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Abstract

Microstructural evolution—driven degradation governs material properties and is closely
linked with defect behavior. Quantitatively characterizing defects and their evolution is
essential for elucidating the underlying degradation mechanisms. To this end, the defects were
introduced at room temperature using self-ion irradiation for damage levels ranging from 0.01
to 2 displacements-per-atom. The depth distribution of vacancy defects were characterized by
means of a variable-energy positron beam and compared with simulation results. Quantitative
analyses of vacancy in the most damaged regions were carried out by combining positron
annihilation spectroscopy with a simulated annealing algorithm parametrized with a positron
trapping model and first-principles calculations. The defect size distribution -from single
vacancy to vacancy clusters- was assessed at each damage levels, providing insights into the
quantification of early-stage vacancy defects. Our results revealed that at 0.01 dpa, nearly all
vacacncy defect exists as isolated single vacancies. The proportion of isolate single vacancies
gradually drops to ~20% with increasing damage level, reaching a steady state (> 0.5 dpa).
Meanwhile, clusters consisting of four or more single vacancies account for ~12 % of the total
vacancy defects. when the damage level exceeds 0.1 dpa, the formation of large clusters

containing more than 15 vacancies, although limited to less than 1% in population, cannot be
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excluded. Furthermore, the estimated vacancy accumulation trend is consistent with available
computational results, and unveils that the vacancy clustering is more pronounced in

molybdenum than in tungsten et the early stage evolution.

Keywords: Vacancy quantification, Defect distribution, Positron annihilation spectroscopy,
First-principles calculation, Fusion materials,

1. Introduction

Future fusion power plants require high-performance materials. Tungsten (W) and
Molybdenum (Mo) are the most auspicious candidates for plasma-facing components (PFC)
[1,2] thanks to their high melting points, thermal conductivity, and low sputtering yield [3].
Compared to W, Mo offers advantages in certain properties and has been chosen to line the
inner wall of the Experimental Advanced Superconducting Tokamak (EAST) [4]. For example,
radiation-induced activation is lower in Mo than in W [5], and Mo is simpler to manufacture
into lighter components than W components. In the operation of the future reactor, monitoring
the stability of the plasma is essential. To achieve this, the plasma mirror (PM), as a part of the
optical diagnostics system, is used to reflect the light from the plasmas [4]. Promising results
[5-7] have been revealed using Mo as PM. Moreover, in tokamaks, inner walls and structural
materials are subjected to hydrogen (H) and helium (He) plasma and neutron irradiation, which
degrade their properties. Recent research conducted by Lavrentiev et al. [8] demonstrates that
the reflectivity of Mo remains stable up to fluences of 10'® m under self-ion irradiation. In this
study, the irradiated Mo samples were characterized by Thermal desorption spectrometry after
exposure to deuterium plasma. The deuterium inventory increased with the damage level until
reaching a saturation, similar to findings in previous work on W [9]. According to modeling,
this saturation occurs when the damage dose reaches 0.5 dpa [10]. This saturation reveals that
a steady-state microstructure forms once the damage reaches a certain threshold level [9,11].

This is probably due to competition between Frenkel-Pairs (FPs) recombination, cascades
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overlapping [12], and agglomeration of self-interstitial loops, accompanied by the shrinkage of
the vacancy clusters [13]. The resulting steady-state microstructure consists of vacancy defects,
including single vacancy (Vi) and vacancy clusters (Vn), dispersed within a network of
dislocations formed by self-interstitial atoms (SIAs). Both interstitial and vacancy defects
capture H and He isotopes, particularly the vacancy defects [14,15]. Furthermore, light-element
impurities (LEs) also influence defect evolution [16-19] and serve as potential traps for H [20].
The interaction of H and He with the defects has been observed to cause blistering [21-23],
bubbles [24,25], and fuzzy surfaces [17]. The trapping properties of H and He in vacancy
defects are a major parameter in the degradation of material properties [26-30], and the Kinetic
appearance of bubbles and blisters depends on the nature of the vacancy [15,20,31,32].
Therefore, quantifying defects is a crucial step in predicting tritium retention, swelling and

material evolution in tokamaks.

Positron annihilation spectroscopy (PAS) is renowned for nondestructive technique to
characterize atomic-scale vacancy defects, thanks to its unique sensitivity. For instance,
Lhuillier et al. [33,34] and Debelle et al. [35] have identified the signal of the V1 in W and
monitored its evolution with a post-irradiation isochronal annealing experiment. They have
observed the activation temperature for V1 between 523 and 573 K [35]. Positron annihilation
is primarily implemented in two types of spectroscopy: Doppler broadening spectrometry and
positron annihilation lifetime spectroscopy (PALS), which allow the measurement of two
annihilation characteristics: the momentum distribution of annihilated positron-electron (e*-¢")
pairs and lifetime, respectively [36]. Theoretically, each type of vacancy defect exhibits specific
annihilation characteristics, difficult to determine all of them through experimental methods.
For this issue, first-principles calculations can provide helpful information [37,38]. Recently,
Yang et al. [39] have shown the accurate calculation of the Doppler Broadening Spectrum (DBS)

and the lifetime of several transition metals using the two-component density functional theory
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(TCDFT) developed by Makkonen et al. [40]. In tungsten, the evolution of annihilation
characteristics for different types of vacancy defects from V1 to the vacancy cluster has been
revealed by calculation and experiment [41]. Considering the similarities between W and Mo,
we used this first-principles method to calculate the DBS and the lifetime of the vacancy defects
in Mo. This method enables the determination of the positron annihilation characteristics
(lifetime, S, and W) for vacancy defects that are challenging to isolate and quantify
experimentally. In line with the simulation, we employed Doppler Broadening spectrometry
with a variable monoenergetic positron beam to characterize the radiation-induced defects in
Mo using self-ion at Room Temperature (RT). Furthermore, we conducted the method recently
proposed in [42] for qualifying the proportion of each type of vacancy defect from DBS by
combining a simulated annealing algorithm, parametrized with a positron trapping model and
first-principles calculations. The estimated vacancy defect distribution was compared to Object

Kinetic Monte Carlo (OKMC) simulations [43].

2. Methods

2.1 Sample preparation and irradiations

Polycrystalline Mo samples were polished until a mirror-like surface and then annealed at
1200 °C for 2 h. The prepared Mo samples were damaged using 1 MeV self-ion at RT with
various fluences, ranging from 2.1 x 10 to 4.2 x 10 m™. The program Stopping and Range
of lons in Matter (SRIM) was used to compute the damage profile, with the ‘Kinchin-Pease
quick calculation’ option recommended by Stoller et al. [44] and recently checked by Lin et al.
[45]. The damaged region was predicted between 0 and 400 nm, with the peak at around 110
nm. Tab.1 summarizes the irradiation conditions. 34 eV was used as the threshold displacement
energy (TDE) [46]. The fluences used in this work induced maximum damage, quantified in
displacement per atom (dpa), ranging from ~0.01 dpa up to ~2 dpa. Further details on

preparation and irradiation have been reported in [8].
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Tab 1: irradiation conditions for 1 MeV-Mo in Mo using SRIM-2008 Kinchin-Pease quick calculation with a TDE of 34 eV

Fluence (cm) 2.1x 10 2.1x 108 6.3 x 1013 1.1x10% 21x10% 4.2x10%
Damage (dpa)  0.0096 (~0.01)  0.096 (~0.1)  0.29 (~0.30) 0.48 (~0.5) 096 (~1) 1.92(~2)

Time (s) 64 143 927 2109 2394 5543

2.2 Positron annihilation spectroscopy

Thermalized positrons diffuse in the crystalline lattice and can move to a relatively low
electronic density position due to repulsion from the host nucleus. They eventually annihilate
with a surrounding electron, emitting two gamma rays of 511 = AE keV. The energy deviation
AE depends essentially on the kinetic momentum of the annihilating electron. The gamma rays
from the annihilation, are collected in the measured DBS centered at 511 keV, representing the
momentum distribution of the annihilated positron-electron pairs starting at 0 moc (mo: electron
mass, and c: light speed). The low (resp. high) momentum parameter S (resp. W) corresponds
to the ratio of the counts in the low (resp. high) momentum region over the counts in the total

momentum range.

At CEMHTI Laboratory, a DB Spectrometer is coupled to a Slow Positron Beam (SPB-
DBS) that produces a monoenergetic positron beam with a variable energy ranging from 0.5 to
25 keV [47]. Annihilation gamma rays are recorded using a high-purity germanium detector
with an efficiency of over 25 % at 1.33 MeV. The spectrometer has a dead time of around 10 %
and an energy resolution of ~1.25 keV (full width at half maximum, FWHM), equivalent to a
momentum resolution of 4.89 x 10® moc. The S (resp. W) parameter is calculated in the
momentum range of |2.64| x 1073 moc (resp. (19.80] - |24.88]) x 10-3 moc) of each DBS. According
to the Makhovian model [48], the maximum penetration of slow positrons in Mo is about 1300
nm. The VEPFIT program [49,50] is used to extract the depth distribution of defects from the
S and W values measured as functions of positron energy (S(E) and W(E)) by modeling the

sample as several homogenous layers. Each layer has specific annihilation characteristics,
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including the S, W parameters and an effective diffusion length of the positrons, i.e. L. The
Li¢s is physically related to the concentration of defects which impede the positron diffusion
and to the intrinsic diffusion coefficient of positrons D*, which is of about 1.2(1) x 10 m?.s
at 300 K in Mo

[51].

+ D*
Leff - \/AL*'kcot @D

Where 4, is the defect-free Lattice annihilation rate, and k., the total trapping rate. A, is the
inverse of the Lattice positron lifetime t;, which means the lifetime of positrons annihilating as
delocalized in the perfect lattice. For Mo, 7, was estimated experimentally and by calculation
at values of 103 ps [52] and 106 ps [39], respectively. These values are close to those of tungsten
of about 105 ps [41,52,53]. In a solid containing p types of vacancy defects (Vi), positrons can
annihilate as delocalized in the perfect lattice and as being trapped in the different defects V;,
with a trapping rate k;. The measured S and W parameters can be represented as a weighted
sum of the specific S and W values associated with each type of annihilation state j (i.e. p defects
and lattice) and their respective annihilation fractions (f;), using a trapping model [36] with

p+1 states. The f; for individual potential defects i are given by the following expression:

ki
fi= ALtkeot @)

The vacancy concentration C; relates to the specific positron trapping coefficient y; and the
trapping rate k;, expressed as C; = k;/u;. In W, the specific trapping coefficient of V1 is about
(6 + 3) x 10'® m3.51 [36,54] and should be equivalent in Mo due to similar crystalline structure
and lattice parameters in both materials. For small vacancy clusters containing less than ten Vy,
their specific trapping coefficients are proportional to the number n of the included V4, i.e.
Hy, =71 yy,[36]. On the other hand, for the large vacancy clusters containing more than 10

V1, the estimation of specific trapping coefficients was detailed in [55].
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2.3 First-principles calculations

The first-principles calculations were conducted by using the Vienna Ab initio Simulation
Package (VASP) [56] with the projector augmented wave (PAW) method [57]. The generalized
gradient approximation with the Perdew-Burke-Ernzerhof exchange-correlation function[58]
was used for the electron exchange and correlation energy. The 6 x 6 x 6 bcc supercells
containing 432 lattice sites were used for all calculations. The plane-wave cutoff energy was
set to 230 eV, and the I point only was used for all calculations. We chose the PAW potential,
which treats the 4p®4d°5s! electrons as valence states in Mo. The convergence criterion for the
electronic loop was 10°° eV. The force tolerance for ionic relaxation was 0.01 eV/A. Hou et al.
[59] have determined the stable structures of vacancy clusters by minimizing their Wigner-Seitz
areas, the same structures of vacancy clusters were used in this study. Because for a give
vacancy cluster in bcc metals, the configuration with minimum Wigner-Seitz area is always the

same, regardless of the type of materials.

After the standard DFT calculations, the positronic structures were computed based on the
electronic structures computed by two-component DFT [60]. The Rubaszek weighted-density
approximation (WDA) [61] was used for the e*-e” correlation potential to compute the positron
densities. The positron implementation was developed and provided by Makkonen et al. [40],
and the WDA part was developed by Callewaert et al. [62]. A detailed discussion about using
WDA to compute the positron annihilation characteristics in vacancy clusters can be found in
Ref. [41]. The positron was approximated not to affect the average electron density, and the
zero-positron-density limit was used [60]. Although the zero-density-limit results in the non-
self-consistent treatment of positron densities, it has been shown in Ref. [34] that the non-self-
consistent calculation yields very similar results with the fully self-consistent calculations for
small vacancy defects. The momentum distribution of annihilating e*-e” pairs (Doppler spectra)

was computed with the state-dependent scheme [63] and PAW method [40]. All computed
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Doppler spectra were convoluted with a Gaussian function with a FWHM corresponding to the

experimental resolution (4.89 x 10" moc).

3. Results
3.1 First-principles calculation
In our previous work [41], the two-component DFT was used to calculate the annihilation
characteristics of several annihilation states in W. The evolution from the Lattice to V1 and
from V1 to the largest vacancy cluster (V) was demonstrated in agreement with the experiment
[41]. Accordingly, the two-component DFT was also employed to calculate annihilation
characteristics (lifetime and S, W parameter) of various annihilation states (Lattice and
vacancies) in Mo with identical parameters [41]. The line L1 connects the Lattice and V1, S, W

points corresponding to the annihilation between these two states with different fractions.

a b

S parameter

0.36-

0.344 Lattice

005 006 007 008 009
W parameter

Fig. 1: two-component DFT-calculated a) positron annihilation lifetime and b) momentum parameters S vs W curves

for Mo and W [41]: the vacancy radius was estimated assuming a spherical model.

Fig. 1 compares the positron annihilation characteristics of vacancy clusters in tungsten
and molybdenum (positron lifetimes a and S-W plot b). Fig. 1a clearly shows that, with the
increase of vacancy cluster size (from V1 to V2o), the positron lifetime gradually increases from

200 ps to 350 ps. Fig. 1b presents the S-W points of vacancy clusters in W and Mo. The S-W



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

points follow the same trend with the increase of vacancy cluster sizes. However, when the
vacancy cluster size is greater than Va7 (radius = 0.47 nm), the positron annihilation
characteristics reach saturation, in this regime, the identifiable largest vacancy cluster is referred
to Vn. When comparing the difference in the W parameter between Mo and W for the various
annihilation states, the values for the Lattice are the most remarkable. The W is lower in Mo
than in W, probably because the number of electrons close to the nuclei (core electrons) is
higher for W. The S parameter which mainly reveals the annihilation of the valence electrons,
is very close in both Mo and W. In addition, it should be noted that in the experimental spectra,
the high momentum region has relatively low counts, making it challenging to highlight the

difference in the W parameter, as shown in supplementary I1.

3.2 Positron annihilation spectroscopy

3.2.1 Reference sample

The S(E) curve of the Mo reference sample annealed at 1200 °C for 2h is plotted in Fig.
2a, the data was adequately fitted using VEPFIT in the one homogenous layer model. The
annihilation characteristics were Sret = 0.377 (3), Wrer = 0.079 (2), and the L}, of positrons
equals 63 nm. The fitting (Tab.1) was carried out from 2 keV, as the annihilation fraction at the
sample surface is important below this energy [41]. As the L}, is shorter than the intrinsic
diffusion length (110 nm) determined at 300 K for Mo [48], this suggests that a small fraction

of vacancy defects were not eliminated during the annealing process.

After a further annealing at higher temperature of about 1700 °C/2h under high vaccum
(10" Pa), the L, expands to 92 (18) nm, and the annihilation characteristics Si7o0 and Wi
(blue circle) overlap with the Lattice point in W (see the S-W curve in Fig. 2b), suggesting that
the Lattice annihilation characteristics S.(Mo) and W, (Mo) for Mo are very close to those
experimentally determined in W. This confirms the suggestion in the part 3.1, i.e. the S, W

parameters corresponding to Lattice and V1 are very close for Mo and W.
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In Fig. 2b, the S, W points extracted from S(E) and W(E) using VEPFIT for Mo samples
are plotted with the Lattice, V1, and Vn points already determined for W [33,54,64]. The specific
point (dark circle in Fig. 2b) of the reference Mo sample (Wref, Srer) is aligned on the V1 line
found in W and is located slightly at a higher left position on this line relative to the W Lattice
point (red star in Fig. 2b). Furthermore, considering that defects are mostly V1, the residual
defects concentration were calculated using equation (4) in literature [9] with the lifetime of the
Mo Lattice of 103 ps [52]. The remaining vacancy concentration is about 3 x 10 m?in the
reference sample with a L{;, of about 63 nm, and 5.5 x 10% m™ in the reannealed Mo sample
with a Lf;, of 92 nm. It is important to note that, after the initial annealing at 1200 °C for 2
hours, the remaining concentration of vacancy defects is too low to interfere with the study of
irradiation-induced defects. This previous state before irradiation is named refrerence state i.e.

Ref in the following discussion.

3.2.2 Self-irradiated samples

The S(E) curves plotted in Fig. 2a, reveal the distribution of defects in Mo samples
irradiated at fluence in the range from 2.1 x 10%* to 4.2 x 10*® m2, The S(E) curves have similar
shapes for all fluences. S increases from the approximately identical value measured at 0.5 keV
up to a maximum obtained as positron energy increases with fluence. Thereafter, S decreases
towards, but does not reach, the value in the reference sample Sger. The S parameter discloses
the size and/or concentration of open volume where e*-e” pairs were annihilated. As the fluence
increases, the S parameter increases, indicating the detection of a larger size and/or higher
concentration of vacancy defects. However, the increase slows down when the fluence exceeds
6.3 x 10%7 m2. For the highly damaged region (E<10 keV), the S(E) curves almost overlapped,
and W(E) curves exhibited a mirror evolution, suggesting that the defect distribution probably

saturates. The S(E) and W(E) curves can be fitted using the VEPFIT program [15,16] by
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describing the samples in three homogeneous layers. The fitted annihilation characteristics in

Layers 1, and 2 are summarized in Tah.2.

Tab. 2: Annihilation characteristics Siay(i, Wiayi, and L+.qy) for layers i = 1,2, extracted from the fitting of the S(E) and W(E)
curves with the VEPFIT program using a three-layer model for samples irradiated at different fluences, ranging from 2.1 x 1016
to 4.2 x 108 m=. The corresponding peak damage value ranges from 0.01 to 2 dpa. R is the slope of the straight line connecting
point (Siay;, Wiay1) and the Lattice point in the S-W curve, i.e. R=(Siay1-S1)/(Wiay1-W.). The Layer boundary (Lb) is the depth from
the sample surface at which each layer expands. The annihilation characteristics of Layer Il are fixed to those of the reference
sample (Siay3 = 0.377 (5), Wiay3=0.079 (2), and L;'ay3 =63 nm). Surface annihilation characteristics are equivalent (Ssus = 0.400
(5), Wiurs = 0.065 (3)) for all samples. The incertitude of the fitted value is about 0.004 and 0.002 for S and W, respectively.

Damage Layer 1 Layer 2

dpa Swi  War R LT Lb(m) Sme Wee R LY, Lbnm)

~001 0421 0057 205(16) 14(4) 200(9) 0399 0069 208(28) 50 716 (31)
~0.1 0440 0051 218(10) 13(2) 252(9) 0412 0062 205(15) 40 856 (33)
~0.3 0448 0049 225(10) 12(2) 227(11) 0.424 0057 2.08(12) 35 865 (27)
~0.5 0449 0048 227(9) 11(2) 260(13) 0.427 0056 211(12) 30 937 (27)
-1 0451 0047 227(9) 10(2) 311(15 0427 0056 207(11) 30  945(29)
-2 0451 0047 227(9) 10(2) 356(19) 0.429 0055 211(11) 30 1000 (36)

Fig. 2c shows the evolution of the S parameter as a function of depth for each fluence. The
first two layers displayed the damaged region, and the third one was fixed with annihilation
characteristics of the reference sample (Srer, Wrer, and L, = 63 nm). In addition, the L7, in each
layer is shown in Fig. 2d as a complement of the S parameter. The thickness of the first layer,
Lo, and the effective positron diffusion L, vary from 200 to around 356 nm, and from 10 to 17
nm, respectively. The fit confirms the damage profile predicted using the SRIM program, with
the highest S and the shortest L}, found in Layer 1 for each sample. This suggests that most
irradiation-induced defects are located in the first 300 nm. Thus, the fitted S, W value in Layer
1, i.e. Siay1 as a function of Wiay1 were plotted in Fig. 2b. The slope R of the straight line
connecting each specific S-W point (Wiay1, Siayz) to the Lattice point (WL, SL), calculated as the

ratio (Siay1-SL)/(Wiay2-WL), reflects the evolution of the defect size.

At the lowest fluence (2.1 x 10'® m2), the width of Layer 1 is around 200 (9) nm. Compared
to the reference sample, L}, has decreased by more than 30 %, from 63 nm to around 17 (2)

nm, due to the positron trapping in irradiation-induced defects. In addition, the fitted values
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Siay1 =0.421(4), and Wiay1 = 0.058(2) are close to those of V1 experimentally determined in W
(the green crossed circle in Fig. 2b), but slightly further to the right. The corresponding slope
R is 2.05(16), which is slightly larger than that of the V1 line in W (1.85(3) [9]). These results
indicate that V1 is a dominant trap for positrons, although it cannot be ruled out that a small
fraction of positrons probably annihilate in vacancy clusters. In Layer 2, from 200 (12) to 716
(31) nm, Siay2 is lower than Siay1, and the L}, is about 50 nm. Although the irradiations still
induced defects in this layer, their concentration is considerably lower than in Layer 1, and

annihilation in the Lattice becomes significant as the L7, lengthens.

The S and W parameters of the vacancy clusters (V2-Vss) in W were also plotted in Fig. 2b.
Their values were transposed in the experimental frame network from theoretical values using
the experimental and theoretical V1-Vn lines as the references [55]. As the fluence increases,
the fitted annihilation characteristics in Layer 1 vary following defect size evolution. Once the
peak damage dose has reached around 0.5 dpa, the thickness of the Layer 1 extends to about
260 nm, and the variation of annihilation characteristics is discontinued (Tab.1). The S (resp.W)
parameter converges around 0.451 (resp. 0.047). The R ratio reaches the value 2.27 (9), and the
S, W points are located between the S,W points corresponding to the clusters V3 and Va4 (Fig.
2c), revealing the formation of small vacancy clusters. At the same time, the L}, shortened to
about 10 nm (Fig. 2d), showing the increase of the positron trapping rate. For a damage dose
greater than 0.5 dpa, the S-W points for Layer 1 remain almost superimposed, indicating that
the defect distribution reaches a steady state in the first 350 nm in the sample. A similar
saturation effect was already observed in W self-ion irradiated at RT [9,11]. The saturation
point for W is plotted in the cyan sphere in Fig. 2c [9]. Remarkably, the saturation S (resp. W)
parameter is higher (resp. lower) in Mo than in W, suggesting that the proportion of the vacancy

clusters is higher in Mo than in W.
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Fig. 2: Annihilation characteritics in Mo samples before and after self-irradition: a) S parameter as a function of positron
energy E, b) depth profile of parameter S extracted for the first layer from the S(E) and W(E) using VEPFIT; c) S-W plot of the S
and W extracted for the first layer in the reference annihilation characteristics of Lattice (open red star), single vacancy (green
crossed-circle) and saturation signal Vi (dark crossed circle) determined in W[33,35,64], the colored solid stars represent the
estimated S,W for various vacancy clusters. The cyan point corresponds to the steady-state obtained in self-irradiated W [9]
d) positron effective diffusion length (Les*) in adjusted layers using VEPFIT program.

In addition, deeper damage was created with increasing fluence (as shown in Fig. 2c),
extending much deeper than the 300 nm depth predicted by the SRIM simulation for Mo
irradiated with 1 MeV self-ions [8]. A similar result has been observed by He et al.[65] in the
case of implantation of yttrium, titanium, and oxygen in Fe. This difference is due to the
channeling effect in the polycrystalline sample with large grain size (> 50 um), which is not

considered in the SRIM calculations.

4. Discussion
4.1 Quantitative evaluation of defect size distribution
Recently, we extracted complete vacancy distributions in self-ion irradiated W, using a
quadratic programming and simulated annealing algorithm (SA)[42], parametrized with a
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324

positron trapping model including pure vacancy defects Vi with i=1-65 [55]. The concentration
and proportion of each vacancy defect were estimated using the same method in the self-
irradiated Mo samples. The results are shown in 3a and b, where clusters containing more than
15 vacancies are not displayed, as their concentration is close to the lower detection limit (Fig.
7 in Supplementary Information) of SPB-DB. For the lowest damage level (0.01 dpa), the
estimated proportion of V1 is 99%, and the concentration reached around 5x10?° m. This is
in line with the first conclusion made in the qualitative interpretation of the experimental results,
which established that V1 is the dominant trap for positrons with a minor proportion of vacancy

clusters at the lowest fluence (0.01 dpa).

When the damage escalates from 0.01 to 0.1 dpa, the proportion of V1 decreases to 48%,
and ~40% vacancy clusters account for V2.3, and ~10% for V47. Up to the 0.3 - 0.5 dpa, V1 and
V4.6 clusters represent a quarter of the total proportion. Following the damage accumulation
until 2 dpa, the concentration of V1 declined again, and its proportion reduced to about 20 %.
At the same time, the concentration and proportion of V4.9 manifestly increased. According to
DFT, the V1 is less monbile at RT, and binding energy is predicted to be negative for Vo,
whereas the vacancy clusters can still algomerate in the cascades or the overlapped cascades
resulting in large clusters. The larger cluster of 15 vacancies (radius = 0.35 nm) reached the
lower limit of the SPB-DB (~ 3 x 102 m3, Fig. 3a and Fig.8 in the Supplmenetary information)
as the damage level increases ) to 0.5 dpa. In addition, each size of vacancy reached a stable
level when the damage accumulated at 0.5 dpa or more, agrees with the computational work in

case of tungsten [66].
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Fig. 3: a) concentration and b) proportion of the vacancy defects probed by positrons in 1MeV self-ion, RT-irradiated Mo in
the first ~300 nm below the surface(corresponding to the first layer) for damage levels ranging from 0.01 to 2 dpa ( with TDE=
34 eV, SRIM2008-K-P). These values were extracted from the S and W experimental values using the methodoly described in
[42]

Selby et al. [67] operated molecular dynamics (MD) to mimic the evolution of the defects
at 300 K in Mo. The simulation involved Primary Knock-on Atom (PKA) energies up to 50
keV, whereas 98% PKA have an energy higher than 50 keV according to SRIM with

experimental conditions. These simulated results showed over 80 % of vacancies were isolated
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single vacancies, and the largest vacancy cluster contained nine vacancies. This result might

compare with low fluence experience, in cases where the cascades overlap is less pronounced.

0.35
0.30
0.25
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V, accumulation (at.%)

Fig. 4: comparison of estimated V; accumulation as a function of the damage level using PAS and OKMC [43], the
computational value averages the vacancy concentration value in the first 400 nm, and the experimental data represent the
vacancy accumulation in Layer | obtained from the fit, its thickness varies with damage level from 200-356 nm smuurized in
Table.2.

Recently, Hou et al. [68] employed OKMC simulation under our irradiation experiments
to better align with MD on the damage accumulation time scale with the present experiment.
The authors showed that the SIA defects had annihilated quickly with vacancies or at the sample
surface. Despite the limited diffusion of vacancies at 300 K, vacancy clusters (> Ve) formed.
The authors suggest that such vacancy clusters may form within the core of the cascade due to
the high density of vacancies, enabling short-scale agglomeration after diffusion or as a result
of cascade overlapping. These results are consistent with the estimated vacancy clusters
proportion derived from the PAS data in this study, as illustrated in Fig. 3. Furthermore, the
authors observed vacancy depletion at depth beyond 400 nm, correlating well with the decrease
in the S parameter shown in Fig.2 (a-c). Fig.4 compares the vacancy accumulation (total
concentration of isolated V1 and those included in the vacancy clusters) as damage increases,

based on PAS data and OKMC simulations. Both computational and experimental results reveal
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similar trends. In addition, the experimental data reveal that V1 accumulation reaches saturation

when the damage level exceeds 0.5 dpa.

4.2 Steady-state vacancy distribution
Focusing on the vacancy steady state, Fig.5a compares the relative S parameter, S/S.
(relative S parameter to Lattice), as it varies with damage accumulation in Mo in the present
study and previously reported data in W [9,54,64,69]. A steady-state behavior is observed in
both materials, though Mo exhibits a higher S saturation value. Vacancies in both metals
accumulate rapidly up to 0.5 dpa, after which their proportion converges. Notably, defect
evolution appears to be independent of self-ion energy, as similar trends are observed for 2 and

20 MeV self-ion irradiation in W [9,54,64,69].

a b
o (]! ;@ ; i . Steady-state vacancy distribution
i at RT
o |k v
BB 3;
" 1MeV-Mo 12%07% va
® 2MeV-W[l1] o Vs
1ol @ O 20 MeV-W [57, 66, 70] S M
0 2 12 14 M o o, I Other
C Damage level (dpa) e 25% LG,
w
S 39.7%
250 am = =
. x "o
Ll 36.1%
200 L 14.7%
3 ]
o
150 37.3%
| |
% m This work
100 ® = Exp[71]
0 27 12 14
Damage level (dpa)

Fig. 5: a) the relative S value, S/S;, and b) the proportion of aggregated vacancies as a function of the damage level caused by
self-ion in Mo (1 MeV) and W (2 MeV & 20 MeV) at RT, c) The e* annihilation lifetime estimated (hollow star) for each damage
levels in comparison with experiments [70]
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Fig. 5b highlights that, at the defect steady state (> 0.5 dpa), the proportion of vacancies
within clusters is significantly higher in Mo (76.5%) compared to W (60%). To further affirm
the difference in vacancy proportions between Mo and W, we calculated the averaged lifetime
tav by weighing the lifetime of vacancies (using data in Fig. 1a) with the annihilation fractions
determined by SA [55]. Fig. 55¢ shows the progression of tay With damage level. For W, the
estimated lifetime evolution with damage accumulation coincides with experiments [70],
validating the SA method for estimating annihilation fractions. A lifetime of around 231 ps was
found for the steady state of defects in W. In comparison, a longer tav 0f 250 ps is determined
for Mo, consistent with the SPB-DBS results, indicating a higher proportion of large vacancies
in Mo since the positron lifetime for each type of vacancy defect are very close in both metals
Mo and W (see Fig 7, and Table3 in Supplementary Materials). It is also noteworthy that the
binding energy of V.3 is relatively close to zero for W and slightly negative for Mo, according

to references [71-73].

The vacancy size distribution could be strongly affected by the binding and migration of
vacancy defects and interstitials. We calculated the binding energies for V1 to Vo using DFT
calculations (see Fig. S1 in the SI). Notably, the binding energy of VV.-Vsis near zero for W and
slightly negative for Mo, as reported in Refs. [71-73] at OK. To date, whether V,-V3 forms at
RT in Mo or W remains unresolved. Only Park et al.[74] reported a binding energy of about
0.7 eV for V2 in W using Field-ion spectroscopy. Impurity atoms are also known to stabilize
V2 [75,76]. Recently, Zhang et al.[77] estimated the effect of temperature on the binding free
energy, finding that the latter increases with rising temperature. Although V> remains unstable
at RT, two isolated V1s located at the first nearest-neighbors tend to bind with each other from
700 K, which is an attainable temperature during cascades. Given this, we considered the
possibility of the e*-e” annihilations in V2 and V3. Moreover, it is remarkable that although the

cluster containing less than seven V1 account for 99 % of the total vacancy proportion in both
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metals, larger vacancies may also be formed, though in a limited concentration. Quantification
of these larger dfects is difficult, as for cluster with more than 15 V; fall outside the optimal

detection range for the SPB-DBS method, as shown in Fig. 8 in Supplementary I.

The migration energy E™ is the lowest for the self-interstitial atoms (SIA) (Fig.1 in the
supplementary). For one-dimensional diffusion in a <111> direction, EJ}, is about 0.064 eV in
Mo and 0.040 eV in W [78]. Thus, the SIA should be very mobile due to their very low
migration energy in the Mo and W matrix. For the small vacancies, the tri-vacancy has the
lowest E™ in both materials, and for the other vacancy defects V1, V2, and V4, their E™is lower
for the Mo matrix. Hou et al.[43] calculated using DFT, the binding energy for larger clusters
containing up to 47 vacancies in Mo. They showed that E™ increases more or less with the
number of vacancies in the cluster up to 15, reaching 2 eV and then remaining between 1 and
2 eV. It has to be noted that the probability of dissociation of vacancy clusters is very low at
RT. Agglomeration is possible if vacancies can diffuse and link up with each other. Based on
the Arrhenius diffusion equation, the distances that V1 and V3 can travel at 300 K during the
duration of the irradiation at 0.5 dpa (2100 s) are estimated to be about 2x10 nm and 7.8x10"
3 nm, respectively. However, the local annealing due to the collision of the ion might enhance
their mobility, so the agglomeration of vacancies might occur in the core of cascades, where
the density of vacancies is very high, facilitating short-scale diffusion and interactions among
vacancies. In addition, vacancy diffusion and binding should be more probable in Mo, given its
lower migration energy compared to W. The higher proportion of vacancies within clusters in

Mo could, in part, be attributed to the difference in their evolution mechanisms.

On the other hand, De Baker et al. [79] determined the fragmentation energy? (E#) in

various materials using MD and Binary Collision Approximation (BCA) simulations. They

1 The energy above which one cascade can split into several subcascades

19



416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435
436
437
438
439

440

found that the number of subcascades increased linearly with the PKA energy when Epka
exceeds Ef, determined to be 17 keV for Mo and 75 keV for W. In bcc metals, cascades
overlapping were found to consistently reduce the size of the pre-existing large voids (>100
vacancies) when cascades partially overlap with the defect in W [80] and Fe [13]. In Fe, the
size of all clusters -except for the single vacancy- was reduced after a fully overlapping cascade.
This reduction depended on PKA energy and interatomic potential but was independent of the

initial cluster size [81].

Furthermore, the recombination of FPs in both Mo and W is similar, primarily due to the
high mobility of the SIAs. Consequently, the recombination rate of FPs is expected to be
comparable in Mo and W, given the equivalent migration energy of SIAs (Fig.1 in the
supplementary). However, the TDE in Mo is lower than in W. The arc-dpa model [76] was used
to quantify these differences to estimate the average number of FPs produced per cascade. The
barc—apa AN Carc—apq Parameters were taken from Ref. [82]. For Mo, byyc_qpq Value was
taken from Ref. [83], in which it was suggested that -1 is a proper value for most metals. The
Carc—apa Parameter represents the cascade efficiency. According to references [67,84], using
classical MD, the cascade efficiency of pure Mo is ~0.2. Therefore, cgrc—gpq = 0.2 Was used.
Using the TDE value in Table 4, the arc-dpa model estimated the average number of defects
produced in a single cascade event. The results indicate a slightly higher number of created

defects in Mo (640 FPs) compared to W (559 FPs).

Tab. 3: related energies to the evolution of defects in W and Mo, Ey,.: fragmentation energy, over which the cascades could
split into several subcascades, TDE: threshold displacement energy, energies are presented in keV, mean: mean PKA energy,
equal approximately to a half of the maximum value in the PKA energy predicted by SRIM program. T,: damage energy kinetic
energy available to provoke atomic displacement after losing the electronic ionization energy, kinetic energy available to
provoke atomic displacement after removing the electronic ionization energy.

Number of FPs created in
Err(keV) TDE (eV) Ty (keV) one cascade

Mo 172 345 2824 6409
w 752 55¢ 600¢ 559¢

areference [79], ® reference [85], © reference [86], ¢ reference [87].
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The number of vacancies created by a single event of cascades is higher in Mo than in W
using the arc-dpa model. After some of these vacancies recombine with SIAs, the remaining
vacancies in Mo have a stronger clustering tendency than those in W. In addition, it appears
that vacancies in W are less mobile at RT, as indicated by the migration energy presented in
Fig.1 in the supplementary. The higher proportion of vacancy clusters in Mo compared to W is
likely due to subtle differences in collision cascade overlapping and Frenkel pair recombination
between the two materials, resulting in a difference from the early stage of the evolution.

Conclusion

In this study, we combined the PAS, first-principles calculation, and SA algorithm to
quantitatively analyze the size distribution of vacancy defects induced by self-ion in Mo and W
at RT. The proportion of each vacancy defect from V1 to Ve was depicted for the first time

based on experimental data, and the primary conclusions have been reached as follows:

(i) Comparable e* annihilation characteristics in vacancy clusters in W and Mo: The
annihilation characteristics exhibit similar evolution from V1 to the saturation (Vas,
~0.5 nm in radius).

(i)  Atlow irradiation dose (~0.01 dpa), the predominant defects observed are nearly 100%
V1 in both Mo and W. At 0.3 dpa, the presence of Vs (radius = 0.35 nm) becomes
detectable by PAS, and the vacancy aggregation rate converges with a damage level
of about 0.5 dpa or more. The vacancy accumulation exhibits a trend comparable to
that of the OKMC simulation. Alougth the damaged zone detected using SPB-DBS
is deeper than thoses OKMC or SRIM estimated, probably due to the channeling
effect.

(iii) At the defect steady state (> 0.5 dpa) in Mo, the proportion of Vi decreases to
approximately 20 %. The proportion of Vi accounted for about 40 % of total

vacancies in W, whereas accounting for 23.5 % in Mo, revealing a higher vacancy
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clustering tendency in Mo. Each size of the vacancy fraction reached a stable level

as predicted by computational work.

These findings will significantly enhance the investigation of vacancy defects in metals.
The method enables reliable quantitative analysis of vacancy proportions from primary defect

distribution until the steady state at RT, addressing the scarcity of experimental data.
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Supplementary

I. Binding and migration energy of vacancy clusters in Mo and
W

Table. 1 summarizes the binding energy E,;, of a cluster consisting of n vacancies, V;,, which are

calculated as follows :
E, = nEV1 - EVn — (n— 1)Ejattice 1)

in which Ey, and Ey,, are the energies of supercells with a mono-vacancy and one ¥, cluster,
respectively. Ej.qice 1S the energy of a supercell of perfect lattice. Using the Eq. (1), positive
binding energy means attractive interaction and negative binding energy means the opposite.
The total binding energy increases with increase number of the V1 including in the cluster,
similar results are found in the Ref. for Mo[88] and for W[73]. The migration energy for

vacancy defects from V1 to Vg4 is taken from the references [77-79].

I Total binding & Total binding
[ This work [ his work 6.200

6- [__]Fastenau et al. phys. stat. sol. (a)34,277 (1976) 6- [__|Becquart et al. NIMB 255(2007) 23-26

s [ migration 5 [ ™igration 5228
= 4 3,888 =
24 2 4 3.606
3 3118 =
5 34 298 3 3 2756 918
& &

2 2.1 2101 ) 195

i 546 1660 1.660 1560 oy
1. 300 1.300 294
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0150 0133 o047
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Figure 6: Reported migration energy from V1 to Va in references [77-79], and binding energy of various vacancies with
relaxation calculated using DFT in the present work, compared with literature in a) Mo [88] and b) W[73].
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Il. Sensitivity of the SPB-DBS

After calculating the specific trapping of vacancies, uy; as it is explained in [36], we
applied a one-trap trapping model for each vacancy. S parameter can be expressed versus defect

concentration Cy; by equation (4):

_ CyipySyi + 4,51

S= 4
Cvitty;+ 1, ®

where Sy, is the parameter for the vacancy defect Vi as calculated using TCDFT.

Fig. 7 presents the sensitivity of the SPB-DBS to the vacancy concentration in Mo for
various vacancy defects from V1 to V65. When the vacancy concentration is 0, the annihilation
fully occurs at the Lattice, the relative S value, S/Si, equals 1. When the positrons are trapped
in vacancies, the S/S_ increases with the vacancy concentration until a specific value which
depends on their size. From Vis (radius = 0.35 nm), the positron annihilation characteristics
start to converge, with a concentration higher to 10%® m'3, The corresponding S/Si value is close
to 1.35. In the case of V1 (radius = 0.139 nm), the sensitive range of concentration is between
about 5 x 102 m and 8 x 102*m3, and the optimal resolution ranges from 3 x 102 m=to 3 x
10 m, and the S/S. equals 1.136 also equals to Svi/SL. For the vacancy size superior to V7
(radius = 0.47 nm), its lower detection limit is about 5 x 10% m and upper limit delcliens to
8x10%® m™®, respectively. The most sensitive concentration range is between 5 x 10% and 5 x

10% m®, and the S/S_ attains 1.32.
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Fig. 7: Sensitivity of PAS for each vacancy cluster in Mo using a one-trap trapping model, to be safe, the error bar (shown in

dashed line) on the concentrations was set from the uncertainty of the specific trapping coefficient from [55]

Table.3 compares the calculated positron lifetime in various annihilation states from Lattice to
a cluster containing 65 V1s. For each state, the lifetime is analogous, particularly when a cluster

contains more than 8 V1s.

Table 3: Calculated positron annihilation lifetime in the lattice and vacancies in W and Mo using LDA

Annihilation state

Positron Lifetime (ps)

W Mo

Lattice 101 106
Vi 195 205
V2 214 223
V3 233 238
V4 261 265
V5 276 282
V6 299 303
V7 306 310
V8 312 314
V9 323 325
V15 374 375
V27 402 403
V35 413 414
V45 420 420
V55 424 425
V65 428 428
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Fig. 8: a) Comparison of theortical S-W values of Lattice, V, and Vy for W, Mo, and Fe calculated using two-component DFT
[41], b) experimental annihilation characteristics of Lattice in W and Fe [89], and Vi and Vi in W [33,64].

Fig.9 compares the lattice annihilation characteristics of W, Mo, and Fe, using the values
of Sand W of V1, Vn, and lattice determined in W as reference coordinates. The experimental
results show that the difference on the annihilation characteristics of the Lattice of Fe and W
are less pronounced than theoretical values. And it is then consider that the S, W of Mo and W

is not disginguishable.
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s39 IIl.  Proportion of vacancies in self-ion irradiated W
540 Fig. 9 represents the vacancy proportion in self-ion irradiated W with a scope of damage
541  levels ranging from 0.0085 dpato 1.7 dpa [9]. The V1 was also the dominant defect at the lowest
542  damage level.
a OO VIED V200 v3ED var v x ToalV,
0 V6 W V7] V8l V9 IJ vis = TotalV,
«'JE 10%;
c
2 1
5§
€ 10%*1
[5]
[&]
c
Q 1
@]
1022 1 1 1
0.0085 0.085 0.425 0.85
543 Damage (dpa)
0% 5%0 1%
0.1%  0.1% 1%
0.7%— 12.6%—
1.5%— 61.2%
6.7% 46.3%
Vi
0% 29.3% 32.9% V2
V3
0.085 dpa 0.085 dpa 0.425 dpa V4
V5
V6
0.6%0-6 /o 1% 508 0.6%0.6%
6%2\5A’\ / 1% 6%\\\ / 0. 101/‘;/0 x;
14.1%~_ 14.1%— 0 1% Vo
39.7% Il Other
39.7%
36.1% 36.1%
544 0.85 dpa 1.7 dpa
545 Fig. 9: a) concentration and b) proportion of the vacancy defects probed by positrons in 2 MeV self-ion [9], RT-irradiated W at
546

547

first ~300 nm for damage levels ranging from 0.0085 to 1.7 dpa ( with TDE= 55 eV, SRIM2008-K-P)
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