

UKAEA-CCFE-PR(26)03

Zhiwei Hu, Qigui Yang, Jintong Wu, Duc Nguyen-Manh, M. Yu. Lavrentiev, Pierre Desgardin, Jérôme Joseph, Marie-France Barthe

Quantitative Assessment of Vacancy Defect Populations in Self-Ion Irradiated Molybdenum

Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire, OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are available to view online free at scientific-publications.ukaea.uk/

Quantitative Assessment of Vacancy Defect Populations in Self- Ion Irradiated Molybdenum

Zhiwei Hu, Qigui Yang, Jintong Wu, Duc Nguyen-Manh, M. Yu.
Lavrentiev, Pierre Desgardin, Jérôme Joseph, Marie-France
Barthe

1 Quantitative Assessment of Vacancy Defect 2 Populations in Self-Ion Irradiated Molybdenum

3 *Zhiwei Hu^{a, e}, Qigui Yang^c, Jintong Wu^d, Duc Nguyen-Manh^b, M. Yu. Lavrentiev^b, Pierre
4 Desgardin^a, Jérôme Joseph^a, Marie-France Barthe^{a, *}*

5 ^a CEMHTI, CNRS, UPR3079, University of Orléans, F-45071 Orléans, France

6 ^b UK Atomic Energy Authority, CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United
7 Kingdom

8 ^c Institute of High Energy Physics, CAS, 100049 Beijing, China

9 ^d Department of Physics, Post-office box 43, FIN-00014 University of Helsinki, Finland

10 ^e Institute of Radiation Physics, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany

11 Abstract

12 Microstructural evolution–driven degradation governs material properties and is closely
13 linked with defect behavior. Quantitatively characterizing defects and their evolution is
14 essential for elucidating the underlying degradation mechanisms. To this end, the defects were
15 introduced at room temperature using self-ion irradiation for damage levels ranging from 0.01
16 to 2 displacements-per-atom. The depth distribution of vacancy defects were characterized by
17 means of a variable-energy positron beam and compared with simulation results. Quantitative
18 analyses of vacancy in the most damaged regions were carried out by combining positron
19 annihilation spectroscopy with a simulated annealing algorithm parametrized with a positron
20 trapping model and first-principles calculations. The defect size distribution -from single
21 vacancy to vacancy clusters- was assessed at each damage levels, providing insights into the
22 quantification of early-stage vacancy defects. Our results revealed that at 0.01 dpa, nearly all
23 vacacncy defect exists as isolated single vacancies. The proportion of isolate single vacancies
24 gradually drops to ~20% with increasing damage level, reaching a steady state (> 0.5 dpa).
25 Meanwhile, clusters consisting of four or more single vacancies account for ~12 % of the total
26 vacancy defects. when the damage level exceeds 0.1 dpa, the formation of large clusters
27 containing more than 15 vacancies, although limited to less than 1% in population, cannot be

28 excluded. Furthermore, the estimated vacancy accumulation trend is consistent with available
29 computational results, and unveils that the vacancy clustering is more pronounced in
30 molybdenum than in tungsten at the early stage evolution.

31 **Keywords:** Vacancy quantification, Defect distribution, Positron annihilation spectroscopy,
32 First-principles calculation, Fusion materials,

33 1. Introduction

34 Future fusion power plants require high-performance materials. Tungsten (W) and
35 Molybdenum (Mo) are the most auspicious candidates for plasma-facing components (PFC)
36 [1,2] thanks to their high melting points, thermal conductivity, and low sputtering yield [3].
37 Compared to W, Mo offers advantages in certain properties and has been chosen to line the
38 inner wall of the Experimental Advanced Superconducting Tokamak (EAST) [4]. For example,
39 radiation-induced activation is lower in Mo than in W [5], and Mo is simpler to manufacture
40 into lighter components than W components. In the operation of the future reactor, monitoring
41 the stability of the plasma is essential. To achieve this, the plasma mirror (PM), as a part of the
42 optical diagnostics system, is used to reflect the light from the plasmas [4]. Promising results
43 [5–7] have been revealed using Mo as PM. Moreover, in tokamaks, inner walls and structural
44 materials are subjected to hydrogen (H) and helium (He) plasma and neutron irradiation, which
45 degrade their properties. Recent research conducted by Lavrentiev et al. [8] demonstrates that
46 the reflectivity of Mo remains stable up to fluences of 10^{18} m^{-2} under self-ion irradiation. In this
47 study, the irradiated Mo samples were characterized by Thermal desorption spectrometry after
48 exposure to deuterium plasma. The deuterium inventory increased with the damage level until
49 reaching a saturation, similar to findings in previous work on W [9]. According to modeling,
50 this saturation occurs when the damage dose reaches 0.5 dpa [10]. This saturation reveals that
51 a steady-state microstructure forms once the damage reaches a certain threshold level [9,11].
52 This is probably due to competition between Frenkel-Pairs (FPs) recombination, cascades

53 overlapping [12], and agglomeration of self-interstitial loops, accompanied by the shrinkage of
54 the vacancy clusters [13]. The resulting steady-state microstructure consists of vacancy defects,
55 including single vacancy (V_1) and vacancy clusters (V_n), dispersed within a network of
56 dislocations formed by self-interstitial atoms (SIAs). Both interstitial and vacancy defects
57 capture H and He isotopes, particularly the vacancy defects [14,15]. Furthermore, light-element
58 impurities (LEs) also influence defect evolution [16–19] and serve as potential traps for H [20].
59 The interaction of H and He with the defects has been observed to cause blistering [21–23],
60 bubbles [24,25], and fuzzy surfaces [17]. The trapping properties of H and He in vacancy
61 defects are a major parameter in the degradation of material properties [26–30], and the kinetic
62 appearance of bubbles and blisters depends on the nature of the vacancy [15,20,31,32].
63 Therefore, quantifying defects is a crucial step in predicting tritium retention, swelling and
64 material evolution in tokamaks.

65 Positron annihilation spectroscopy (PAS) is renowned for nondestructive technique to
66 characterize atomic-scale vacancy defects, thanks to its unique sensitivity. For instance,
67 Lhuillier et al. [33,34] and Debelle et al. [35] have identified the signal of the V_1 in W and
68 monitored its evolution with a post-irradiation isochronal annealing experiment. They have
69 observed the activation temperature for V_1 between 523 and 573 K [35]. Positron annihilation
70 is primarily implemented in two types of spectroscopy: Doppler broadening spectrometry and
71 positron annihilation lifetime spectroscopy (PALS), which allow the measurement of two
72 annihilation characteristics: the momentum distribution of annihilated positron-electron (e^+e^-)
73 pairs and lifetime, respectively [36]. Theoretically, each type of vacancy defect exhibits specific
74 annihilation characteristics, difficult to determine all of them through experimental methods.
75 For this issue, first-principles calculations can provide helpful information [37,38]. Recently,
76 Yang et al. [39] have shown the accurate calculation of the Doppler Broadening Spectrum (DBS)
77 and the lifetime of several transition metals using the two-component density functional theory

78 (TCDFT) developed by Makkonen et al. [40]. In tungsten, the evolution of annihilation
79 characteristics for different types of vacancy defects from V_1 to the vacancy cluster has been
80 revealed by calculation and experiment [41]. Considering the similarities between W and Mo,
81 we used this first-principles method to calculate the DBS and the lifetime of the vacancy defects
82 in Mo. This method enables the determination of the positron annihilation characteristics
83 (lifetime, S , and W) for vacancy defects that are challenging to isolate and quantify
84 experimentally. In line with the simulation, we employed Doppler Broadening spectrometry
85 with a variable monoenergetic positron beam to characterize the radiation-induced defects in
86 Mo using self-ion at Room Temperature (RT). Furthermore, we conducted the method recently
87 proposed in [42] for qualifying the proportion of each type of vacancy defect from DBS by
88 combining a simulated annealing algorithm, parametrized with a positron trapping model and
89 first-principles calculations. The estimated vacancy defect distribution was compared to Object
90 Kinetic Monte Carlo (OKMC) simulations [43].

91 **2. Methods**

92 **2.1 Sample preparation and irradiations**

93 Polycrystalline Mo samples were polished until a mirror-like surface and then annealed at
94 1200 °C for 2 h. The prepared Mo samples were damaged using 1 MeV self-ion at RT with
95 various fluences, ranging from 2.1×10^{16} to $4.2 \times 10^{18} \text{ m}^{-2}$. The program Stopping and Range
96 of Ions in Matter (SRIM) was used to compute the damage profile, with the 'Kinchin-Pease
97 quick calculation' option recommended by Stoller et al. [44] and recently checked by Lin et al.
98 [45]. The damaged region was predicted between 0 and 400 nm, with the peak at around 110
99 nm. Tab.1 summarizes the irradiation conditions. 34 eV was used as the threshold displacement
100 energy (TDE) [46]. The fluences used in this work induced maximum damage, quantified in
101 displacement per atom (dpa), ranging from ~0.01 dpa up to ~2 dpa. Further details on
102 preparation and irradiation have been reported in [8].

103 *Tab 1: irradiation conditions for 1 MeV-Mo in Mo using SRIM-2008 Kinchin-Pease quick calculation with a TDE of 34 eV*

Fluence (cm ⁻²)	2.1×10^{12}	2.1×10^{13}	6.3×10^{13}	1.1×10^{14}	2.1×10^{14}	4.2×10^{14}
Damage (dpa)	0.0096 (~0.01)	0.096 (~0.1)	0.29 (~0.30)	0.48 (~0.5)	0.96 (~1)	1.92 (~2)
Time (s)	64	143	927	2109	2394	5543

104 **2.2 Positron annihilation spectroscopy**

105 Thermalized positrons diffuse in the crystalline lattice and can move to a relatively low
 106 electronic density position due to repulsion from the host nucleus. They eventually annihilate
 107 with a surrounding electron, emitting two gamma rays of $511 \pm \Delta E$ keV. The energy deviation
 108 ΔE depends essentially on the kinetic momentum of the annihilating electron. The gamma rays
 109 from the annihilation, are collected in the measured DBS centered at 511 keV, representing the
 110 momentum distribution of the annihilated positron-electron pairs starting at $0 m_0 c$ (m_0 : electron
 111 mass, and c : light speed). The low (resp. high) momentum parameter S (resp. W) corresponds
 112 to the ratio of the counts in the low (resp. high) momentum region over the counts in the total
 113 momentum range.

114 At CEMHTI Laboratory, a DB Spectrometer is coupled to a Slow Positron Beam (SPB-
 115 DBS) that produces a monoenergetic positron beam with a variable energy ranging from 0.5 to
 116 25 keV [47]. Annihilation gamma rays are recorded using a high-purity germanium detector
 117 with an efficiency of over 25 % at 1.33 MeV. The spectrometer has a dead time of around 10 %
 118 and an energy resolution of ~ 1.25 keV (full width at half maximum, FWHM), equivalent to a
 119 momentum resolution of $4.89 \times 10^{-3} m_0 c$. The S (resp. W) parameter is calculated in the
 120 momentum range of $|2.64| \times 10^{-3} m_0 c$ (resp. $(|9.80| - |24.88|) \times 10^{-3} m_0 c$) of each DBS. According
 121 to the Makhovian model [48], the maximum penetration of slow positrons in Mo is about 1300
 122 nm. The VEPFIT program [49,50] is used to extract the depth distribution of defects from the
 123 S and W values measured as functions of positron energy ($S(E)$ and $W(E)$) by modeling the
 124 sample as several homogenous layers. Each layer has specific annihilation characteristics,

125 including the S , W parameters and an effective diffusion length of the positrons, i.e. L_{eff}^+ . The
 126 L_{eff}^+ is physically related to the concentration of defects which impede the positron diffusion
 127 and to the intrinsic diffusion coefficient of positrons D^+ , which is of about $1.2(1) \times 10^{-4} \text{ m}^2 \cdot \text{s}^{-1}$
 128 at 300 K in Mo
 129 [51].

$$130 \quad L_{eff}^+ = \sqrt{\frac{D^+}{\lambda_L + k_{tot}}} \quad (1)$$

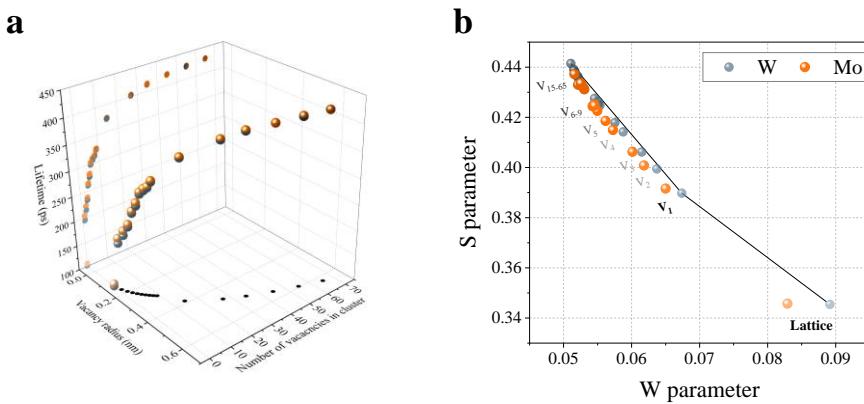
131 Where λ_L is the defect-free Lattice annihilation rate, and k_{tot} the total trapping rate. λ_L , is the
 132 inverse of the Lattice positron lifetime τ_L , which means the lifetime of positrons annihilating as
 133 delocalized in the perfect lattice. For Mo , τ_L was estimated experimentally and by calculation
 134 at values of 103 ps [52] and 106 ps [39], respectively. These values are close to those of tungsten
 135 of about 105 ps [41,52,53]. In a solid containing p types of vacancy defects (V_i), positrons can
 136 annihilate as delocalized in the perfect lattice and as being trapped in the different defects V_i ,
 137 with a trapping rate k_i . The measured S and W parameters can be represented as a weighted
 138 sum of the specific S and W values associated with each type of annihilation state j (i.e. p defects
 139 and lattice) and their respective annihilation fractions (f_j), using a trapping model [36] with
 140 $p+1$ states. The f_i for individual potential defects i are given by the following expression:

$$141 \quad f_i = \frac{k_i}{\lambda_L + k_{tot}} \quad (2)$$

142 The vacancy concentration C_i relates to the specific positron trapping coefficient μ_i and the
 143 trapping rate k_i , expressed as $C_i = k_i / \mu_i$. In W , the specific trapping coefficient of V_1 is about
 144 $(6 \pm 3) \times 10^{15} \text{ m}^3 \cdot \text{s}^{-1}$ [36,54] and should be equivalent in Mo due to similar crystalline structure
 145 and lattice parameters in both materials. For small vacancy clusters containing less than ten V_1 , i.e.
 146 their specific trapping coefficients are proportional to the number n of the included V_1 , i.e.
 147 $\mu_{V_n} = n \cdot \mu_{V_1}$ [36]. On the other hand, for the large vacancy clusters containing more than 10
 148 V_1 , the estimation of specific trapping coefficients was detailed in [55].

149 **2.3 First-principles calculations**

150 The first-principles calculations were conducted by using the Vienna *Ab initio* Simulation
151 Package (VASP) [56] with the projector augmented wave (PAW) method [57]. The generalized
152 gradient approximation with the Perdew-Burke-Ernzerhof exchange-correlation function[58]
153 was used for the electron exchange and correlation energy. The $6 \times 6 \times 6$ bcc supercells
154 containing 432 lattice sites were used for all calculations. The plane-wave cutoff energy was
155 set to 230 eV, and the Γ point only was used for all calculations. We chose the PAW potential,
156 which treats the $4p^6 4d^5 5s^1$ electrons as valence states in Mo. The convergence criterion for the
157 electronic loop was 10^{-5} eV. The force tolerance for ionic relaxation was 0.01 eV/Å. Hou et al.
158 [59] have determined the stable structures of vacancy clusters by minimizing their Wigner-Seitz
159 areas, the same structures of vacancy clusters were used in this study. Because for a give
160 vacancy cluster in bcc metals, the configuration with minimum Wigner-Seitz area is always the
161 same, regardless of the type of materials.


162 After the standard DFT calculations, the positronic structures were computed based on the
163 electronic structures computed by two-component DFT [60]. The Rubaszek weighted-density
164 approximation (WDA) [61] was used for the $e^+ - e^-$ correlation potential to compute the positron
165 densities. The positron implementation was developed and provided by Makkonen et al. [40],
166 and the WDA part was developed by Callewaert et al. [62]. A detailed discussion about using
167 WDA to compute the positron annihilation characteristics in vacancy clusters can be found in
168 Ref. [41]. The positron was approximated not to affect the average electron density, and the
169 zero-positron-density limit was used [60]. Although the zero-density-limit results in the non-
170 self-consistent treatment of positron densities, it has been shown in Ref. [34] that the non-self-
171 consistent calculation yields very similar results with the fully self-consistent calculations for
172 small vacancy defects. The momentum distribution of annihilating $e^+ - e^-$ pairs (Doppler spectra)
173 was computed with the state-dependent scheme [63] and PAW method [40]. All computed

174 Doppler spectra were convoluted with a Gaussian function with a FWHM corresponding to the
 175 experimental resolution ($4.89 \times 10^{-3} \text{ m}_0\text{c}$).

176 **3. Results**

177 **3.1 First-principles calculation**

178 In our previous work [41], the two-component DFT was used to calculate the annihilation
 179 characteristics of several annihilation states in W. The evolution from the *Lattice* to V_1 and
 180 from V_1 to the largest vacancy cluster (V_N) was demonstrated in agreement with the experiment
 181 [41]. Accordingly, the two-component DFT was also employed to calculate *annihilation*
 182 *characteristics* (lifetime and S , W parameter) of various annihilation states (Lattice and
 183 vacancies) in Mo with identical parameters [41]. The line L_1 connects the *Lattice* and V_1 , S , W
 184 points corresponding to the annihilation between these two states with different fractions.

185 *Fig. 1: two-component DFT-calculated a) positron annihilation lifetime and b) momentum parameters S vs W curves*
 186 *for Mo and W [41]: the vacancy radius was estimated assuming a spherical model.*

187 **Fig. 1** compares the positron annihilation characteristics of vacancy clusters in tungsten
 188 and molybdenum (positron lifetimes a and S - W plot b). **Fig. 1a** clearly shows that, with the
 189 increase of vacancy cluster size (from V_1 to V_{20}), the positron lifetime gradually increases from
 190 200 ps to 350 ps. **Fig. 1b** presents the S - W points of vacancy clusters in W and Mo. The S - W

191 points follow the same trend with the increase of vacancy cluster sizes. However, when the
192 vacancy cluster size is greater than V_{27} (radius = 0.47 nm), the positron annihilation
193 characteristics reach saturation, in this regime, the identifiable largest vacancy cluster is referred
194 to V_N . When comparing the difference in the W parameter between Mo and W for the various
195 annihilation states, the values for the **Lattice** are the most remarkable. The W is lower in Mo
196 than in W, probably because the number of electrons close to the nuclei (core electrons) is
197 higher for W. The S parameter which mainly reveals the annihilation of the valence electrons,
198 is very close in both Mo and W. In addition, it should be noted that in the experimental spectra,
199 the high momentum region has relatively low counts, making it challenging to highlight the
200 difference in the W parameter, as shown in [supplementary II](#).

201 3.2 Positron annihilation spectroscopy

202 3.2.1 Reference sample

203 The $S(E)$ curve of the Mo reference sample annealed at 1200 °C for 2h is plotted in [Fig.](#)
204 [2a](#), the data was adequately fitted using VEPFIT in the one homogenous layer model. The
205 annihilation characteristics were $S_{Ref} = 0.377$ (3), $W_{Ref} = 0.079$ (2), and the L_{eff}^+ of positrons
206 equals 63 nm. The fitting ([Tab.1](#)) was carried out from 2 keV, as the annihilation fraction at the
207 sample surface is important below this energy [41]. As the L_{eff}^+ is shorter than the intrinsic
208 diffusion length (110 nm) determined at 300 K for Mo [48], this suggests that a small fraction
209 of vacancy defects were not eliminated during the annealing process.

210 After a further annealing at higher temperature of about 1700 °C/2h under high vaccum
211 (10^{-5} Pa), the L_{eff}^+ expands to 92 (18) nm, and the annihilation characteristics S_{1700} and W_{1700}
212 (blue circle) overlap with the **Lattice** point in W (see the S - W curve in [Fig. 2b](#)), suggesting that
213 the **Lattice** annihilation characteristics S_L (Mo) and W_L (Mo) for Mo are very close to those
214 experimentally determined in W. This confirms the suggestion in the [part 3.1](#), i.e. the S , W
215 parameters corresponding to **Lattice** and V_1 are very close for Mo and W.

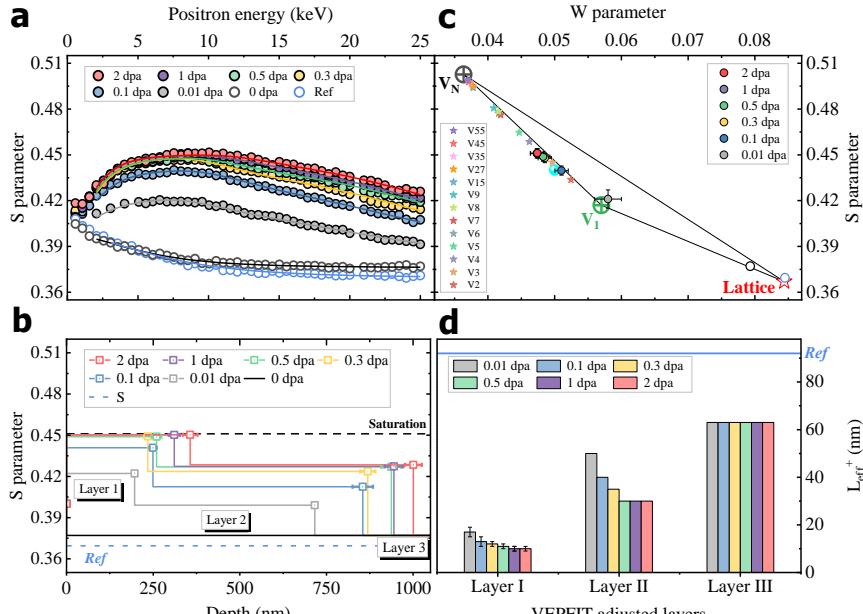
216 In Fig. 2b, the S , W points extracted from $S(E)$ and $W(E)$ using VEPFIT for Mo samples
217 are plotted with the Lattice, V_1 , and V_N points already determined for W [33,54,64]. The specific
218 point (dark circle in Fig. 2b) of the reference Mo sample (W_{ref} , S_{ref}) is aligned on the V_1 line
219 found in W and is located slightly at a higher left position on this line relative to the W *Lattice*
220 point (red star in Fig. 2b). Furthermore, considering that defects are mostly V_1 , the residual
221 defects concentration were calculated using equation (4) in literature [9] with the lifetime of the
222 Mo Lattice of 103 ps [52]. The remaining vacancy concentration is about $3 \times 10^{24} \text{ m}^{-3}$ in the
223 reference sample with a L_{eff}^+ of about 63 nm, and $5.5 \times 10^{23} \text{ m}^{-3}$ in the reannealed Mo sample
224 with a L_{eff}^+ of 92 nm. It is important to note that, after the initial annealing at 1200 °C for 2
225 hours, the remaining concentration of vacancy defects is too low to interfere with the study of
226 irradiation-induced defects. This previous state before irradiation is named reference state i.e.
227 *Ref* in the following discussion.

228 3.2.2 Self-irradiated samples

229 The $S(E)$ curves plotted in Fig. 2a, reveal the distribution of defects in Mo samples
230 irradiated at fluence in the range from 2.1×10^{16} to $4.2 \times 10^{18} \text{ m}^{-2}$. The $S(E)$ curves have similar
231 shapes for all fluences. S increases from the approximately identical value measured at 0.5 keV
232 up to a maximum obtained as positron energy increases with fluence. Thereafter, S decreases
233 towards, but does not reach, the value in the reference sample S_{Ref} . The S parameter discloses
234 the size and/or concentration of open volume where e^+e^- pairs were annihilated. As the fluence
235 increases, the S parameter increases, indicating the detection of a larger size and/or higher
236 concentration of vacancy defects. However, the increase slows down when the fluence exceeds
237 $6.3 \times 10^{17} \text{ m}^{-2}$. For the highly damaged region ($E < 10 \text{ keV}$), the $S(E)$ curves almost overlapped,
238 and $W(E)$ curves exhibited a mirror evolution, suggesting that the defect distribution probably
239 saturates. The $S(E)$ and $W(E)$ curves can be fitted using the VEPFIT program [15,16] by

240 describing the samples in three homogeneous layers. The fitted *annihilation characteristics* in
 241 Layers 1, and 2 are summarized in Tab.2.

242 *Tab. 2: Annihilation characteristics $S_{Lay(i)}$, $W_{Lay(i)}$, and $L_{Lay(i)}$ for layers $i = 1,2$, extracted from the fitting of the $S(E)$ and $W(E)$*
 243 *curves with the VEPFIT program using a three-layer model for samples irradiated at different fluences, ranging from 2.1×10^{16}*
 244 *to $4.2 \times 10^{18} \text{ m}^{-2}$. The corresponding peak damage value ranges from 0.01 to 2 dpa. R is the slope of the straight line connecting*
 245 *point (S_{Lay1}, W_{Lay1}) and the Lattice point in the S-W curve, i.e. $R = (S_{Lay1} - S_L) / (W_{Lay1} - W_L)$. The Layer boundary (Lb) is the depth from*
 246 *the sample surface at which each layer expands. The annihilation characteristics of Layer III are fixed to those of the reference*
 247 *sample ($S_{Lay3} = 0.377$ (5), $W_{Lay3}=0.079$ (2), and $L_{Lay3}^+ = 63 \text{ nm}$). Surface annihilation characteristics are equivalent ($S_{surf} = 0.400$*
 248 *(5), $W_{surf} = 0.065$ (3)) for all samples. The incertitude of the fitted value is about 0.004 and 0.002 for S and W , respectively.*


Damage	Layer 1					Layer 2				
	dpa	S_{lay1}	W_{lay1}	R	L_{lay1}^+	$Lb \text{ (nm)}$	S_{lay2}	W_{lay2}	R	L_{lay2}^+
~0.01	0.421	0.057	2.05 (16)	14 (4)	200 (9)	0.399	0.069	2.08 (28)	50	716 (31)
~0.1	0.440	0.051	2.18 (10)	13 (2)	252 (9)	0.412	0.062	2.05 (15)	40	856 (33)
~0.3	0.448	0.049	2.25 (10)	12 (2)	227 (11)	0.424	0.057	2.08 (12)	35	865 (27)
~0.5	0.449	0.048	2.27 (9)	11 (2)	260 (13)	0.427	0.056	2.11 (12)	30	937 (27)
~1	0.451	0.047	2.27 (9)	10 (2)	311 (15)	0.427	0.056	2.07 (11)	30	945 (29)
~2	0.451	0.047	2.27 (9)	10 (2)	356 (19)	0.429	0.055	2.11 (11)	30	1000 (36)

249 [Fig. 2c](#) shows the evolution of the S parameter as a function of depth for each fluence. The
 250 first two layers displayed the damaged region, and the third one was fixed with annihilation
 251 characteristics of the reference sample (S_{ref} , W_{ref} , and $L_{eff}^+ = 63 \text{ nm}$). In addition, the L_{eff}^+ in each
 252 layer is shown in [Fig. 2d](#) as a complement of the S parameter. The thickness of the first layer,
 253 Lb , and the effective positron diffusion L_{eff}^+ vary from 200 to around 356 nm, and from 10 to 17
 254 nm, respectively. The fit confirms the damage profile predicted using the SRIM program, with
 255 the highest S and the shortest L_{eff}^+ found in Layer 1 for each sample. This suggests that most
 256 irradiation-induced defects are located in the first 300 nm. Thus, the fitted S , W value in Layer
 257 1, i.e. S_{lay1} as a function of W_{lay1} were plotted in [Fig. 2b](#). The slope R of the straight line
 258 connecting each specific S - W point (W_{lay1} , S_{lay1}) to the **Lattice** point (W_L , S_L), calculated as the
 259 ratio $(S_{lay1} - S_L) / (W_{lay1} - W_L)$, reflects the evolution of the defect size.

260 At the lowest fluence ($2.1 \times 10^{16} \text{ m}^{-2}$), the width of Layer 1 is around 200 (9) nm. Compared
 261 to the reference sample, L_{eff}^+ has decreased by more than 30 %, from 63 nm to around 17 (2)
 262 nm, due to the positron trapping in irradiation-induced defects. In addition, the fitted values

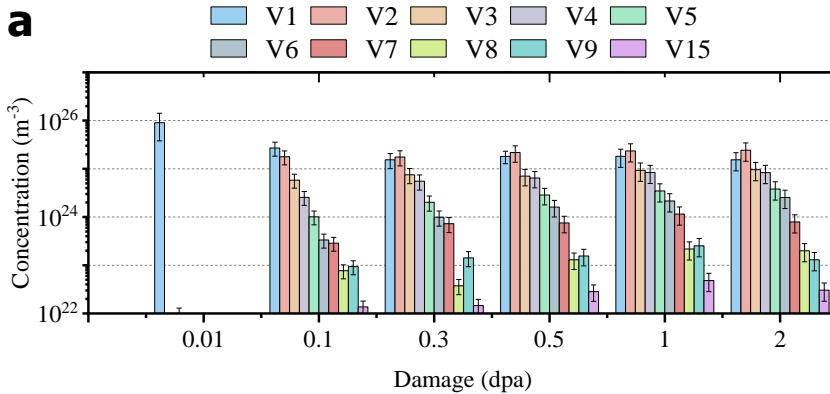
263 $S_{lay1} = 0.421(4)$, and $W_{lay1} = 0.058(2)$ are close to those of V_1 experimentally determined in W
264 (the green crossed circle in [Fig. 2b](#)), but slightly further to the right. The corresponding slope
265 R is 2.05(16), which is slightly larger than that of the V_1 line in W (1.85(3) [9]). These results
266 indicate that V_1 is a dominant trap for positrons, although it cannot be ruled out that a small
267 fraction of positrons probably annihilate in vacancy clusters. In Layer 2, from 200 (12) to 716
268 (31) nm, S_{lay2} is lower than S_{lay1} , and the L_{eff}^+ is about 50 nm. Although the irradiations still
269 induced defects in this layer, their concentration is considerably lower than in Layer 1, and
270 annihilation in the **Lattice** becomes significant as the L_{eff}^+ lengthens.

271 The S and W parameters of the vacancy clusters (V_2 - V_{55}) in W were also plotted in [Fig. 2b](#).
272 Their values were transposed in the experimental frame network from theoretical values using
273 the experimental and theoretical V_1 - V_N lines as the references [55]. As the fluence increases,
274 the fitted annihilation characteristics in Layer 1 vary following defect size evolution. Once the
275 peak damage dose has reached around 0.5 dpa, the thickness of the Layer 1 extends to about
276 260 nm, and the variation of annihilation characteristics is discontinued ([Tab.1](#)). The S (resp. W)
277 parameter converges around 0.451 (resp. 0.047). The R ratio reaches the value 2.27 (9), and the
278 S , W points are located between the S , W points corresponding to the clusters V_3 and V_4 ([Fig.](#)
279 [2c](#)), revealing the formation of small vacancy clusters. At the same time, the L_{eff}^+ shortened to
280 about 10 nm ([Fig. 2d](#)), showing the increase of the positron trapping rate. For a damage dose
281 greater than 0.5 dpa, the S - W points for Layer 1 remain almost superimposed, indicating that
282 the defect distribution reaches a steady state in the first 350 nm in the sample. A similar
283 saturation effect was already observed in W self-ion irradiated at RT [9,11]. The saturation
284 point for W is plotted in the cyan sphere in [Fig. 2c](#) [9]. Remarkably, the saturation S (resp. W)
285 parameter is higher (resp. lower) in Mo than in W, suggesting that the proportion of the vacancy
286 clusters is higher in Mo than in W.

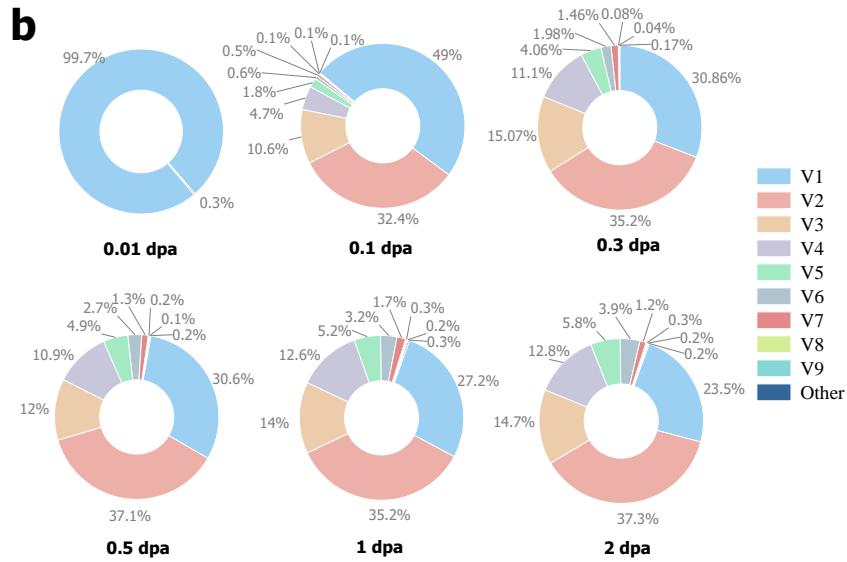
287

288 *Fig. 2: Annihilation characteristics in Mo samples before and after self-irradiation: a) S parameter as a function of positron*
 289 *290 energy E, b) depth profile of parameter S extracted for the first layer from the S(E) and W(E) using VEPFIT;*
 291 *292 c) S-W plot of the S and W extracted for the first layer in the reference annihilation characteristics of Lattice (open red star), single*
 293 *294 vacancy (green crossed-circle) and saturation signal V_N (dark crossed circle) determined in W[33,35,64], the colored solid stars represent the*
estimated S,W for various vacancy clusters. The cyan point corresponds to the steady-state obtained in self-irradiated W [9]
295 d) positron effective diffusion length (L_{eff}^+) in adjusted layers using VEPFIT program.

296 In addition, deeper damage was created with increasing fluence (as shown in Fig. 2c),
 297 extending much deeper than the 300 nm depth predicted by the SRIM simulation for Mo
 298 irradiated with 1 MeV self-ions [8]. A similar result has been observed by He et al.[65] in the
 299 case of implantation of yttrium, titanium, and oxygen in Fe. This difference is due to the
 300 channeling effect in the polycrystalline sample with large grain size ($> 50 \mu\text{m}$), which is not
 301 considered in the SRIM calculations.


302 4. Discussion

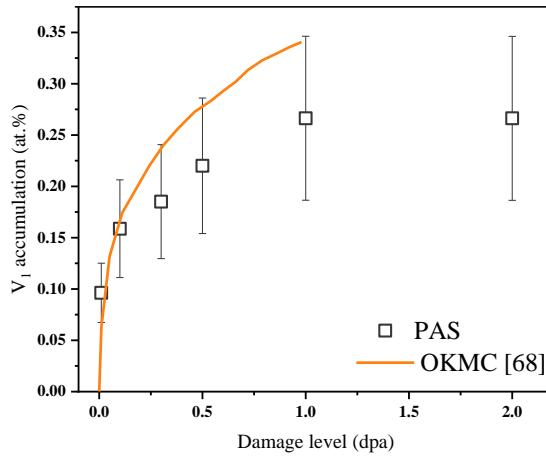
303 4.1 Quantitative evaluation of defect size distribution


304 Recently, we extracted complete vacancy distributions in self-ion irradiated W, using a
 305 quadratic programming and simulated annealing algorithm (SA)[42], parametrized with a

304 positron trapping model including pure vacancy defects V_i with $i=1-65$ [55]. The concentration
305 and proportion of each vacancy defect were estimated using the same method in the self-
306 irradiated Mo samples. The results are shown in [3a](#) and [b](#), where clusters containing more than
307 15 vacancies are not displayed, as their concentration is close to the lower detection limit ([Fig.](#)
308 [7](#) in Supplementary Information) of SPB-DB. For the lowest damage level (0.01 dpa), the
309 estimated proportion of V_1 is 99%, and the concentration reached around $5 \times 10^{25} \text{ m}^{-3}$. This is
310 in line with the first conclusion made in the qualitative interpretation of the experimental results,
311 which established that V_1 is the dominant trap for positrons with a minor proportion of vacancy
312 clusters at the lowest fluence (0.01 dpa).

313 When the damage escalates from 0.01 to 0.1 dpa, the proportion of V_1 decreases to 48%,
314 and ~40% vacancy clusters account for $V_{2,3}$, and ~10% for $V_{4,7}$. Up to the 0.3 - 0.5 dpa, V_1 and
315 V_{4-6} clusters represent a quarter of the total proportion. Following the damage accumulation
316 until 2 dpa, the concentration of V_1 declined again, and its proportion reduced to about 20 %.
317 At the same time, the concentration and proportion of $V_{4,9}$ manifestly increased. According to
318 DFT, the V_1 is less monbile at RT, and binding energy is predicted to be negative for V_2 ,
319 whereas the vacancy clusters can still algomerate in the cascades or the overlapped cascades
320 resulting in large clusters. The larger cluster of 15 vacancies (radius = 0.35 nm) reached the
321 lower limit of the SPB-DB ($\sim 3 \times 10^{22} \text{ m}^{-3}$, [Fig. 3a](#) and [Fig.8](#) in the Supplmenetary information)
322 as the damage level increases) to 0.5 dpa. In addition, each size of vacancy reached a stable
323 level when the damage accumulated at 0.5 dpa or more, agrees with the computational work in
324 case of tungsten [66].

325

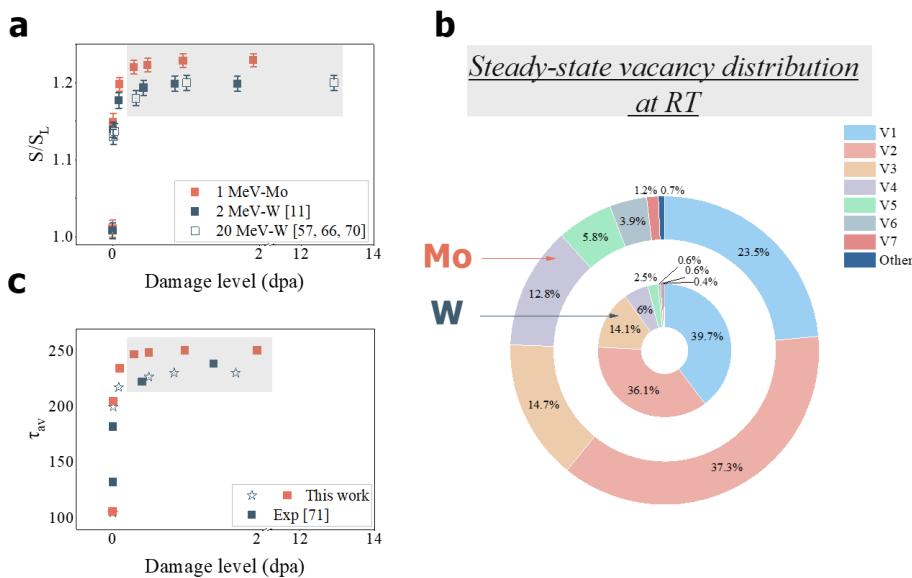


326

327 Fig. 3: a) concentration and b) proportion of the vacancy defects probed by positrons in 1MeV self-ion, RT-irradiated Mo in
328 the first ~300 nm below the surface (corresponding to the first layer) for damage levels ranging from 0.01 to 2 dpa (with TDE=34 eV, SRIM2008-K-P). These values were extracted from the S and W experimental values using the methodoly described in
329 330 [42]

331 Selby et al. [67] operated molecular dynamics (MD) to mimic the evolution of the defects
332 at 300 K in Mo. The simulation involved Primary Knock-on Atom (PKA) energies up to 50
333 keV, whereas 98% PKA have an energy higher than 50 keV according to SRIM with
334 experimental conditions. These simulated results showed over 80 % of vacancies were isolated

335 single vacancies, and the largest vacancy cluster contained nine vacancies. This result might
 336 compare with low fluence experience, in cases where the cascades overlap is less pronounced.


337
 338 *Fig. 4: comparison of estimated V_1 accumulation as a function of the damage level using PAS and OKMC [43], the*
 339 *computational value averages the vacancy concentration value in the first 400 nm, and the experimental data represent the*
 340 *vacancy accumulation in Layer I obtained from the fit, its thickness varies with damage level from 200-356 nm smuurred in*
 341 *Table.2.*

342 Recently, Hou et al. [68] employed OKMC simulation under our irradiation experiments
 343 to better align with MD on the damage accumulation time scale with the present experiment.
 344 The authors showed that the SIA defects had annihilated quickly with vacancies or at the sample
 345 surface. Despite the limited diffusion of vacancies at 300 K, vacancy clusters ($> V_6$) formed.
 346 The authors suggest that such vacancy clusters may form within the core of the cascade due to
 347 the high density of vacancies, enabling short-scale agglomeration after diffusion or as a result
 348 of cascade overlapping. These results are consistent with the estimated vacancy clusters
 349 proportion derived from the PAS data in this study, as illustrated in [Fig. 3](#). Furthermore, the
 350 authors observed vacancy depletion at depth beyond 400 nm, correlating well with the decrease
 351 in the S parameter shown in [Fig.2 \(a-c\)](#). [Fig.4](#) compares the vacancy accumulation (total
 352 concentration of isolated V_1 and those included in the vacancy clusters) as damage increases,
 353 based on PAS data and OKMC simulations. Both computational and experimental results reveal

354 similar trends. In addition, the experimental data reveal that V_1 accumulation reaches saturation
 355 when the damage level exceeds 0.5 dpa.

356 **4.2 Steady-state vacancy distribution**

357 Focusing on the vacancy steady state, Fig.5a compares the relative S parameter, S/S_L
 358 (relative S parameter to Lattice), as it varies with damage accumulation in Mo in the present
 359 study and previously reported data in W [9,54,64,69]. A steady-state behavior is observed in
 360 both materials, though Mo exhibits a higher S saturation value. Vacancies in both metals
 361 accumulate rapidly up to 0.5 dpa, after which their proportion converges. Notably, defect
 362 evolution appears to be independent of self-ion energy, as similar trends are observed for 2 and
 363 20 MeV self-ion irradiation in W [9,54,64,69].

364

365 Fig. 5: a) the relative S value, S/S_L , and b) the proportion of aggregated vacancies as a function of the damage level caused by
 366 self-ion in Mo (1 MeV) and W (2 MeV & 20 MeV) at RT, c) The e^- annihilation lifetime estimated (hollow star) for each damage
 367 levels in comparison with experiments [70]

368 [Fig. 5b](#) highlights that, at the defect steady state (> 0.5 dpa), the proportion of vacancies
369 within clusters is significantly higher in Mo (76.5%) compared to W (60%). To further affirm
370 the difference in vacancy proportions between Mo and W, we calculated the averaged lifetime
371 τ_{av} by weighing the lifetime of vacancies (using data in [Fig. 1a](#)) with the annihilation fractions
372 determined by SA [55]. [Fig. 5c](#) shows the progression of τ_{av} with damage level. For W, the
373 estimated lifetime evolution with damage accumulation coincides with experiments [70],
374 validating the SA method for estimating annihilation fractions. A lifetime of around 231 ps was
375 found for the steady state of defects in W. In comparison, a longer τ_{av} of 250 ps is determined
376 for Mo, consistent with the SPB-DBS results, indicating a higher proportion of large vacancies
377 in Mo since the positron lifetime for each type of vacancy defect are very close in both metals
378 Mo and W (see [Fig 7](#), and [Table3](#) in Supplementary Materials). It is also noteworthy that the
379 binding energy of V_{2-3} is relatively close to zero for W and slightly negative for Mo, according
380 to references [71–73].

381 The vacancy size distribution could be strongly affected by the binding and migration of
382 vacancy defects and interstitials. We calculated the binding energies for V_1 to V_9 using DFT
383 calculations (see [Fig. S1](#) in the SI). Notably, the binding energy of V_2-V_3 is near zero for W and
384 slightly negative for Mo, as reported in Refs. [71–73] at 0K. To date, whether V_2-V_3 forms at
385 RT in Mo or W remains unresolved. Only Park et al.[74] reported a binding energy of about
386 0.7 eV for V_2 in W using Field-ion spectroscopy. Impurity atoms are also known to stabilize
387 V_2 [75,76]. Recently, Zhang et al.[77] estimated the effect of temperature on the binding free
388 energy, finding that the latter increases with rising temperature. Although V_2 remains unstable
389 at RT, two isolated V_1 s located at the first nearest-neighbors tend to bind with each other from
390 700 K, which is an attainable temperature during cascades. Given this, we considered the
391 possibility of the e^+e^- annihilations in V_2 and V_3 . Moreover, it is remarkable that although the
392 cluster containing less than seven V_1 account for 99 % of the total vacancy proportion in both

393 metals, larger vacancies may also be formed, though in a limited concentration. Quantification
394 of these larger defects is difficult, as for cluster with more than 15 V_1 fall outside the optimal
395 detection range for the SPB-DBS method, as shown in [Fig. 8 in Supplementary I](#).

396 The migration energy E^m is the lowest for the self-interstitial atoms (SIA) ([Fig.1 in the](#)
397 [supplementary](#)). For one-dimensional diffusion in a $<111>$ direction, E_{SIA}^m is about 0.064 eV in
398 Mo and 0.040 eV in W [78]. Thus, the SIA should be very mobile due to their very low
399 migration energy in the Mo and W matrix. For the small vacancies, the tri-vacancy has the
400 lowest E^m in both materials, and for the other vacancy defects V_1 , V_2 , and V_4 , their E^m is lower
401 for the Mo matrix. Hou et al.[43] calculated using DFT, the binding energy for larger clusters
402 containing up to 47 vacancies in Mo. They showed that E^m increases more or less with the
403 number of vacancies in the cluster up to 15, reaching 2 eV and then remaining between 1 and
404 2 eV. It has to be noted that the probability of dissociation of vacancy clusters is very low at
405 RT. Agglomeration is possible if vacancies can diffuse and link up with each other. Based on
406 the Arrhenius diffusion equation, the distances that V_1 and V_3 can travel at 300 K during the
407 duration of the irradiation at 0.5 dpa (2100 s) are estimated to be about 2×10^{-5} nm and 7.8×10^{-3}
408 nm, respectively. However, the local annealing due to the collision of the ion might enhance
409 their mobility, so the agglomeration of vacancies might occur in the core of cascades, where
410 the density of vacancies is very high, facilitating short-scale diffusion and interactions among
411 vacancies. In addition, vacancy diffusion and binding should be more probable in Mo, given its
412 lower migration energy compared to W. The higher proportion of vacancies within clusters in
413 Mo could, in part, be attributed to the difference in their evolution mechanisms.

414 On the other hand, De Baker et al. [79] determined the fragmentation energy¹ (E_{fr}) in
415 various materials using MD and Binary Collision Approximation (BCA) simulations. They

¹ The energy above which one cascade can split into several subcascades

416 found that the number of subcascades increased linearly with the PKA energy when E_{PKA}
 417 exceeds E_{fr} , determined to be 17 keV for Mo and 75 keV for W. In bcc metals, cascades
 418 overlapping were found to consistently reduce the size of the pre-existing large voids (>100
 419 vacancies) when cascades partially overlap with the defect in W [80] and Fe [13]. In Fe, the
 420 size of all clusters -except for the single vacancy- was reduced after a fully overlapping cascade.
 421 This reduction depended on PKA energy and interatomic potential but was independent of the
 422 initial cluster size [81].

423 Furthermore, the recombination of FPs in both Mo and W is similar, primarily due to the
 424 high mobility of the SIAs. Consequently, the recombination rate of FPs is expected to be
 425 comparable in Mo and W, given the equivalent migration energy of SIAs (Fig.1 in the
 426 supplementary). However, the TDE in Mo is lower than in W. The arc-dpa model [76] was used
 427 to quantify these differences to estimate the average number of FPs produced per cascade. The
 428 $b_{arc-dpa}$ and $c_{arc-dpa}$ parameters were taken from Ref. [82]. For Mo, $b_{arc-dpa}$ value was
 429 taken from Ref. [83], in which it was suggested that -1 is a proper value for most metals. The
 430 $c_{arc-dpa}$ parameter represents the cascade efficiency. According to references [67,84], using
 431 classical MD, the cascade efficiency of pure Mo is ~0.2. Therefore, $c_{arc-dpa} = 0.2$ was used.
 432 Using the TDE value in Table 4, the arc-dpa model estimated the average number of defects
 433 produced in a single cascade event. The results indicate a slightly higher number of created
 434 defects in Mo (640 FPs) compared to W (559 FPs).

435 *Tab. 3: related energies to the evolution of defects in W and Mo, E_{fr} : fragmentation energy, over which the cascades could
 436 split into several subcascades, TDE: threshold displacement energy, energies are presented in keV, mean: mean PKA energy,
 437 equal approximately to a half of the maximum value in the PKA energy predicted by SRIM program. T_d : damage energy kinetic
 438 energy available to provoke atomic displacement after losing the electronic ionization energy, kinetic energy available to
 439 provoke atomic displacement after removing the electronic ionization energy.*

	E_{fr} (keV)	TDE (eV)	T_d (keV)	Number of FPs created in one cascade
Mo	17 ^a	34 ^b	282 ^d	640 ^d
W	75 ^a	55 ^c	600 ^d	559 ^d

440 ^a reference [79], ^b reference [85], ^c reference [86], ^d reference [87].

441 The number of vacancies created by a single event of cascades is higher in Mo than in W
442 using the arc-dpa model. After some of these vacancies recombine with SIAs, the remaining
443 vacancies in Mo have a stronger clustering tendency than those in W. In addition, it appears
444 that vacancies in W are less mobile at RT, as indicated by the migration energy presented in
445 Fig.1 in the supplementary. The higher proportion of vacancy clusters in Mo compared to W is
446 likely due to subtle differences in collision cascade overlapping and Frenkel pair recombination
447 between the two materials, resulting in a difference from the early stage of the evolution.

448 Conclusion

449 In this study, we combined the PAS, first-principles calculation, and SA algorithm to
450 quantitatively analyze the size distribution of vacancy defects induced by self-ion in Mo and W
451 at RT. The proportion of each vacancy defect from V_1 to V_9 was depicted for the first time
452 based on experimental data, and the primary conclusions have been reached as follows:

- 453 (i) Comparable e^+ annihilation characteristics in vacancy clusters in W and Mo: The
454 annihilation characteristics exhibit similar evolution from V_1 to the saturation (V_{35} ,
455 ~ 0.5 nm in radius).
- 456 (ii) At low irradiation dose (~ 0.01 dpa), the predominant defects observed are nearly 100%
457 V_1 in both Mo and W. At 0.3 dpa, the presence of V_{15} (radius = 0.35 nm) becomes
458 detectable by PAS, and the vacancy aggregation rate converges with a damage level
459 of about 0.5 dpa or more. The vacancy accumulation exhibits a trend comparable to
460 that of the OKMC simulation. Alough the damaged zone detected using SPB-DBS
461 is deeper than thoses OKMC or SRIM estimated, probably due to the channeling
462 effect.
- 463 (iii) At the defect steady state (> 0.5 dpa) in Mo, the proportion of V_1 decreases to
464 approximately 20 %. The proportion of V_1 accounted for about 40 % of total
465 vacancies in W, whereas accounting for 23.5 % in Mo, revealing a higher vacancy

466 clustering tendency in Mo. Each size of the vacancy fraction reached a stable level
467 as predicted by computational work.

468 These findings will significantly enhance the investigation of vacancy defects in metals.

469 The method enables reliable quantitative analysis of vacancy proportions from primary defect
470 distribution until the steady state at RT, addressing the scarcity of experimental data.

471 **Declaration of Competing Interest**

472 The authors declare that they have no known competing financial interests or personal
473 relationships that could have appeared to influence the work reported in this paper.

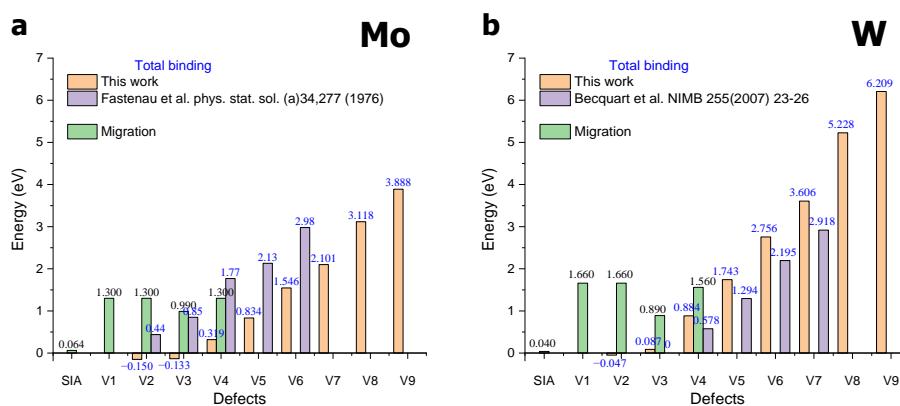
474 **Credit authorship contribution statement**

475 **Zhiwei Hu:** PAS experiments, data processing and interpretation, writing – original draft &
476 editing, **Qigui Yang:** First-principles calculation, data analysis, writing – original draft &
477 editing, **Jingtong Wu:** data processing, interpretation, **Duc Nguyen-Manh & M. Yu.**
478 **Lavrentiev:** Irradiation experiments **Pierre Desgardin:** Supervision, SPB-DBS experiments
479 **Jérôme Joseph:** Sample preparation and technical support, **Marie-France Barthe:**
480 Conceptualization, validation, data processing and interpretation, writing – review & editing.

481 **Acknowledgments**

482 This work has been carried out within the framework of the EUROfusion Consortium,
483 funded by the European Union via the Euratom Research and Training Program (Grant
484 Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those
485 of the authors only and do not necessarily reflect those of the European Union or the European
486 Commission. Neither the European Union nor the European Commission can be held
487 responsible for them. Qigui Yang acknowledges the financial support by the National Natural
488 Science Foundation of China (Grant No. 12305338). The authors thank Dr. Ilja. Makkonen at

489 Helsinki University for sharing the positron code. The authors acknowledge Maylise Nastar at
 490 CEA for the fruitful discussion.


491 **Supplementary**

492 **I. Binding and migration energy of vacancy clusters in Mo and**
 493 **W**

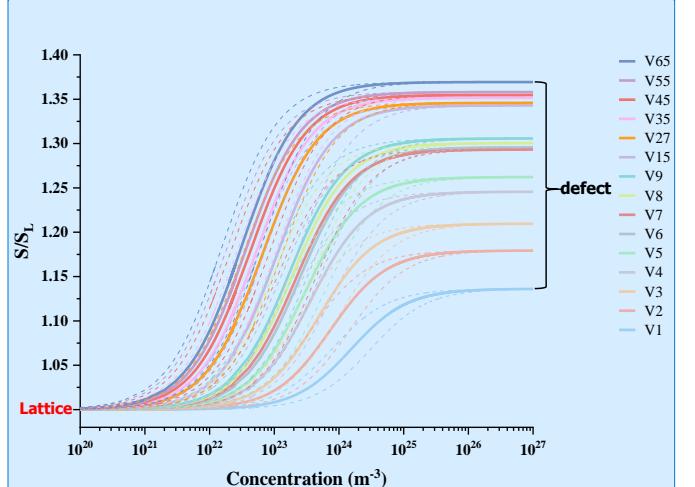
494 Table. 1 summarizes the binding energy E_b of a cluster consisting of n vacancies, V_n , which are
 495 calculated as follows :

496
$$E_b = nE_{V_1} - E_{V_n} - (n - 1)E_{\text{lattice}} \quad (1)$$

497 in which E_{V_1} and E_{V_n} are the energies of supercells with a mono-vacancy and one V_n cluster,
 498 respectively. E_{lattice} is the energy of a supercell of perfect lattice. Using the Eq. (1), positive
 499 binding energy means attractive interaction and negative binding energy means the opposite.
 500 The total binding energy increases with increase number of the V_1 including in the cluster,
 501 similar results are found in the Ref. for Mo[88] and for W[73]. The migration energy for
 502 vacancy defects from V_1 to V_4 is taken from the references [77-79].

503
 504 *Figure 6: Reported migration energy from V_1 to V_4 in references [77-79], and binding energy of various vacancies with*
 505 *relaxation calculated using DFT in the present work, compared with literature in a) Mo [88] and b) W[73].*

506 **II. Sensitivity of the SPB-DBS**

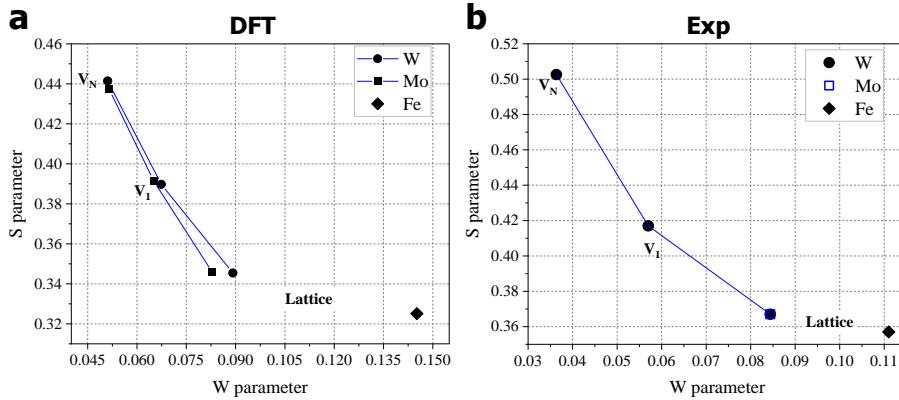

507 After calculating the specific trapping of vacancies, μ_{Vi} as it is explained in [36], we
508 applied a one-trap trapping model for each vacancy. S parameter can be expressed versus defect
509 concentration C_{Vi} by equation (4):

510
$$S = \frac{C_{Vi}\mu_{Vi}S_{Vi} + \lambda_L S_L}{C_{Vi}\mu_{Vi} + \lambda_L} \quad (4)$$

511 where S_{Vi} is the parameter for the vacancy defect Vi as calculated using TCDFT.

512 [Fig. 7](#) presents the sensitivity of the SPB-DBS to the vacancy concentration in Mo for
513 various vacancy defects from V_1 to V_{65} . When the vacancy concentration is 0, the annihilation
514 fully occurs at the *Lattice*, the relative S value, S/S_L , equals 1. When the positrons are trapped
515 in vacancies, the S/S_L increases with the vacancy concentration until a specific value which
516 depends on their size. From V_{15} (radius = 0.35 nm), the positron annihilation characteristics
517 start to converge, with a concentration higher to 10^{26} m^{-3} . The corresponding S/S_L value is close
518 to 1.35. In the case of V_1 (radius = 0.139 nm), the sensitive range of concentration is between
519 about $5 \times 10^{23} \text{ m}^{-3}$ and $8 \times 10^{23} \text{ m}^{-3}$, and the optimal resolution ranges from $3 \times 10^{23} \text{ m}^{-3}$ to $3 \times$
520 10^{25} m^{-3} , and the S/S_L equals 1.136 also equals to S_{Vi}/S_L . For the vacancy size superior to V_{27}
521 (radius = 0.47 nm), its lower detection limit is about $5 \times 10^{26} \text{ m}^{-3}$ and upper limit delciens to
522 $8 \times 10^{23} \text{ m}^{-3}$, respectively. The most sensitive concentration range is between 5×10^{21} and $5 \times$
523 10^{23} m^{-3} , and the S/S_L attains 1.32.

524

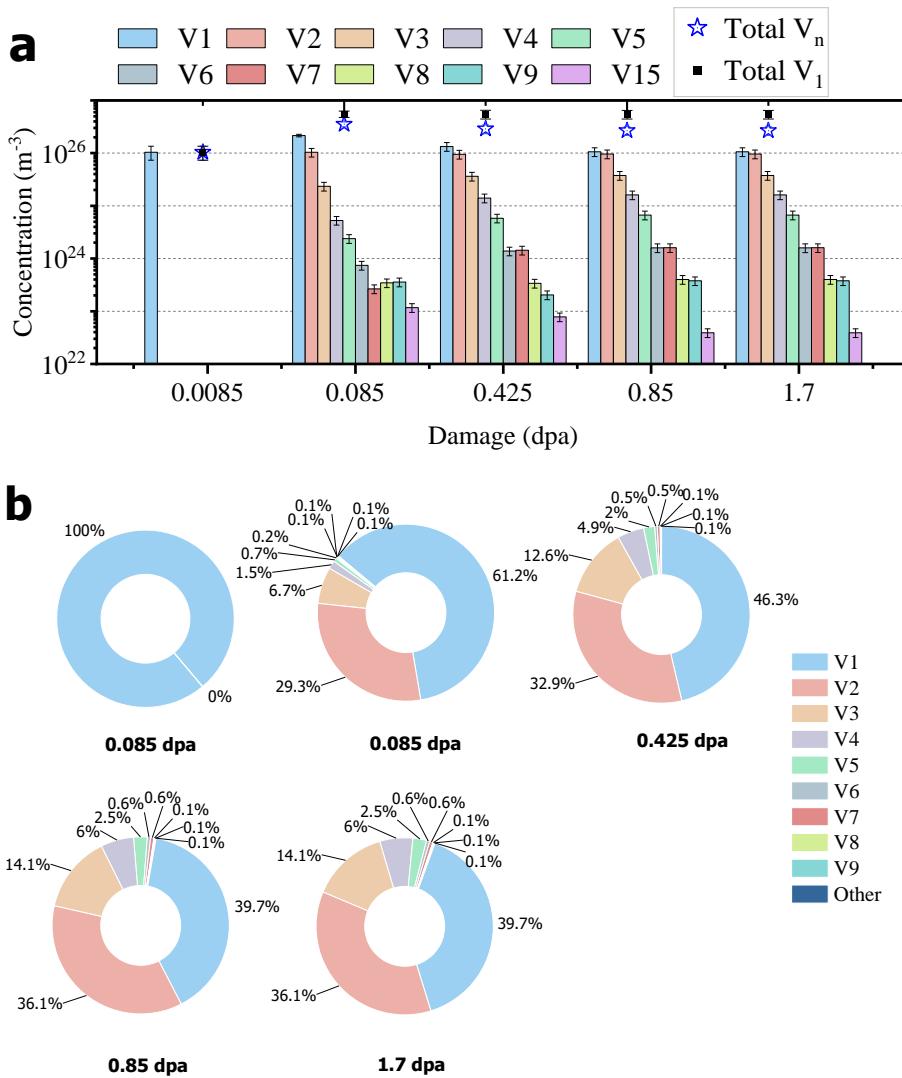

525 Fig. 7: Sensitivity of PAS for each vacancy cluster in Mo using a one-trap trapping model, to be safe, the error bar (shown in
526 dashed line) on the concentrations was set from the uncertainty of the specific trapping coefficient from [55]

527 Table.3 compares the calculated positron lifetime in various annihilation states from Lattice to
528 a cluster containing 65 V1s. For each state, the lifetime is analogous, particularly when a cluster
529 contains more than 8 V1s.

530 Table 3: Calculated positron annihilation lifetime in the lattice and vacancies in W and Mo using LDA

Annihilation state	Positron Lifetime (ps)	
	W	Mo
Lattice	101	106
V1	195	205
V2	214	223
V3	233	238
V4	261	265
V5	276	282
V6	299	303
V7	306	310
V8	312	314
V9	323	325
V15	374	375
V27	402	403
V35	413	414
V45	420	420
V55	424	425
V65	428	428

Commented [MB1]: We have to discuss about the usefulness of this figure and the associated discussion


531 Fig. 8: a) Comparison of theoretical S - W values of Lattice, V_1 , and V_N for W, Mo, and Fe calculated using two-component DFT
 532 [41], b) experimental annihilation characteristics of Lattice in W and Fe [89], and V_1 and V_N in W [33,64].

533 Fig. 9 compares the lattice annihilation characteristics of W, Mo, and Fe, using the values
 534 of S and W of V_1 , V_N , and lattice determined in W as reference coordinates. The experimental
 535 results show that the difference on the annihilation characteristics of the **Lattice** of Fe and W
 536 are less pronounced than theoretical values. And it is then consider that the S , W of Mo and W
 537 is not disinguishable.

538

539 **III. Proportion of vacancies in self-ion irradiated W**

540 Fig. 9 represents the vacancy proportion in self-ion irradiated W with a scope of damage
 541 levels ranging from 0.0085 dpa to 1.7 dpa [9]. The V_1 was also the dominant defect at the lowest
 542 damage level.

544 Fig. 9: a) concentration and b) proportion of the vacancy defects probed by positrons in 2 MeV self-ion [9], RT-irradiated W at
 545 first ~ 300 nm for damage levels ranging from 0.0085 to 1.7 dpa (with TDE= 55 eV, SRIM2008-K-P)

548 **References**

549

550 [1] T. Hirai, S. Panayotis, V. Barabash, C. Amzallag, F. Escourbiac, A. Durocher, M. Merola, J. Linke,
551 Th. Loewenhoff, G. Pintsuk, M. Wirtz, I. Uytdenhouwen, Use of tungsten material for the ITER
552 divertor, *Nuclear Materials and Energy* 9 (2016) 616–622.
553 <https://doi.org/10.1016/j.nme.2016.07.003>.

554 [2] T. Hirai, F. Escourbiac, V. Barabash, A. Durocher, A. Fedosov, L. Ferrand, T. Jokinen, V. Komarov,
555 M. Merola, S. Carpentier-Chouchana, N. Arkhipov, V. Kuznetcov, A. Volodin, S. Suzuki, K. Ezato, Y.
556 Seki, B. Riccardi, M. Bednarek, P. Gavila, Status of technology R&D for the ITER tungsten divertor
557 monoblock, *Journal of Nuclear Materials* 463 (2015) 1248–1251.
558 <https://doi.org/10.1016/j.jnucmat.2014.12.027>.

559 [3] J.N. Brooks, L. El-Guebaly, A. Hassanein, T. Sizuk, Plasma-facing material alternatives to
560 tungsten, *Nucl. Fusion* 55 (2015) 043002. <https://doi.org/10.1088/0029-5515/55/4/043002>.

561 [4] A. Litnovsky, V.S. Voitsenya, R. Reichle, M. Walsh, A. Razdobarin, A. Dmitriev, N. Babinov, L.
562 Marot, L. Moser, R. Yan, M. Rubel, A. Widdowson, S. Moon, S.G. Oh, Y. An, P. Shigin, I. Orlovskiy,
563 K.Yu. Vukolov, E. Andreenko, A. Krimmer, V. Kotov, Ph. Mertens, Specialists Working Group on
564 First Mirrors of the ITPA Topical Group on Diagnostics, Diagnostic mirrors for ITER: research in
565 the frame of International Tokamak Physics Activity, *Nucl. Fusion* 59 (2019) 066029.
566 <https://doi.org/10.1088/1741-4326/ab1446>.

567 [5] M. Rubel, S. Moon, P. Petersson, A. Widdowson, R.A. Pitts, S. Aleiferis, E. Fortuna-Zaleśna, G. De
568 Temmerman, R. Reichle, First mirror erosion–deposition studies in JET using an ITER-like mirror
569 test assembly, *Nucl. Fusion* 61 (2021) 046022. <https://doi.org/10.1088/1741-4326/abdb92>.

570 [6] G. Lee, C. Manière, J. McKittrick, R. Doerner, D. Nishijima, A. Gattuso, T. Abrams, D. Thomas, C.
571 Back, E.A. Olevsky, Consolidation of Molybdenum nanopowders by spark plasma sintering:
572 Densification mechanism and first mirror application, *Journal of Nuclear Materials* 516 (2019)
573 354–359. <https://doi.org/10.1016/j.jnucmat.2019.01.028>.

574 [7] M. Miyamoto, H. Takaoka, K. Ono, S. Morito, N. Yoshida, H. Watanabe, A. Sagara, Crystal
575 orientation dependence of surface modification in molybdenum mirror irradiated with helium
576 ions, *Journal of Nuclear Materials* 455 (2014) 297–300.
577 <https://doi.org/10.1016/j.jnucmat.2014.06.030>.

578 [8] M.Yu. Lavrentiev, A. Hollingsworth, J. Hess, S. Davies, A. Wohlers, B. Thomas, H. Salter, A. Baron-
579 Wiechec, I. Jepu, Y. Zayachuk, N. Peng, Effects of self-irradiation on deuterium retention and
580 reflectivity of molybdenum, fusion plasma-facing material: Combined experimental and
581 modeling study, *Journal of Applied Physics* 132 (2022) 125902.
582 <https://doi.org/10.1063/5.0099051>.

583 [9] A. Hollingsworth, M.-F. Barthe, M.Y. Lavrentiev, P.M. Derlet, S.L. Dudarev, D.R. Mason, Z. Hu, P.
584 Desgardin, J. Hess, S. Davies, B. Thomas, H. Salter, E.F.J. Shelton, K. Heinola, K. Mizohata, A. De
585 Backer, A. Baron-Wiechec, I. Jepu, Y. Zayachuk, A. Widdowson, E. Meslin, A. Morellec,
586 Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten,
587 *Journal of Nuclear Materials* 558 (2022) 153373.
588 <https://doi.org/10.1016/j.jnucmat.2021.153373>.

589 [10] P.M. Derlet, S.L. Dudarev, Microscopic structure of a heavily irradiated material, *Phys. Rev.*
590 *Materials* 4 (2020) 023605. <https://doi.org/10.1103/PhysRevMaterials.4.023605>.

591 [11] S. Wang, W. Guo, T. Schwarz-Selinger, Y. Yuan, L. Ge, L. Cheng, X. Zhang, X. Cao, E. Fu, G.-H. Lu,
592 Dynamic equilibrium of displacement damage defects in heavy-ion irradiated tungsten, *Acta
593 Materialia* 244 (2023) 118578. <https://doi.org/10.1016/j.actamat.2022.118578>.

594 [12] S.J. Zinkle, B.N. Singh, Analysis of displacement damage and defect production under cascade
595 damage conditions, *Journal of Nuclear Materials* 199 (1993) 173–191.
596 [https://doi.org/10.1016/0022-3115\(93\)90140-T](https://doi.org/10.1016/0022-3115(93)90140-T).

597 [13] S. Agarwal, M.O. Liedke, A.C.L. Jones, E. Reed, A.A. Kohnert, B.P. Uberuaga, Y.Q. Wang, J. Cooper,
598 D. Kaoumi, N. Li, R. Auguste, P. Hosemann, L. Capolungo, D.J. Edwards, M. Butterling, E.

599 Hirschmann, A. Wagner, F.A. Selim, A new mechanism for void-cascade interaction from
600 nondestructive depth-resolved atomic-scale measurements of ion irradiation-induced defects in
601 Fe, *Science Advances* 6 (2020) eaba8437. <https://doi.org/10.1126/sciadv.aba8437>.

602 [14] Y.-W. You, J. Sun, X.-S. Kong, X. Wu, Y. Xu, X.P. Wang, Q.F. Fang, C.S. Liu, Effects of self-interstitial
603 atom on behaviors of hydrogen and helium in tungsten, *Phys. Scr.* 95 (2020) 075708.
<https://doi.org/10.1088/1402-4896/ab93e5>.

604 [15] R.-Y. Zheng, W.-R. Jian, I.J. Beyerlein, W.-Z. Han, Atomic-Scale Hidden Point-Defect Complexes
605 Induce Ultrahigh-Irradiation Hardening in Tungsten, *Nano Lett.* (2021) acs.nanolett.1c01637.
<https://doi.org/10.1021/acs.nanolett.1c01637>.

606 [16] X.-S. Kong, Y.-W. You, Q.F. Fang, C.S. Liu, J.-L. Chen, G.-N. Luo, B.C. Pan, Z. Wang, The role of
607 impurity oxygen in hydrogen bubble nucleation in tungsten, *Journal of Nuclear Materials* 433
608 (2013) 357–363. <https://doi.org/10.1016/j.jnucmat.2012.10.024>.

609 [17] Y.-W. You, X.-S. Kong, X.-B. Wu, C.S. Liu, Q.F. Fang, J.L. Chen, G.-N. Luo, Interaction of carbon,
610 nitrogen and oxygen with vacancies and solutes in tungsten, *RSC Adv.* 5 (2015) 23261–23270.
<https://doi.org/10.1039/C4RA13854F>.

611 [18] C. Song, J. Hou, L. Chen, C.S. Liu, X.-S. Kong, Bridging the gap between theory and experiment in
612 vacancy concentration, C/N/O diffusivity, and divacancy interaction in tungsten: Role of vacancy-
613 C/N/O interaction, *Acta Materialia* 263 (2024) 119516.
<https://doi.org/10.1016/j.actamat.2023.119516>.

614 [19] Z. Hu, Q. Yang, F. Jomard, P. Desgardin, C. Genevois, J. Joseph, P. Olsson, T. Jourdan, M.-F.
615 Barthe, Revealing the role of oxygen on the defect evolution of electron-irradiated tungsten: A
616 combined experimental and simulation study, *Journal of Nuclear Materials* 602 (2024) 155353.
<https://doi.org/10.1016/j.jnucmat.2024.155353>.

617 [20] G.-H. Lu, H.-B. Zhou, C.S. Bocquart, A review of modelling and simulation of hydrogen behaviour
618 in tungsten at different scales, *Nucl. Fusion* 54 (2014) 086001. <https://doi.org/10.1088/0029-5515/54/8/086001>.

619 [21] M.Y. Ye, H. Kanehara, S. Fukuta, N. Ohno, S. Takamura, Blister formation on tungsten surface
620 under low energy and high flux hydrogen plasma irradiation in NAGDIS-I, *Journal of Nuclear
621 Materials* 313–316 (2003) 72–76. [https://doi.org/10.1016/S0022-3115\(02\)01349-1](https://doi.org/10.1016/S0022-3115(02)01349-1).

622 [22] Y. Ueda, T. Shimada, M. Nishikawa, Impacts of carbon impurities in hydrogen plasmas on
623 tungsten blistering, *Nucl. Fusion* 44 (2003) 62–67. <https://doi.org/10.1088/0029-5515/44/1/007>.

624 [23] W.M. Shu, G.-N. Luo, T. Yamanishi, Mechanisms of retention and blistering in near-surface region
625 of tungsten exposed to high flux deuterium plasmas of tens of eV, *Journal of Nuclear Materials*
626 367–370 (2007) 1463–1467. <https://doi.org/10.1016/j.jnucmat.2007.04.005>.

627 [24] D. Nishijima, M.Y. Ye, N. Ohno, S. Takamura, Formation mechanism of bubbles and holes on
628 tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II, *Journal
629 of Nuclear Materials* 329–333 (2004) 1029–1033.
<https://doi.org/10.1016/j.jnucmat.2004.04.129>.

630 [25] J. Zhao, X. Meng, X. Guan, Q. Wang, K. Fang, X. Xu, Y. Lu, J. Gao, Z. Liu, T. Wang, Investigation of
631 hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation, *Journal of Nuclear
632 Materials* 503 (2018) 198–204. <https://doi.org/10.1016/j.jnucmat.2018.03.004>.

633 [26] E. Bernard, R. Sakamoto, E. Hodille, A. Kreter, E. Autissier, M.-F. Barthe, P. Desgardin, T. Schwarz-
634 Selinger, V. Burwitz, S. Feuillastre, S. Garcia-Argote, G. Pieters, B. Rousseau, M. Ialovega, R.
635 Bisson, F. Ghiorghiu, C. Corr, M. Thompson, R. Doerner, S. Markelj, H. Yamada, N. Yoshida, C.
636 Grisolia, Tritium retention in W plasma-facing materials: Impact of the material structure and
637 helium irradiation, *Nuclear Materials and Energy* 19 (2019) 403–410.
<https://doi.org/10.1016/j.nme.2019.03.005>.

638 [27] A.A. Haasz, M. Poon, J.W. Davis, The effect of ion damage on deuterium trapping in tungsten,
639 *Journal of Nuclear Materials* (1999) 6.

640 [28] Y. Ueda, H.Y. Peng, H.T. Lee, N. Ohno, S. Kajita, N. Yoshida, R. Doerner, G. De Temmerman, V.
641 Alimov, G. Wright, Helium effects on tungsten surface morphology and deuterium retention,
642 [29]

650 Journal of Nuclear Materials 442 (2013) S267–S272.
651 <https://doi.org/10.1016/j.jnucmat.2012.10.023>.

652 [29] H. Iwakiri, K. Yasunaga, K. Morishita, N. Yoshida, Microstructure evolution in tungsten during
653 low-energy helium ion irradiation, Journal of Nuclear Materials 283–287 (2000) 1134–1138.
654 [https://doi.org/10.1016/S0022-3115\(00\)00289-0](https://doi.org/10.1016/S0022-3115(00)00289-0).

655 [30] S. Kajita, W. Sakaguchi, N. Ohno, N. Yoshida, T. Saeki, Formation process of tungsten
656 nanostructure by the exposure to helium plasma under fusion relevant plasma conditions, Nucl.
657 Fusion 49 (2009) 095005. <https://doi.org/10.1088/0029-5515/49/9/095005>.

658 [31] J.R. Fransens, M.S.A.E. Keriem, F. Pleiter, Hydrogen-vacancy interaction in tungsten, J. Phys.:
659 Condens. Matter 3 (1991) 9871–9886. <https://doi.org/10.1088/0953-8984/3/49/004>.

660 [32] M.S.A.E. Keriem, D.P. van der Werf, F. Pleiter, Hydrogen-vacancy interaction in molybdenum, J.
661 Phys.: Condens. Matter 5 (1993) 1801. <https://doi.org/10.1088/0953-8984/5/12/008>.

662 [33] P.E. Lhuillier, M.F. Barthe, P. Desgardin, W. Egger, P. Sperr, Positron annihilation studies on the
663 nature and thermal behaviour of irradiation induced defects in tungsten, Phys. Status Solidi (c) 6
664 (2009) 2329–2332. <https://doi.org/10.1002/pssc.200982114>.

665 [34] P.-E. Lhuillier, Etude du comportement de l'hélium et des défauts lacunaires dans le tungstène,
666 phdthesis, Université d'Orléans, 2010. <https://tel.archives-ouvertes.fr/tel-00587482> (accessed
667 January 7, 2021).

668 [35] A. Debelle, M.F. Barthe, T. Sauvage, First temperature stage evolution of irradiation-induced
669 defects in tungsten studied by positron annihilation spectroscopy, Journal of Nuclear Materials
670 376 (2008) 216–221. <https://doi.org/10.1016/j.jnucmat.2008.03.002>.

671 [36] Hautojärvi, Corbel C., Positron Spectroscopy of Defects in Metals and Semiconductors, ENFI 125
672 (1995) 491–532. <https://doi.org/10.3254/978-1-61499-211-0-491>.

673 [37] M. Hakala, M.J. Puska, R.M. Nieminen, Momentum distributions of electron-positron pairs
674 annihilating at vacancy clusters in Si, Phys. Rev. B 57 (1998) 7621–7627.
675 <https://doi.org/10.1103/PhysRevB.57.7621>.

676 [38] M.J. Puska, R.M. Nieminen, Defect spectroscopy with positrons: a general calculational method,
677 (n.d.) 15.

678 [39] Q. Yang, X. Cao, B. Wang, P. Wang, P. Olsson, Systematic investigation of positron annihilation in
679 transition metals from first principles, Phys. Rev. B 108 (2023) 104113.
680 <https://doi.org/10.1103/PhysRevB.108.104113>.

681 [40] I. Makkonen, M. Hakala, M.J. Puska, Modeling the momentum distributions of annihilating
682 electron-positron pairs in solids, Phys. Rev. B 73 (2006) 035103.
683 <https://doi.org/10.1103/PhysRevB.73.035103>.

684 [41] Q. Yang, Z. Hu, I. Makkonen, P. Desgardin, W. Egger, M.-F. Barthe, P. Olsson, A combined
685 experimental and theoretical study of small and large vacancy clusters in tungsten, Journal of
686 Nuclear Materials 571 (2022) 154019. <https://doi.org/10.1016/j.jnucmat.2022.154019>.

687 [42] Z. Hu, J. Wu, Q. Yang, F. Jomard, F. Granberg, M.-F. Barthe, New Insight into the Quantifying
688 Vacancy Distribution in Self-Ion-Irradiated Tungsten: A Combined Experimental and
689 Computational Study, Nano Lett. (2025). <https://doi.org/10.1021/acs.nanolett.5c01711>.

690 [43] J. Hou, X.-S. Kong, W. Hu, H. Deng, D. Nguyen-Manh, J. Song, Deuterium Trapping and Desorption
691 by Vacancy Clusters in Irradiated Mo from Object Kinetic Monte Carlo Simulations, (2024).
692 <https://doi.org/10.2139/ssrn.4700194>.

693 [44] R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, On the use of
694 SRIM for computing radiation damage exposure, Nuclear Instruments and Methods in Physics
695 Research Section B: Beam Interactions with Materials and Atoms 310 (2013) 75–80.
696 <https://doi.org/10.1016/j.nimb.2013.05.008>.

697 [45] Y.-R. Lin, S.J. Zinkle, C.J. Ortiz, J.-P. Crocombette, R. Webb, R.E. Stoller, Predicting displacement
698 damage for ion irradiation: Origin of the overestimation of vacancy production in SRIM full-
699 cascade calculations, Current Opinion in Solid State and Materials Science 27 (2023) 101120.
700 <https://doi.org/10.1016/j.cossms.2023.101120>.

701 [46] P. Jung, G. Lucki, Damage production by fast electrons in dilute alloys of vanadium, niobium and
702 molybdenum, *Radiation Effects* 26 (1975) 99–103.
703 <https://doi.org/10.1080/00337577508237426>.

704 [47] P. Desgardin, L. Liszkay, M.F. Barthe, L. Henry, J. Briaud, M. Saillard, L. Lepolotec, C. Corbel, G.
705 Blondiaux, A. Colder, P. Marie, M. Levalois, Slow Positron Beam Facility in Orléans, *MSF* 363–365
706 (2001) 523–525. <https://doi.org/10.4028/www.scientific.net/MSF.363-365.523>.

707 [48] E. Soininen, H. Huomo, P.A. Huttunen, J. Mäkinen, A. Vehanen, P. Hautojärvi, Temperature
708 dependence of positron diffusion in cubic metals, *Phys. Rev. B* 41 (1990) 6227–6233.
709 <https://doi.org/10.1103/PhysRevB.41.6227>.

710 [49] A. van Veen, H. Schut, J. de Vries, R.A. Hakvoort, M.R. IJpma, Analysis of positron profiling data
711 by means of “VEPFIT,” in: *AIP Conference Proceedings*, AIP, Ontario (Canada), 1991: pp. 171–
712 198. <https://doi.org/10.1063/1.40182>.

713 [50] A. van Veen, H. Schut, M. Clement, J.M.M. de Nijs, A. Kruseman, M.R. IJpma, VEPFIT applied to
714 depth profiling problems, *Applied Surface Science* 85 (1995) 216–224.
715 [https://doi.org/10.1016/0169-4332\(94\)00334-3](https://doi.org/10.1016/0169-4332(94)00334-3).

716 [51] P.J. Schultz, K.G. Lynn, Interaction of positron beams with surfaces, thin films, and interfaces,
717 *Rev. Mod. Phys.* 60 (1988) 701–779. <https://doi.org/10.1103/RevModPhys.60.701>.

718 [52] R.S. Brusa, W. Deng, G.P. Karwasz, A. Zecca, Doppler-broadening measurements of positron
719 annihilation with high-momentum electrons in pure elements, *Nuclear Instruments and Methods*
720 in Physics Research Section B: Beam Interactions with Materials and Atoms

721 194 (2002) 519–531. [https://doi.org/10.1016/S0168-583X\(02\)00953-9](https://doi.org/10.1016/S0168-583X(02)00953-9).

722 [53] Z. Hu, Q. Yang, F. Jomard, P. Desgardin, C. Genevois, J. Joseph, P. Olsson, T. Jourdan, M.-F.
723 Barthe, Revealing the role of oxygen on the defect evolution of electron-irradiated tungsten: A
724 combined experimental and simulation study, *Journal of Nuclear Materials* 602 (2024) 155353.
725 <https://doi.org/10.1016/j.jnucmat.2024.155353>.

726 [54] Z. Hu, P. Desgardin, C. Genevois, J. Joseph, B. Décamps, R. Schäublin, M.-F. Barthe, Effect of
727 purity on the vacancy defects induced in self-irradiated tungsten: A combination of PAS and
728 TEM, *Journal of Nuclear Materials* 556 (2021) 153175.
729 <https://doi.org/10.1016/j.jnucmat.2021.153175>.

730 [55] Z. Hu, J. Wu, F. Jomard, F. Granberg, M.-F. Barthe, New insight into quantifying vacancy
731 distribution in self-ion irradiated tungsten: a combined experimental and computational study,
732 (2024). <https://doi.org/10.48550/arXiv.2411.13480>.

733 [56] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a
734 plane-wave basis set, *Phys. Rev. B* 54 (1996) 11169–11186.
735 <https://doi.org/10.1103/PhysRevB.54.11169>.

736 [57] P.E. Blöchl, Projector augmented-wave method, *Phys. Rev. B* 50 (1994) 17953–17979.
737 <https://doi.org/10.1103/PhysRevB.50.17953>.

738 [58] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys.*
739 *Rev. Lett.* 77 (1996) 3865–3868. <https://doi.org/10.1103/PhysRevLett.77.3865>.

740 [59] J. Hou, Y.-W. You, X.-S. Kong, J. Song, C.S. Liu, Accurate prediction of vacancy cluster structures
741 and energetics in bcc transition metals, *Acta Materialia* 211 (2021) 116860.
742 <https://doi.org/10.1016/j.actamat.2021.116860>.

743 [60] E. Boroński, R.M. Nieminen, Electron-positron density-functional theory, *Phys. Rev. B* 34 (1986)
744 3820–3831. <https://doi.org/10.1103/PhysRevB.34.3820>.

745 [61] A. Rubaszek, Electron-positron enhancement factors at a metal surface: Aluminum, *Phys. Rev. B*
746 44 (1991) 10857–10868. <https://doi.org/10.1103/PhysRevB.44.10857>.

747 [62] V. Callewaert, R. Saniz, B. Barbiellini, A. Bansil, B. Partoens, Application of the weighted-density
748 approximation to the accurate description of electron-positron correlation effects in materials,
749 *Phys. Rev. B* 96 (2017) 085135. <https://doi.org/10.1103/PhysRevB.96.085135>.

750 [63] M. Alatalo, B. Barbiellini, M. Hakala, H. Kauppinen, T. Korhonen, M.J. Puska, K. Saarinen, P.
751 Hautojärvi, R.M. Nieminen, Theoretical and experimental study of positron annihilation with

752 core electrons in solids, Phys. Rev. B 54 (1996) 2397–2409.
753 <https://doi.org/10.1103/PhysRevB.54.2397>.

754 [64] M. Sidibe, Etude du comportement du tungstène sous irradiation : applications aux réacteurs de
755 fusion, phdthesis, Université d'Orléans, 2014. <https://tel.archives-ouvertes.fr/tel-01068634>
756 (accessed January 7, 2021).

757 [65] C. He, Experimental study of the interaction of vacancy defects with Y, O and Ti solutes to better
758 understand their roles in the nanoparticles formation in ODS steels, These de doctorat, Orléans,
759 2014. <http://www.theses.fr/2014ORLE2057> (accessed January 17, 2021).

760 [66] F. Granberg, J. Byggmästar, K. Nordlund, Molecular dynamics simulations of high-dose damage
761 production and defect evolution in tungsten, Journal of Nuclear Materials 556 (2021) 153158.
762 <https://doi.org/10.1016/j.jnucmat.2021.153158>.

763 [67] A.P. Selby, D. Xu, N. Juslin, N.A. Capps, B.D. Wirth, Primary defect production by high energy
764 displacement cascades in molybdenum, Journal of Nuclear Materials 437 (2013) 19–23.
765 <https://doi.org/10.1016/j.jnucmat.2013.01.332>.

766 [68] J. Hou, X. Kong, W. Hu, H. Deng, D. Nguyen-Manh, J. Song, Deuterium trapping and desorption by
767 vacancy clusters in irradiated Mo from object kinetic Monte Carlo simulations, Acta Materialia
768 274 (2024) 120014. <https://doi.org/10.1016/j.actamat.2024.120014>.

769 [69] Z. Hu, L'effet de la pureté sur l'évolution de la microstructure du tungstène sous irradiation,
770 [Http://Www.Theses.Fr](http://Www.Theses.Fr) (2022). <http://www.theses.fr/s265136> (accessed September 15, 2022).

771 [70] B. Wieluńska-Kuś, M. Dickmann, W. Egger, M. Zibrov, Ł. Ciupiński, Positron lifetime study of ion-
772 irradiated tungsten: Ion type and dose effects, Nuclear Materials and Energy (2024) 101610.
773 <https://doi.org/10.1016/j.nme.2024.101610>.

774 [71] L. Ventelon, F. Willaime, C.-C. Fu, M. Heran, I. Ginoux, Ab initio investigation of radiation defects
775 in tungsten: Structure of self-interstitials and specificity of di-vacancies compared to other bcc
776 transition metals, Journal of Nuclear Materials 425 (2012) 16–21.
777 <https://doi.org/10.1016/j.jnucmat.2011.08.024>.

778 [72] M. Muzyk, D. Nguyen-Manh, K.J. Kurzydłowski, N.L. Baluc, S.L. Dudarev, Phase stability, point
779 defects, and elastic properties of W-V and W-Ta alloys, Phys. Rev. B 84 (2011) 104115.
780 <https://doi.org/10.1103/PhysRevB.84.104115>.

781 [73] C.S. Becquart, C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nuclear
782 Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and
783 Atoms 255 (2007) 23–26. <https://doi.org/10.1016/j.nimb.2006.11.006>.

784 [74] J.Y. Park, H.C.W. Huang, R.W. Siegel, R.W. Balluffi, A quantitative study of vacancy defects in
785 quenched tungsten by combined field-ion microscopy and electrical resistometry, Philosophical
786 Magazine A 48 (1983) 397–419. <https://doi.org/10.1080/01418618308234901>.

787 [75] C.S. Becquart, C. Domain, U. Sarkar, A. DeBacker, M. Hou, Microstructural evolution of irradiated
788 tungsten: Ab initio parameterisation of an OKMC model, Journal of Nuclear Materials 403 (2010)
789 75–88. <https://doi.org/10.1016/j.jnucmat.2010.06.003>.

790 [76] K. Heinola, F. Djurabekova, T. Ahlgren, On the stability and mobility of di-vacancies in tungsten,
791 Nucl. Fusion 58 (2018) 026004. <https://doi.org/10.1088/1741-4326/aa99ee>.

792 [77] A. Zhong, C. Lapointe, A.M. Goryaeva, K. Arakawa, M. Athènes, M.-C. Marinica, Unraveling
793 Temperature-Induced Vacancy Clustering in Tungsten: From Direct Microscopy to Atomistic
794 Insights via Data-Driven Bayesian Sampling, PRX Energy 4 (2025) 013008.
795 <https://doi.org/10.1103/PRXEnergy.4.013008>.

796 [78] P.-W. Ma, S.L. Dudarev, Symmetry-broken self-interstitial defects in chromium, molybdenum,
797 and tungsten, Phys. Rev. Materials 3 (2019) 043606.
798 <https://doi.org/10.1103/PhysRevMaterials.3.043606>.

799 [79] A. De Backer, C. Domain, C.S. Becquart, L. Luneville, D. Simeone, A.E. Sand, K. Nordlund, A model
800 of defect cluster creation in fragmented cascades in metals based on morphological analysis, J.
801 Phys.: Condens. Matter 30 (2018) 405701. <https://doi.org/10.1088/1361-648X/aadb4e>.

802 [80] A. Fellman, A.E. Sand, J. Byggmästar, K. Nordlund, Radiation damage in tungsten from cascade
803 overlap with voids and vacancy clusters, *J. Phys.: Condens. Matter* 31 (2019) 405402.
804 <https://doi.org/10.1088/1361-648X/ab2ea4>.

805 [81] F. Granberg, J. Byggmästar, K. Nordlund, Cascade overlap with vacancy-type defects in Fe, *Eur.
806 Phys. J. B* 92 (2019) 146. <https://doi.org/10.1140/epjb/e2019-100240-3>.

807 [82] K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R. Stoller, T. Suzudo, L. Malerba, F.
808 Banhart, W.J. Weber, F. Willaime, S.L. Dudarev, D. Simeone, Improving atomic displacement and
809 replacement calculations with physically realistic damage models, *Nat Commun* 9 (2018) 1084.
810 <https://doi.org/10.1038/s41467-018-03415-5>.

811 [83] A.Yu. Konobeyev, U. Fischer, Yu.A. Korovin, S.P. Simakov, Evaluation of effective threshold
812 displacement energies and other data required for the calculation of advanced atomic
813 displacement cross-sections, *Nuclear Energy and Technology* 3 (2017) 169–175.
814 <https://doi.org/10.1016/j.nucet.2017.08.007>.

815 [84] R. Pasianot, M. Alurralde, A. Almazouzi, M. Victoria, Primary damage formation in molybdenum:
816 A computer simulation study, *Philosophical Magazine A* 82 (2002) 1671–1689.
817 <https://doi.org/10.1080/01418610208235683>.

818 [85] Primary Radiation Damage in Materials, Nuclear Energy Agency (NEA) (n.d.). https://www.oecd-nea.org/jcms/pl_19620/primary-radiation-damage-in-materials?details=true (accessed October
819 10, 2023).

820 [86] D.R. Mason, S. Das, P.M. Derlet, S.L. Dudarev, A.J. London, H. Yu, N.W. Phillips, D. Yang, K.
821 Mizohata, R. Xu, F. Hofmann, Observation of Transient and Asymptotic Driven Structural States
822 of Tungsten Exposed to Radiation, *Phys. Rev. Lett.* 125 (2020) 225503.
823 <https://doi.org/10.1103/PhysRevLett.125.225503>.

824 [87] Q. Yang, P. Olsson, Full energy range primary radiation damage model, *Phys. Rev. Materials* 5
825 (2021) 073602. <https://doi.org/10.1103/PhysRevMaterials.5.073602>.

826 [88] R.H.J. Fastenau, L.M. Caspers, A. van Veen, Small clusters of vacancies and helium in
827 molybdenum, *Phys. Stat. Sol. (a)* 34 (1976) 277–289. <https://doi.org/10.1002/pssa.2210340124>.

828 [89] W. Asplet, Etude des interactions entre les défauts lacunaires et les solutés Y, O, Ti pour mieux
829 comprendre leur rôle dans la formation des nanoparticules d'oxydes dans les aciers ODS, (n.d.)
830 269.

831

832