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Abstract

Digital twinning is gaining widespread popularity across various areas of
engineering, and indeed it offers a capability of effective real-time monitoring
and control, which are vital for cost-intensive experimental facilities,
particularly the ones where extreme conditions exist. Sparse experimental
measurements collected by various diagnostic sensors are usually the only
source of information available during the course of a physical experiment.
Consequently, in order to enable monitoring and control of the experiment
(digital twinning), the ability to perform inverse analysis, facilitating the
full field solution reconstruction from the sparse experimental data in real
time, is crucial. Such solution reconstruction might be necessary to control
a system, if a parameter to be controlled cannot be directly derived from the
sparse measurements alone, as oftentimes is the case, for instance maximum
temperature within a test piece.

This paper shows for the first time that it is possible to directly
solve inverse problems, such as solution reconstruction, where some or all
boundary conditions (BCs) are unknown, by purely using a finite-element
(FE) approach, without needing to employ any traditional inverse analysis
techniques or any machine learning models, as is normally done in the
field. This novel and efficient FE-based inverse analysis framework employs
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a conventional FE discretisation, splits the loading vector into two parts
corresponding to the known and unknown BCs, and then defines a loss
function based on that split. In spite of the loading vector split, the loss
function preserves the element connectivity. This function is minimised
using a gradient-based optimisation; and the near real-time operation for
heat conduction in a stainless steel plate is achieved.

Furthermore, this paper presents a novel modification of the
aforementioned approach, which allows it to generate a range of different
solutions satisfying given requirements in a controlled manner. Controlled
multiple solution generation in the context of inverse problems and their
intrinsic ill-posedness is a novel notion, which has not been explored before.
This is done in order to potentially introduce the capability of semi-
autonomous system control with intermittent human intervention to the
workflow. Having access to a variety of feasible alternatives during the
experiment can augment the human decision-making process and assist the
operator in evaluating and selecting the most suitable course of action.

Keywords:
Solution reconstruction, inverse analysis, multiple choices, sparse data,
digital twinning, finite element method

1. Introduction

Digital twins and digital twinning are becoming increasingly popular in
various engineering fields, which is a trend driven by the desire to have a
dynamic virtual representation of a physical system in order to extract as
much useful real-time information as possible from the physical asset. A
digital twin is a dynamic virtual representation of a physical system, which
is continuously updated from real-time data in order to fully and accurately
simulate the current behaviour of its physical counterpart [1]. Whereas,
digital twinning refers to the process of creating and maintaining digital
twins, which becomes important when the dynamic control of the physical
system is introduced. When applied to the experimental facilities, digital
twinning broadly aims to enhance the sparse experimental measurements
collected from the various diagnostic sensors, i.e. provide system monitoring.
It also aims to ensure the ability to reach the required experimental conditions
within the optimal time frame, i.e. maintain system control. Therefore, the
first step towards having a fully-fledged digital twinning process capable of
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fulfilling these two objectives involves developing an efficient inverse analysis
framework, which would be able to directly integrate the experimental data
into the simulation in real time in order to obtain a full solution. Full
solution might be necessary to achieve desired system control, in cases
when a parameter to be controlled cannot be directly derived from the
sparse measurements alone, for example maximum temperature within a test
piece. This paper presents an inverse analysis framework based on the Finite
Element Method (FEM) as a compelling alternative to existing approaches.

In general, a forward problem can be defined as using the applicable model
of a system to ascertain the effects of the given causes. Specifically, for the
transient problems, the boundary conditions (BCs), the initial conditions
(ICs), the material properties, and possibly other system parameters should
be established to solve the forward problem. Contrarily, inverse problems
can be classified into two categories:

(i) Deriving the system parameters from the observed causes and effects.

(ii) Deriving the causes from the observed effects.

The first category is a traditional definition of an inverse problem [2];
whereas, fundamentally, the second category is an inverse reconstruction
of the full solutions using the available sparse data within a domain, i.e.
measurements, with system parameters assumed to be known. The physical
experiments represent the most common source of the sparse data observed
within a domain. The main focus of this paper is on an inverse thermal
field reconstruction, which is a task belonging to the second category. Such
reconstruction is an important and often an essential part of digital twinning.

Consequently, the focus of this paper is twofold:

a. Developing a framework for inversely reconstructing the full temperature
field from the sparse experimental measurements with speed as close to
real time as possible.

b. Understanding how to generate multiple viable options satisfying given
requirements, which could be used for semi-autonomous system control
with a human-in-the-loop (HuIL) element [3].

These two points are discussed in some detail below.
From a historical perspective inverse problems focused largely on

parameter estimation for differential equations [4, 5, 6], with some of the
conventional methods being functional analytic regularisation as well as
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statistical regularisation [2, 4]. Possibly the most notable example of
statistical regularisation is Bayesian inversion [4]. Another way to solve
such inverse problems is to use a search-and-optimisation-based approach,
for example the Particle Swarm Optimisation (PSO) algorithm [7]. More
comprehensive reviews of the various methods to solve inverse problems are
provided by Tamaddon-Jahromi et al. [8] and Arridge et al. [4]. However, the
aforementioned methods tend to quickly become computationally intractable
and generally lack sufficient flexibility.

Increasingly in many engineering fields, machine learning (ML) is being
applied to everything with problems ranging from manufacturing [9, 10] to
aerospace [11, 12]; and, indeed, it offers a combination of unique benefits,
such as accuracy, efficiency, flexibility, and scalability [13], all of which are
desirable in many engineering applications. Nevertheless, in the context
of inverse analysis and digital twinning, ML models tend to have a few
drawbacks.

Data-driven ML models usually require a significant amount of training
data in order to provide sufficient accuracy and wide enough applicability.
Although some ML model types, such as Gaussian Process Regression (GPR)
[14], generally require far less training data than other ML models such as
Neural Networks (NNs) [15, 16], Long Short-Term Memory (LSTM) [17],
and Transformers [18, 19], still a significant amount of data is needed.
Collecting significant amounts of data poses a considerable challenge for
complex engineering applications. This issue can be resolved in two ways:
(1) Use the experimental data for the training or (2) Run a high number
of standard forward simulations, FEM simulations for instance, to generate
the necessary training data [8, 18, 20, 21, 22]. The former is rarely possible
in engineering, as the experimental data is usually sparse and there is not
enough to be able to effectively train a data-driven ML model. The latter
seems to be more promising on the surface; however, it assumes the possession
of a completely accurate, verified, and trustworthy FEM model, which is
also a complicated problem of its own to develop and verify, especially when
dealing with extreme environments. Additionally, training ML model on
selected cases of the forward simulations could bias the ML model to predict
certain solutions, which might not necessarily match the physical experiment.

On the other hand, there are physics-based ML models, such as Physics-
Informed Neural Networks (PINNs), which do not rely on training data, as
they are trained using relevant partial differential equations (PDEs) [23, 24].
This resolves the issue of potential solution bias which data-driven models are
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susceptible to, but creates another issue. One of the primary reasons why ML
is such an attractive option for digital twinning is its high inference speed
after the model is trained, which could potentially allow it to function in
real time. However, PINNs require the continuous training to be performed
as the sensor measurements are inputted, which slows the model down
considerably. Furthermore, the integration of such physics-based ML models
within existing industry simulation workflows, which are typically developed
using the conventional simulation software, is not a straightforward process.

It is generally accepted that it is very challenging to directly apply FEM
to inverse problems, where some or all BCs are unknown, which traditionally
limit its application to forward problems only. However, the developed FEM-
based inverse analysis framework demonstrate that it is possible to modify
the FE workflow in such a way as to allow it solve an inverse problem and
accurately reconstruct a solution.

The secondary focus of the present work is to generate multiple viable
solutions in a controlled manner. The challenge of inverse problems is that
they are ill-posed, meaning that the solution is non-unique [2]. However, this
difficulty can be harnessed and transformed into an advantage, as this ill-
posedness is surprisingly desirable when it comes to the second objective of
achieving control: it can be exploited to generate multiple options (solutions)
for the user.

The remainder of the paper is organised into following sections. Section 2
details the method derivations for linear transient problem; moreover, it
describes the extension of the method allowing the generation of multiple
solution options fitting certain total energy criterion. Section 3 presents
and interprets the results for several thermal field reconstruction cases;
furthermore, several solution options are produced and analysed in order
to demonstrate the application of the multiple solution generation process.
Finally, Section 4 summarises the significance of the results in the context of
the objectives set in Section 1, and also provides the main advantages of the
presented framework.

2. Methodology

This section provides a description of the methodology. The framework
introduced in the present work is based upon the ODIL (Optimizing
a DIscrete Loss) approach, which was successfully applied to fluid flow
problems [25] and glioma radiotherapy planning [26] and has undergone
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substantial adaptations for this paper. Additionally, the framework is
adapted to ensure compatibility with the measurements from the physical
experiments. Figure 1 outlines a general workflow with the details provided
in the relevant sub-sections.

Figure 1: Summary of the workflow for the solution reconstruction and multiple solution
generation. For the steady-state problem only [K] global matrix and {f}h global vector
are computed, and the whole procedure is repeated only once; whereas for the transient
problem, it is repeated every time step and then {T }final refers to the solution at one time
step. For solution reconstruction the initial temperature distribution {T }init is a uniform
temperature equal to the average measurement value for steady state; {T }init used for each
time step is a uniform temperature equal to the average time-step measurement value.

2.1. Linear transient problem

The general linear 3D transient heat conduction equation without a heat
source and with isotropic material properties is given as [27]:
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where x, y, and z are the spatial coordinates, T is the temperature, k
is the thermal conductivity, while ρ and cp are density and specific heat,
respectively, which are assumed to be temperature-independent; t is time.
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Additionally, general expressions describing Neumann BCs are:

k
∂T

∂x
l + k
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∂y
m+ k

∂T

∂z
n+ q = 0 on Γq

k
∂T

∂x
l + k

∂T

∂y
m+ k

∂T

∂z
n+ h(T − Ta) = 0 on Γh (2)

where l, m, and n are the direction cosines of the surface normals, q is the
time-dependent heat flux, while h is a convection heat transfer coefficient, Ta

is ambient temperature, and Γq and Γh are the boundary surfaces where these
BCs are applied. Dirichlet BCs are omitted in the present paper, since they
are not physically representative of the experimental setting. Nonetheless,
this approach can be used in conjunction with Dirichlet BCs.

The standard Galerkin weighted residual method is employed to discretise
Eq. 1 and Eq. 2 in space [27]; and fully implicit time discretisation scheme
is used. Consequently, the following global system of equations is obtained:

[C]

{
{T }n+1 − {T }n

∆t

}
+ [K] {T }n+1 = {f}n+1 (3)

with

[K] =

∫
Ω

[B]T [D] [B] dΩ +

∫
Γh

h [N ]T [N ] dΓ (4)

[C] =

∫
Ω

ρcp [N ]T [N ] dΩ (5)

{f} = −
∫
Γq

q [N ]T dΓ +

∫
Γh

hTa [N ]T dΓ (6)

where {T } and {N} are the temperature and shape function vectors,
respectively. [C] and [K] are the global mass and stiffness matrices,
respectively, and {f} is a global loading vector. Superscript n signifies the
nth time step; Ω is the discretised domain.

The loading term {f} can be split into two following terms corresponding
to the known (convection) and unknown (applied heat flux) BCs - global
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convection {f}h and applied heat flux loading vectors {f}q, respectively:

{f} = {f}q + {f}h

{f}q = −
∫
Γq

q [N ]T dΓ

{f}h =

∫
Γh

hTa [N ]T dΓ (7)

Eq 7 represents a start of the novel deviation of the developed inverse analysis
approach from the standard FEM workflow used for forward problems. The
global applied heat flux vector {f}q is assumed be unknown.

2.2. Inverse analysis

The following assumptions are made for the inverse analysis:

• The temperature values are known at points belonging to the
measurement set M ∈ Ω.

• The materials properties are known; they include the general thermal
conductivity matrix [D] and the convection heat transfer coefficient h.

• The ambient temperature Ta is known.

• The exact locations of Γh and Γq on the boundary are known, and
Γ = Γh ∪ Γq, where Γ is domain (Ω) boundary.

Given that M number of temperatures {T }M are known from
measurements and the heat flux value on the boundary Γq is unknown, the
next step is to define a scalar loss function L of {T }n+1. The dependency of
{f}q on the temperature distribution {T } is as follows (Eqs. 3 and 7):

{f}n+1
q = [C]

{
{T }n+1 − {T }n

∆t

}
+ [K] {T }n+1 − {f}n+1

h (8)

Then L ({T n+1}) is a sum of three terms:

(a) Residual term

c1
∑

i∈Ω\Γq

(
[C]i

{
{T }n+1−{T }n

∆t

}
+ [K]i {T }n+1 − {f}n+1

hi

)2

where [C]i and [K]i are the i
th rows of the global [C] and [K] matrices,
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respectively, which correspond to the ith node in the domain; while {f}hi
is the ith element in the global {f}h vector. This term enforces the fact
that, in the absence of the volumetric heating, the elements of loading
vector {f}q corresponding to the nodes inside the domain and the nodes
where only the convection is applied should be zero (see Appendix A).

(b) Measurement term c2
∑

i∈M
(
{T }n+1

i − {T }n+1
Mi

)2
This term directly incorporates the temperature measurements into the
simulation.

(c) Regularisation (smoothing) term

c3

[∑
i∈Γq\Γedge

(
{f}n+1

qi −
∑

i∈Γq\Γedge
{f}n+1

qi

|Γq\Γedge|

)2

+

+
∑

i∈Γedge\Γcorners

(
{f}n+1

qi −
∑

i∈Γedge\Γcorners
{f}n+1

qi

|Γedge\Γcorners|

)2

+

+
∑

i∈Γcorners

(
{f}n+1

qi −
∑

i∈Γcorners
{f}n+1

qi

|Γcorners|

)2
]

{f}n+1
q is calculated using Eq. 8. Γedge represents the 3D edge of the

surface where the heat flux q is applied, i.e. it is ∂Γq and also, referring
to the last point in the aforementioned assumptions list, it is equal to
Γq ∩ Γh. Γcorners represents sharp features on Γedge if such features exist
and if they are discretised using one element, i.e the node on a corner
belongs only to one element. An example of Γedge and Γcorners is given in
Table 2. This term ensures that there is a smooth temperature transition
on the boundary of the domain where the heat flux q is applied.

In the above equations, c1, c2, and c3 are weighting coefficients signifying
the relative importance of each term; the selection of the appropriate values
is discussed in Section 3. Mesh, as well as [C], [K], and {f}h can be obtained
using virtually any commercial or open-source FEM software, such as ANSYS
[28] or Code Aster [29]; the latter is used in this paper. The component in
the form of [C]

{(
{T }n+1 − {T }n

)
/∆t

}
, which signifies heat accumulation

over time, becomes zero for steady-state problems.
The regularisation (smoothing) term prevents unphysically large and

abrupt temperature variations on the surface from appearing. It does so
through indirectly ensuring the smooth spatial variation of temperature’s
first derivative normal to the surface. The first derivative of temperature
in the direction normal to the boundary directly correlates with the heat
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flux through the boundary q = −k(∂T/∂n) [27], which in turn defines the
applied heat flux loading vector {f}q. The regularisation term limits the
deviation of each element of {f}q from the mean value of all {f}q elements.
It is necessary to apply the regularisation term only to Γq, where the implicit
degrees of freedom in the form of the unknown applied heat flux are situated.

The regularisation term is split into three parts: the first one
corresponding to the nodes on Γq \ Γedge, the second one corresponding to
Γedge \ Γcorners, and the third one to Γcorners. When the applied heat flux
varies gradually on Γq relative to the finite element size, a rapid change in
the loading vector {f}q values usually occurs between the nodes belonging
to Γq \ Γedge, the nodes belonging to Γedge \ Γcorners and Γcorners if such
nodes exist. Therefore, in order to avoid the complications related to this
sudden transition, it is beneficial to separate the regularisation term into
aforementioned groups. Four-node quadrilateral (linear) elements on Γq are
used in conjunction with the regularisation term defined above; however,
a slightly different node grouping within this loss function term might be
necessary if three-point (linear) triangles, particularly unstructured ones, are
to be used for Γq surface discretisation. Additionally, certain adjustments
would need to be made for the meshes with mesh refinement on Γq in order
to account for the potential presence of varying element size.

Lastly, it should be noted that such regularisation term definition
might not necessarily be an optimal choice for all potential heat flux
distributions. However, considering a specific experimental arrangement,
reasonable assumptions usually can be made regarding a general shape of the
heat flux distribution produced by a given heat-generating element; meaning
that some knowledge can be derived regarding the relative magnitudes of
heat fluxes without knowing their specific values. For example, if the heat
flux is produced by an induction coil of known geometry located at a certain
position relative to a test piece, then some plausible assumptions can be made
regarding the approximate locations of regions of the maximum and minimum
heat fluxes. This information can subsequently be used to customise the
regularisation term.

In order to select the correct distribution out of the infinite number
of possible distributions fitting the residual term, the measurement and
regularisation terms are employed in conjunction, thus making the inverse
problem approximately well-posed. The heat flux associated with a particular
temperature distribution is implicitly calculated within the regularisation
term using the node equations excluded from the residual term (part (a)

10



of the loss function and Appendix A) to obtain the loading vector values
corresponding to the nodes on Γq.

While the current paper utilises only linear analysis, the extension of
this framework to nonlinear material properties naturally follows. It is
slightly simplified by the fact that unlike stress-strain curve, thermal material
properties, k, ρcp, and h, tend to steadily increase with temperature without
displaying a softening region. Therefore, the potential additional solution
non-uniqueness stemming purely from the nonlinear material properties [30]
might be avoided.

2.3. Minimisation

After the loss function L
(
{T }n+1) is defined, the main objective becomes

the minimisation of L, and {T } corresponding to the minimum of L would be
the solution for the n+ 1 time step, i.e. the reconstructed temperature field
at this time step. It should be emphasised that the minimum of L might not
be necessarily zero, as, depending on its definition, the regularisation term
might not be required to be exactly zero for the correct solution. The function
minimisation is a common optimisation problem, but it is a cornerstone in
the ML training process, and hence it is advantageous to borrow some of the
methods frequently used in ML to minimise L.

Figure 1 summarises a general workflow for the solution reconstruction
for each time step. In this paper two iterative gradient-based optimisation
algorithms are used consecutively: the first one is nonlinear conjugate
gradient method (Stage 1) for sncg iterations [31] and the second one is
Gauss–Newton method (Stage 2) for sgn iterations [32, 33]. The output
from the nonlinear conjugate gradient method {T }ncg out is an input to
Gauss–Newton method. The nonlinear conjugate gradient method utilises
a first-order derivative matrix (Jacobian matrix) ∇L ({T }), whilst the
Gauss–Newton method makes use of the approximation of the second-order
derivative matrix (Hessian matrix)∇2L ({T }) based on∇L ({T }). Similar to
the ML training process, Automatic Differentiation (AD) is employed in order
to efficiently calculate the exact Jacobian matrix at each iteration [25, 34].
The initial temperature distributions used for each time step is chosen to be
a uniform temperature equal to the average time-step measurement value.
At the beginning of each iteration L ({T }s) and ∇L ({T }s) are calculated for
the temperature distribution outputted by the previous iteration {T }s, then
∆ {T } is computed using either nonlinear conjugate gradient method (during
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Stage 1) or Gauss–Newton method (during Stage 2). Finally, the temperature
distribution for the next iteration becomes {T }s+1 = {T }s +∆ {T }.

An iterative minimisation of the residual term combined with the
measured temperature values and the regularisation term will provide a
temperature distribution over the entire domain including boundaries. The
temperature distribution along the heat flux boundary Γq can now be used
to compute the heat flux.

To ensure a high computational speed the majority of matrix additions,
multiplications, as well as AD are performed on Graphical Processing Unit
(GPU) with the help of PyTorch, which is a highly optimised ML library
[35].

2.4. Multiple choice generation

In the previous sub-sections, the regularisation term is used to overcome
the inherent ill-posedness of the inverse problem ensuring that the loss
function converges to the correct solution; whereas this section demonstrates
how ill-posedness can be exploited in order to generate multiple solutions
fitting certain predefined requirements. A scenario can be considered where
some desired values of the time-dependent total heat Qgoal(t) should be
achieved, which can be done by applying the heat flux on Γq in various
ways. It is assumed that the measurements are not available, as the aim of
this procedure is to produce potential future options which can be used for
control, rather than to reconstruct the correct solution from the obtained
measurements.

For the transient problem, the loss function is defined as a sum of the
following three terms, two of which have been used previously for the solution
reconstruction:

1. Residuals term

c1
∑

i∈Ω\Γq

(
[C]i

{
{T }n+1−{T }n

∆t

}
+ [K]i {T }n+1 − {f}n+1

hi

)2

.

2. Regularisation (smoothing) term

c3

[∑
i∈Γq\Γedge

(
{f}n+1

qi −
∑

i∈Γq\Γedge
{f}n+1

qi

|Γq\Γedge|

)2

+

+
∑

i∈Γedge\Γcorners

(
{f}n+1

qi −
∑

i∈Γedge\Γcorners
{f}n+1

qi

|Γedge\Γcorners|

)2

+

+
∑

i∈Γcorners

(
{f}n+1

qi −
∑

i∈Γcorners
{f}n+1

qi

|Γcorners|

)2

+
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+

(∑
i∈Γedge\Γcorners

{f}n+1
qi

|Γedge\Γcorners| − 2 ·
∑

i∈Γcorners
{f}n+1

qi

|Γcorners|

)]
.

The dependency of {f}n+1
q on the temperature distribution {T } is is

given by Eq. 8.

3. Total heat term

c4

(∑
i∈Γ

(
[C]i

{
{T }n+1−{T }n

∆t

}
+ [K]base i {T }n+1

)
−Qn+1

goal

)2

where

[K]base =

∫
Ω

[B]T [D] [B] dΩ (9)

and [K]base i is the ith row of the [K]base matrix.
The total heat term serves to enforce the required total heat values for the

solution as it progresses through time. c4 represents the relative importance
of the total heat specification; a lower c4 value means the generated solution is
allowed to deviate from the desired total heat values more, and vice versa. It
can be used to control the type of the solution generated. The randomisation
of the initial temperature values allows the generation of different solutions
for the same c4 value, which is explained in greater detail in this section.

The regularisation term includes an additional fourth component, which
limits the magnitude of the deviation between the average value of {f}q
elements on Γedge \ Γcorners and the average value of {f}q elements on
Γcorners. The separation of the regularisation term into three parts, which
is beneficial for the solution reconstruction, becomes less effective when
generating multiple solutions, as there is no measurement term creating a
connection between the three regions. Therefore, if the fourth component is
absent from the regularisation term, the generated solutions tend to exhibit
sharp temperature variations between the corners and the rest of Γq. The
fourth component serves to constrain the applied heat flux on the corners
without overly constraining the problem overall, so that it becomes well-
posed.

Figure 1 summarises a general workflow for generating multiple solutions,
here the total heat term replaces the measurement term used for the
solution reconstruction. A similar approach of combining two gradient-
based optimisation algorithms, conjugate gradient and Gauss–Newton (Sub-
section 2.3), is adopted for the loss function minimisation. The only
difference with the solution reconstruction process is the initial temperature
distributions used for each time step. In theory, any gradient-free
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optimisation algorithm can be used as a wrapper for the two aforementioned
gradient-based algorithms in order to find multiple local minima of the
loss function landscape, and basin-hopping [36] was initially trialled for
this purpose. Nevertheless, just randomised assignment of the temperature
values at each node works well while keeping the adherence to the runtime
specification for the digital twinning. The random initial temperature values
are produced using probability density function of the uniform distribution
over the half-open interval [Tmin, Tmax) [37]. A new random set of values for
the initial guess vector {T }init is produced for every time step using the same
Tmin and Tmax values for the whole run; the random {T }init corresponding to
each time step are generated prior to the run. It should be noted that Tmin

and Tmax values limit only the initial guess, and they do not limit the final
converged temperature distribution.

Finally, while only the total heat requirement is considered in the present
work, it is easy enough to create a loss function term enforcing any other
given requirement, such as the required maximum temperature on Γq.

3. Results and discussion

The example considered in this paper is an air-cooled stainless steel plate
subjected to the linearly increasing uniform surface heating given by:

q(t) =
600000

180
t (10)

Figure 2 shows a general schematic of the plate with the applied BCs
described in Tables 1 and 2, while Table 3 provides the material properties.
This particular geometry and BC types are selected as they represent a
generally realistic experimental setup. The simulation is run for 180s; the
initial conditions represent a steady state, room temperature of 20◦C. For
this case Γedge is ABCD edge shown in Figure 2 and also equal to Γq ∩ Γh;
Γcorners consists of the nodes A, B, C, and D (Table 2).

3.1. Thermal field reconstruction

The reference solutions, to which the inversely reconstructed solutions
are compared, are generated in Code Aster [29] by applying the BCs
shown in Table 1. In order to inversely reconstruct the solution from the
sparse measurements, the steady-state loss function is firstly defined (Sub-
section 2.2) and used to reconstruct the steady-state solution, which is
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Figure 2: Labels for the applied BCs (Table 1).

Table 1: Applied BCs; Figure 2 shows the
labels.

Surface BC

ABCD Uniform heat flux

BFGC

Plate-air convection
BFEA
AEHD
DHGC
EFGH

Table 2: Defined sets; Figure 2 shows the
labels.

Set Location

Γq Surface ABCD
Γedge Edge ABCD
Γcorners Nodes A, B, C, D
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utilised as a starting point for the subsequent transient calculations. Then,
the transient loss function can be defined (Sub-section 2.2) and used to
reconstruct the solution at each time step.

Table 4 gives the descriptions of the six cases considered in the present
sub-section. ∆tref and ∆trec are time step sizes used for generating the
reference solution in Code Aster and for the solution reconstruction process,
respectively.

Parameters c1, c2 are equal to 1.0 for the solution reconstruction;
conversely, c3 might need a separate adjustment, the process of which is
detailed in Appendix B. The locations of c3 value regions resulting in the
lowest relative errors seem to be dependent on the number of measurements
as well as on ∆trec; consequently, it can be calibrated prior to the experiment.
Moreover, the only meaningful values c3 might adopt are between 0.0 and
1.0, as any value above 1.0 means that c1 and c2 can be adjusted in order to
keep c1, c2, and c3 below 1.0. Generally, values of c3 above 0.5 seem to yield
acceptable errors.

One structured mesh consisting of 5,196 linear quadrilateral and
hexahedral elements (for surface and volume discretisation, respectively) is
used for the reference solutions as well as for all six cases of the solution
reconstruction. During the calculation of elemental matrices and vectors,
four Gauss (integration) points are used for the surface integration of
quadrilaterals, and eight Gauss points are used for the volume integration of
hexahedrals. No mesh refinement is used in the present paper. Two options
for the measurement placement are considered: 15 and 9 measurements;
Figure 3 shows the locations for each one. Furthermore, these measurements
are experimentally attainable when thermocouple (TC) measurements and

Table 3: Material properties.

Parameter Value Unit

Thermal conductivity k (stainless steel Grade 91) 25.84 W/(m ◦C)
Air-steel convection heat transfer coefficient h 135.00 W/(m2 ◦C)
Density ρ (stainless steel Grade 91) 7760.00 kg/(m3)
Specific heat cp (stainless steel Grade 91) 416.80 J/(kg ◦C)
Atmospheric temperature Ta 20.00 ◦C

* All values are given for the room temperature of 20◦C.
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possibly infrared (IR) camera surface recordings are available [38, 39]. None
of the measurements are located directly on Γq \ Γedge, as it is generally not
possible to place any diagnostic sensors directly under the heat-generating
element, for example an induction coil [38]. Furthermore, none of the
measurements are placed close to EFGH side (Figure 2), since, with the
location of the heating element being known, this region would not provide
any useful information for a significant part of the simulation in the beginning
as the temperatures measured there would simply remain nearly constant.

The accuracy is judged by calculating the errors of the reconstructed
solution relative to the reference solution, while the computational speed
is evaluated by recording the time it takes to reconstruct the temperature
field at each time step, i.e. the time step runtime. Table 5 summarises the
overall relative and absolute errors averaged in space and time as well as the
overall maximum relative and absolute errors for each case, whereas Figure 4
compares the average time step runtime for local GPU (NVIDIA GeForce
RTX 3060) and supercomputer GPU (NVIDIA A100) with the time step size
∆trec for each case. Table 5 also provides relative and absolute differences
between two reference solutions used in this paper, the first one with ∆tref
equal to 1s and the second one with ∆tref equal to 0.1s. Moreover, Figures 5

Table 4: Description of six cases considered for the stainless steel plate.

Case
No.

∆tref
[s] a

∆trec
[s] b

No. of
measurements

sncg
c sgn

d c1 c2 c3

1 1.0 1.0 15 2 1 1.0 1.0 1.0
2 1.0 1.0 9 2 1 1.0 1.0 1.0

3 0.1 1.0 15 2 1 1.0 1.0 1.0
4 0.1 1.0 9 2 1 1.0 1.0 1.0

5 0.1 2.0 15 2 1 1.0 1.0 1.0
6 0.1 2.0 9 2 1 1.0 1.0 0.5

a ∆tref is a time step size used for generating the reference solution in
Code Aster.

b ∆trec is a time step size used for the solution reconstruction process.
c sncg is a number of nonlinear conjugate gradient algorithm iterations
(Figure 1).

d sgn is a number of Gauss–Newton algorithm iterations (Figure 1).
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Figure 3: Two options for the measurement placement considered: 15 (left) and 9 (right)
measurements.

and 6 provide a more detailed view of the relative and absolute errors as
they develop with time for Cases No. 1 and 2, respectively; the errors on
these figures are averaged in space only. Similar figures for Cases No. 3-6
can be found in Appendix C. Since all calculations are performed on the
same mesh, the space averaging is simply done using the corresponding nodal
temperature values.

3.1.1. Number of measurements and errors

Firstly, the correlation between the number of measurements and the
error distribution is considered. The six cases can be divided into three
pairs, in which all parameters are the same apart from the number of
measurements, excluding c3 in some cases as it is calibrated based on the
number of measurements and ∆trec (Appendix B): Cases No. 1 and 2,
Cases No. 3 and 4, and Cases No. 5 and 6 (Table 4). Unsurprisingly, the
overall maximum relative errors increase with the decrease in the number of
measurements for Cases No. 1 and 2, Cases No. 3 and 4 (Table 5); on the
other hand, for Cases No. 5 and 6 the maximum relative error decreased by
0.08% with the decrease in the number of measurements.

Figures 7 and 8 display the spatial relative error distributions for the
time instance with the maximum overall relative error for Cases No. 1 and 2,
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respectively; the time instance is 63s for both of them. It can be seen that the
areas with the highest errors are around Γq \Γedge (Figure 2, Table 2), which
is to be expected as no measurements are available there and no relationship
between T and q is known a priori. However, it can be observed that the
errors are still within the 2% range, and Figures 7 and 8 show an excellent
match between the reconstructed and reference solutions.

As shown in Figures 5 and 6, as well as in Figures C.17 and C.18, and
Figures C.19 and C.20 in Appendix C, the average and maximum relative
errors do not increase continuously with time, but in fact peak at the time
instance between 0 and 180s and then start to gradually decline. This signifies
that the measurements do provide a limiting effect on the error accumulation
in time.

Table 5: Average and maximum relative and absolute solution reconstruction errors for
six cases considered for the stainless steel plate.

Case
No.

Average
relative error
[%]

Maximum
relative error
[%]

Average absolute
error [◦C]

Maximum
absolute error
[◦C]

1 0.09 1.84 0.05 2.56
2 0.09 2.01 0.05 2.78

3 0.14 1.77 0.06 2.54
4 0.14 1.98 0.06 2.83

5 0.21 1.75 0.08 1.88
6 0.21 1.67 0.09 2.58

Ref.
diff.
a

0.15 1.33 0.07 1.0

a Reference difference row - this row corresponds to the relative and absolute
difference between the two reference solutions, the first one with ∆tref equal
to 1s and the second one with ∆tref equal to 0.1s.

19



3.1.2. ∆tref , ∆trec, and errors

The second set of interesting results is related to the time step ratio
(TSR), which can be defined as follows:

TSR =
∆trec
∆tref

(11)

For Cases No. 1 and 2 TSR is equal to 1.0, for Cases No. 3 and 4 it is
equal to 10, while for Cases No. 5 and 6 to 20; six cases can be divided into
two groups, in which all parameters are the same apart from the TSR: Cases
No. 1, 3, 5 with 15 measurements, and Cases No. 2, 4, 6 with 9 measurements
(Table 4). Figure 9 visualises the results from Table 5 for these two groups.
It is evident that the average and maximum errors increase with a much
lower rate than the corresponding TSR, especially considering the relative
difference between two reference solutions used in this paper, the first one
with ∆tref equal to 1s and the second one with ∆tref equal to 0.1s. There is
0.15% average and 1.33% maximum relative difference between two reference
solutions (Table 5); however, it is apparent from Figure 9 that errors do not
increase by nearly these amounts as TSR progresses from 1 to 20, indeed the

Figure 4: Average and maximum time step runtimes for all cases, compared with the time
step size ∆trec used; one GPU is used for the local and supercomputer calculations.
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maximum relative error remain nearly constant. A tenfold increase in TSR
resulted in 1.6 times increase in relative average error; however, the maximum
relative errors decrease with increasing TSR for both sets of measurements.
This observation is highly beneficial for two reasons:

1. It is yet another proof that the measurements incorporated into the
algorithm provide a limiting effect on the solution reconstruction errors.

2. The time step size can be increased to decrease the runtime, to meet
real time requirements, since it can be reasonably increased with only
minor effect on the reconstruction.

Figure 5: The dependence of relative and absolute errors on time for Case No. 1.
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3.1.3. Runtimes

Figure 4 compares the average and maximum time step runtimes with
the time step sizes ∆trec used for the solution reconstruction. For the digital
twinning application it is essential that the calculation speed is as close as
possible to real time; thus, the time step runtime should be equivalent to
or less than the time step size. While the runtimes are significantly shorter
than the values typically found in literature for the physics-based methods
[24, 25], the utilisation of the local GPU is still not quite enough to match
the time step size. On the other hand, the supercomputer GPU runtimes
are in the range of 1.2-1.8s with ∆trec being equal to 2s (Cases No. 5 and
6); hence, the solution reconstruction on supercomputer happens in near real

Figure 6: The dependence of relative and absolute errors on time for Case No. 2.
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time with 1-2s fixed delay.

Figure 7: The relative error and temperature distributions for the 63s time instance of
Case 1, together with the reference solution temperature distribution; this time instance
corresponds to the maximum overall relative error for Case 1.
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This changes for nonlinear and more complex problems. For meshes

Figure 8: The relative error and temperature distributions for the 63s time instance of
Case 2, together with the reference solution temperature distribution; this time instance
corresponds to the the maximum overall relative error for Case 2.
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with a higher number of nodes several GPUs can be utilised concurrently
to sufficiently reduce runtimes, the process which might not be dissimilar to
how ML models can be trained on multiple GPUs.

3.2. Multiple choices

In this sub-section it is assumed that the desired time-dependent total
heat Qgoal is as follows:

Qgoal(t) = −0.03t2 + 1.7t (12)

The transient loss function is defined as described in sub-section 2.4.
Table 6 presents the selected parameter values. It is decided to use ∆trec

equal to 2s for generating multiple solutions, as this value coupled with the
current time step runtimes allows to emulate a near real-time operation with
a constant delay as it is shown in sub-section 3.1. Three sets of randomised
initial guesses are produced corresponding to the three different generated
solutions for each value of c4, with each set containing the number of initial
guess vectors {T }init equal to the number of time steps. The simulation is
run for 30s.

Figure 9: The dependence of the average and maximum relative errors on TSR; 15
measurements are used in Cases 1, 3, and 5 (1, 10, and 20 TSR, respectively), while
9 measurements are used in Cases 2, 4, and 6 (1, 10, and 20 TSR, respectively).

25



3.2.1. Total heat

Figure 10 shows a total heat variation with time for each of the nine
solution options; it is compared with the total heat goal Qgoal(t) represented
by Eq. 12. Table 7 summarises the overall total heat relative and absolute
errors averaged in time as well as the overall total heat maximum relative
and absolute errors for each option. Figure 11 compares the average and
maximum total heat relative errors for three values of c4; whereas, Figure 12
showcases the temperature distributions for nine solution options at 26s time
instance.

It can be observed that the average and maximum errors decrease with
the c4 increase, and a close match between the desired total heat temporal
variation and the actual total heat variation is easily achieved. Nevertheless,
some distinct differences between the temperature distributions are visible
in Figure 12. Furthermore, this figure exemplifies what is mentioned in
Section 2, viz., the value of c4 can potentially be used to control the general
type or shape of the solution generated. And indeed, for each of the three
considered values of c4 the solutions generated from random initial guess
sets display similar features. Additionally, it is worth noting that Solution

Table 6: Parameter values used for generating multiple solution options.

Opt.
No.

∆trec
[s] a

Tmin

[◦C]
Tmax

[◦C]
sncg

c sgn
d c1 c3 c4 Random

set No.

1 2.0 20 100 2 1 1.0 0.1 0.11 1
2 2.0 20 100 2 1 1.0 0.1 0.11 2
3 2.0 20 100 2 1 1.0 0.1 0.11 3

4 2.0 20 100 2 1 1.0 0.1 0.10 1
5 2.0 20 100 2 1 1.0 0.1 0.10 2
6 2.0 20 100 2 1 1.0 0.1 0.10 3

7 2.0 20 100 2 1 1.0 0.1 0.14 1
8 2.0 20 100 2 1 1.0 0.1 0.14 2
9 2.0 20 100 2 1 1.0 0.1 0.14 3

a ∆trec is a time step size used for generating a solution option.
c sncg is a number of nonlinear conjugate gradient algorithm iterations
(Figure 1).

d sgn is a number of Gauss–Newton algorithm iterations (Figure 1).
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options No. 4 and 6 as well as Solution options No. 7 and 9 look identical in
Figure 12; however, they differ significantly at earlier time instances, whilst
adhering to the same solution shape.

Table 7: Average and maximum relative and absolute total heat errors for nine solution
options considered for the stainless steel plate.

Opt.
No.

Average
relative error
[%]

Maximum
relative error
[%]

Average absolute
error [W]

Maximum
absolute error
[W]

1 1.69 9.68 0.15 0.32
2 1.76 9.14 0.16 0.34
3 1.64 8.33 0.15 0.30

4 2.20 10.00 0.20 0.55
5 2.48 12.10 0.22 0.49
6 2.19 12.35 0.19 0.41

7 0.43 2.49 0.04 0.08
8 0.45 2.32 0.04 0.08
9 0.42 2.37 0.04 0.08

Figure 10: The dependence of the total heat on time for various solution options; the total
heat goal Qgoal corresponds to Eq. 12.
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3.2.2. Runtimes

As is required for real time control of an experiment, the simulation can
run close to real time. Figure 13 compares the average and maximum time
step runtimes with the time step size ∆trec of 2s used to generate these
solutions. As with the solution reconstruction cases in Sub-section 3.1, the
simulation on the local GPU is not quite able to operate in near real time;
however, the simulation run on the supercomputer GPU attains excellent
runtimes of approximately 1.2s per time step when the time step size is 2s.

4. Conclusions

In conclusion, this paper introduces an inverse analysis framework, which
relies purely on standard FE discretisations, and highlights its potential
by analysing its application to a transient heat conduction in a stainless
steel plate, which represents experimental scenario. After the initial FE
discretisation the presented workflow deviates significantly from a standard
FE workflow used to solve forward problems.

The results in this paper address the problem of inverse solution
reconstruction from sparse measurements in near real time, which is directly

Figure 11: The dependence of the relative total heat errors on c4.
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related to the system monitoring objective (Section 1). Furthermore, they
showcase a novel approach for producing multiple options fitting certain
requirements in a controlled manner, a functionality essential for the semi-
autonomous system control objective (Section 1). This is an innovative
way of taking advantage of the intrinsic inverse problem ill-posedness. The
demonstrable advantages of the presented methodology include the following:

1. It combines the best characteristics of the existing data-driven and
physics-based approaches, with or without ML. No copious amounts of

Figure 12: Temperature distributions for nine solution options at 26s time instance.
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training data are required to accomplish acceptable accuracy, while the
current runtimes allow for the near real-time operation with a consistent
1-2s offset.

2. It only makes use of the domain information that might be available in
the real experimental setup.

3. It utilises the traditional industry-standard simulation method for solid
materials, which significantly simplifies the process of its integration
into the existing simulation workflows in the industry. [C], [K], {f}h,
and mesh can be generated using any preferred software, while the
framework’s output can be post-processed and analysed again using
any preferred software; and also it can be directly compared with any
existing forward simulations. Moreover, this means that all the new
FEM-related developments can be potentially employed to enhance
its performance; for example, such developments might include novel
meshing techniques [40].

While there are still some important considerations to be dealt with, such
as temperature-dependency of the material properties and more complex
geometries, the current results are encouraging, indicating significant
potential for the digital twinning applications.

Figure 13: Average and maximum time step runtimes for all generated solution options,
compared with the time step size ∆trec used; one GPU is used for the local and
supercomputer cases.

30



5. Acknowledgements

This work has been part-funded by the EPSRC Energy Programme
[grant number EP/W006839/1]. The authors acknowledge the support
of Supercomputing Wales and AccelerateAI projects, which is part-
funded by the European Regional Development Fund (ERDF) via the
Welsh Government for giving them access to NVIDIA A100 40GB GPUs.
Additionally, the authors would like to thank Lloyd Fletcher and Adel Tayeb
from UKAEA for the fruitful discussions regarding the physical testing of
the heat exchange components and the diagnostic tools used during the
experiments.

6. Declarations

The source codes along with datasets used in the current paper are
available from the corresponding author upon request.

References

[1] J.-F. Yao, Y. Yang, X.-C. Wang, X.-P. Zhang, Systematic review of
digital twin technology and applications, Visual Computing for Industry,
Biomedicine, and Art 6 (2023) 10. doi:10.1186/s42492-023-00137-4.

[2] A. Tarantola, Inverse Problem Theory and Methods for Model
Parameter Estimation, Society for Industrial and Applied Mathematics,
2004.

[3] W. Li, D. Sadigh, S. S. Sastry, S. A. Seshia, Synthesis for human-in-
the-loop control systems, in: E. Ábrahám, K. Havelund (Eds.), Tools
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[4] S. Arridge, P. Maass, O. Öktem, C.-B. Schönlieb, Solving inverse
problems using data-driven models, Acta Numerica 28 (2019) 1–174.
doi:10.1017/S0962492919000059.
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dedicated to Professor Zdeněk Bittnar on the occasion of his Seventieth
Birthday: Part 2.

[6] M. Paruch, A. Piasecka-Belkhayat, A. Korczak, Identification of
the ultra-short laser parameters during irradiation of thin metal
films using the interval lattice boltzmann method and evolutionary
algorithm, Advances in Engineering Software 180 (2023) 103456.
doi:https://doi.org/10.1016/j.advengsoft.2023.103456.

[7] A. Bangian-Tabrizi, Y. Jaluria, An optimization strategy for the
inverse solution of a convection heat transfer problem, International
Journal of Heat and Mass Transfer 124 (2018) 1147 – 1155.
doi:10.1016/j.ijheatmasstransfer.2018.04.053.

[8] H. R. Tamaddon-Jahromi, N. K. Chakshu, I. Sazonov, L. M. Evans,
H. Thomas, P. Nithiarasu, Data-driven inverse modelling through neural
network (deep learning) and computational heat transfer, Computer
Methods in Applied Mechanics and Engineering 369 (2020) 113217.
doi:https://doi.org/10.1016/j.cma.2020.113217.

[9] H. Tercan, T. Meisen, Machine learning and deep learning based
predictive quality in manufacturing: a systematic review, Journal of
Intelligent Manufacturing 33 (2022) 1879–1905. doi:10.1007/s10845-022-
01963-8.

[10] H.-W. Chiu, C.-H. Lee, Prediction of machining accuracy
and surface quality for cnc machine tools using data driven
approach, Advances in Engineering Software 114 (2017) 246–257.
doi:https://doi.org/10.1016/j.advengsoft.2017.07.008.

[11] S. Le Clainche, E. Ferrer, S. Gibson, E. Cross, A. Parente,
R. Vinuesa, Improving aircraft performance using machine learning:
A review, Aerospace Science and Technology 138 (2023) 108354.
doi:https://doi.org/10.1016/j.ast.2023.108354.

[12] S. Szrama, T. Lodygowski, Aircraft engine remaining useful life
prediction using neural networks and real-life engine operational
data, Advances in Engineering Software 192 (2024) 103645.
doi:https://doi.org/10.1016/j.advengsoft.2024.103645.

32



[13] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press,
2016.

[14] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning,
Adaptive Computation and Machine Learning series, MIT Press, 2005.

[15] B. Mehlig, Machine Learning with Neural Networks: An Introduction
for Scientists and Engineers, Cambridge University Press, 2021.
doi:10.1017/9781108860604.

[16] G. Yagawa, H. Okuda, Neural networks in computational mechanics,
Archives of Computational Methods in Engineering 3 (1996) 435 – 512.
doi:10.1007/BF02818935.

[17] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural
computation 9 (1997) 1735–80. doi:10.1162/neco.1997.9.8.1735.

[18] W. Bielajewa, M. Tindall, P. Nithiarasu, Comparative study
of transformer- and lstm-based machine learning methods
for transient thermal field reconstruction, Computational
Thermal Sciences: An International Journal 16 (2024).
doi:10.1615/ComputThermalScien.2023049936.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in
Neural Information Processing Systems, volume 30, Curran Associates,
Inc., 2017.

[20] R. Lewis, Simulation driven machine learning methods to optimise
design of physical experiments and enhance data analysis for testing
of fusion energy heat exchanger components, Phd thesis, Swansea
University, 2023.

[21] Y. Zhang, Z. Gong, W. Zhou, X. Zhao, X. Zheng, W. Yao,
Multi-fidelity surrogate modeling for temperature field
prediction using deep convolution neural network, Engineering
Applications of Artificial Intelligence 123 (2023) 106354.
doi:https://doi.org/10.1016/j.engappai.2023.106354.

[22] F. Zhu, J. Chen, D. Ren, Y. Han, Transient temperature
fields of the tank vehicle with various parameters using deep

33



learning method, Applied Thermal Engineering 230 (2023) 120697.
doi:https://doi.org/10.1016/j.applthermaleng.2023.120697.

[23] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed
neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations, Journal of Computational Physics 378 (2019) 686–707.
doi:https://doi.org/10.1016/j.jcp.2018.10.045.

[24] P. Sharma, L. Evans, M. Tindall, P. Nithiarasu, Stiff-pdes and physics-
informed neural networks, Archives of Computational Methods in
Engineering 30 (2023) 2929–2958. doi:10.1007/s11831-023-09890-4.

[25] P. Karnakov, S. Litvinov, P. Koumoutsakos, Flow reconstruction
by multiresolution optimization of a discrete loss with automatic
differentiation, The European Physical Journal E 46 (2023) 59.
doi:10.1140/epje/s10189-023-00313-7.

[26] M. Balcerak, I. Ezhov, P. Karnakov, S. Litvinov, P. Koumoutsakos,
J. Weidner, R. Z. Zhang, J. S. Lowengrub, B. Wiestler, B. Menze,
Individualizing glioma radiotherapy planning by optimization of a data
and physics informed discrete loss, 2023. arXiv:2312.05063.

[27] P. Nithiarasu, R. W. Lewis, K. N. Seetharamu, Fundamentals of the
Finite Element Method for Heat and Mass Transfer, 2 ed., Wiley, 2016.

[28] ANSYS, Inc., Ansys: Engineering simulation software, Available at
https://www.ansys.com/, 1970–2024. [Software].
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Appendix A. 1D steady-state example

This appendix briefly analyses a 1D steady-state example in order to more
clearly convey the idea behind the residual loss function term introduced
in Section 2. Figure A.14 shows a discretised domain comprised of three
nodes and two elements; heat flux q is applied to Node 1, while the domain-
atmosphere convection is assumed to take place at Node 3. The specific
numbers are not given here as they are not necessary for the understanding
of the general concept.

The three equations corresponding to each node are written as follows:

Node 1: [K]11 T1 + [K]12 T2 + [K]13 T3 = {f}q1 + {f}h1
Node 2: [K]21 T1 + [K]22 T2 + [K]23 T3 = {f}q2 + {f}h2
Node 3: [K]31 T1 + [K]32 T2 + [K]33 T3 = {f}q3 + {f}h3 (A.1)

Due to the mesh and hence [K] connectivity and known locations of applied
BCs, Eq. A.1 can be reduced to the following:

Node 1: [K]11 T1 + [K]12 T2 = {f}q1
Node 2: [K]21 T1 + [K]22 T2 + [K]23 T3 = 0

Node 3: [K]32 T2 + [K]33 T3 = {f}h3 (A.2)

Finally, the residual term for this problem can be defined as:

Residual term = c1 ([K]21 T1 + [K]22 T2 + [K]23 T3)
2+

+c1 ([K]32 T2 + [K]33 T3 − {f}h3)
2 (A.3)

In Eq. A.3, it can be seen that the equation associated with Node 1 where
the unknown heat flux is applied is excluded. Nevertheless, the [K] matrix
connectivity and thus the nodal heat flux balance are preserved, since T1 is
still present in the calculation. Node 1 equation is excluded from Eq. A.3 as
{f}q1 is assumed to be unknown; consequently, {f}q1 becomes an implicit

Figure A.14: The general 1D example with three nodes and two elements.
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DoF, which are not directly adjusted during the optimisation procedure,
together with the explicit DoF {T }, which are directly adjusted during the
optimisation procedure. However, undoubtedly, as DoF, {f}q1 and {T } are
strongly interdependent.

Appendix B. Weighting coefficient selection for solution
reconstruction

The weighting coefficient selection for solution reconstruction is
mentioned in Section 3; this appendix provides a more detailed view of this
process. Figures B.15 and B.16 show the average and maximum relative and
absolute solution reconstruction errors, in space and time, for various values
of c3 for all solution reconstruction cases considered in this paper (Table 4).
The cases are split into two groups: 15 measurements (Cases No. 1, 3, and 5
shown in Figure B.15), and 9 measurements (Cases No. 2, 4, and 6 shown in
Figure B.16); nevertheless, a number of common features can be discerned:

1. The solutions converge for all values of c3 belonging to (0, 1], and
the converged temperature distribution is generally reasonably close to
the reference temperature distribution. The solutions diverge rapidly
from the reference solution to infinity or to some finite temperature
distribution vastly different from the reference temperature distribution
for c3 equal to zero, i.e. when no regularisation is applied, thus
highlighting the importance of the regularisation term. For every set of
measurements there usually exists a temperature distribution perfectly
fitting the residual and measurement terms but having an extremely
abrupt unphysical temperature variations on the surface; and in the
absence of any limiting factor, such as the regularisation term, the
optimisation process tends to converge to this unrealistic temperature
distribution or not converge at all.

2. The shapes of the curves are similar between Cases No. 1 and 3, and
likewise between Cases No. 2 and 4; the only significant difference is
that the average curves are displaced in the direction of y axis. All
these cases share the same value of ∆trec that is equal to 1s. However,
the values of TSR (Eq. 11) are different (1.0 for Cases No. 1 and 2,
and 10.0 for Cases No. 3 and 4), which might explain the displacement
of the average curves in y axis direction.
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3. The shape of the curve for Case No. 5 noticeably differs from the
aforementioned curves for Cases No. 1 and 3; the same phenomenon
can be observed for Case No. 6 as compared with Cases No. 2 and 4.
Examining the various parameter values in Table 4 indicates that this
change might be caused by the transition of ∆trec from 1s to 2s.

For Cases No. 1-5 the locations of the minima of average relative and
maximum relative errors coincide; consequently, the value of 1.0 is selected
(Table 4). The situation is is a bit more complex for Case No. 6, since
the minima of average relative and maximum relative errors are reached at
different values of c3, albeit very close ones. The value of 0.5 is selected for
this case as it corresponds to the minimum of the maximum relative error
(Table 4).

Overall, the error dependency on c3 seems to be defined by the number of
measurements as well as ∆trec; consequently, this parameter can be calibrated
prior to the experiment. However, it should be noted that usually there
are expansive intervals of c3 where the relative errors vary only slightly, for
example values of c3 equal or above 0.5.

Figure B.15: Average and maximum relative and absolute solution reconstruction errors
(in space and time) for various values of c3 for Cases 1, 3, and 5 (Table 4).
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Figure B.16: Average and maximum relative and absolute solution reconstruction errors
(in space and time) for various values of c3 for Cases 2, 4, and 6 (Table 4).

Appendix C. Relative and absolute errors for Cases No. 3-6

The figures contained in this appendix, Figures C.17 to C.20, elaborate
on how relative and absolute errors progress over time for Cases No. 3-6.
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Figure C.17: The dependence of relative and absolute errors on time for Case No. 3.

Figure C.18: The dependence of relative and absolute errors on time for Case No. 4.
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Figure C.19: The dependence of relative and absolute errors on time for Case No. 5.

Figure C.20: The dependence of relative and absolute errors on time for Case No. 6.
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