0.0018 0.0009 13.8 13.1 10.2 16.4 14.7 10.8 7937 27

6-body, 5.5 Å, n=15 0.0035 0.0018 0.0008 13.9 13.2 10.3 16.3 14.5 10.8 10898 22

DFT 0.0016 0.00019 0.00014 14.6 13.7 11.5 16.4 12.5 10.1

TABLE VI. Comparison of the energy differences of different competing phases in solid Li (in eV) and the 0K BCC and FCC
elastic constants (in GPa) as predicted by ACE potentials fitted with different initial conditions to DFT (last line). In the last
two columns, the fitting time and usage time of the potentials are compared. The time to fit is measured after 1000 iterations
on a single node with 48 CPUs. The usage time is measured as the number of LAMMPS MD steps per second on a 16,384
atom system on a single node with 48 CPUS.

V. CONCLUSIONS

In this work, we have developed an atomic cluster ex-
pansion interatomic potential for lithium. The potential
predicts accurate properties of both the solid and liquid
phase, and an accurate melting point in comparison to
ab initio data and experiments, respectively. We have
performed an extensive cost-accuracy analysis by train-
ing several potentials using the ACE formalism. Most of
the interactions in lithium can be captured by expanding
the energy using 3-body terms. Hence, a relatively com-
putationally cheaper 3-body expanded ACE potential is
sufficient to model liquid lithium. However, including
4-body interactions in the ACE expansion is absolutely

crucial in capturing the correct 0K energies and elastic
constants of different competing phases in solid Li.
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