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Abstract
It is recognized that tokamak plasma disruptions and vertical displacement events, with

the attendant appearance of ‘halo currents’, are a threat to future experiments such as
ITER. Halo currents, flowing between the plasma and the wall, can develop large spatially
localized components. Here, we ascribe this to a new instability that can occur in a com-
posite circuit of a magnetized plasma and a solid conductor. The presence of the conductor
divides the current perturbation into topologically distinct stable and unstable composite
plasma-wall circuits. The plasma paths of such circuits are subject to hydromagnetic
motions, which alter circuit geometry and conductivity while self-consistently preserving
toroidal and poloidal periodicity. We develop a simple prototype model which illustrates
the geometrical aspect of the mechanism. The heterogeneity of the true plasma-wall sys-
tem is shown to introduce considerable complexity. Our basic concept may underlie a
wider class of instabilities and waves.

I Introduction

Tokamak plasmas can be unstable to an axisymmetric vertical motion which, in the ab-
sence of any restraining effect, would proceed on a fast Alfvénic time scale [1]. Surround-
ing the plasma with a passive conducting structure (field windings, vacuum vessel etc.)
increases the time scale of the instability to a much longer one related to the resistive
penetration time of the ‘wall’. Due to its relatively slow growth there is the practical pos-
sibility of controlling this positional instability using suitable externally applied correcting
fields. Occasionally however, perhaps due to failure of the position control system or a
stability limit being exceeded, vertical control is lost and an instability known as a Vertical
Displacement Event or VDE can develop. The VDE can lead to the plasma coming into
contact with the wall, the formation of so-called ‘halo’ currents, and ultimate plasma, dis-
ruption. Halo currents are currents flowing in circuits between the outer plasma and the
wall, and have been observed in some experiments to develop large toroidally asymmetric
components.

The VDE/disruption sequence has various deleterious practical consequences. Ther-
mal loads are placed on divertor target plates and other parts of the external structure,



leading to erosion and vaporization. Voltages generated by the plasma motion can lead
to localized arcing, and the considerable Lorentz forces that develop (as in the JET ex-
periment [2]) can lead to structural failure. As well as being important for present day
experiments, elementary scaling arguments based on force balance indicate that these
effects will be more serious for next-generation tokamaks such as ITER [3]. For an early
review of these topics see [4], for recent experimental results from COMPASS-D and Al-
cator C-MOD see [5], [6], and for a world-wide summary for use in the ITER design see
[7].

Halo currents often develop large asymmetric components which can exacerbate the
above mentioned effects. Present modelling of halo currents assumes that the asymmetry
comes from the core plasma itself becoming unstable to an MHD kink mode, but the
observed relative amplitude of shift and tilt displacements appears inconsistent with this
[8]. Here, we propose a mechanism underlying the formation of halo asymmetry in terms
of a hybrid instability, caused by an interaction between the outer layers of the plasma
and the wall, where the main plasma column remains stable. In our picture, the ba-
sic eigenmode requirements of toroidal and poloidal periodicity and electromagnetic and
kinematic self-consistency are met in a special way by the three-dimensional juxtaposition
of magnetized plasma and solid conductor. '

In Section II we isolate the deformation of the plasma-wall contact, or ‘footpoint
motion’, one of the novel aspects of the instability deriving directly from the compound
nature of the plasma-wall circuit, and in Section III construct, as an example, a simplified
model of a poloidal halo that exhibits the expected behaviour. To gain insight into the
process, a linear perturbation analysis is carried out, and the resulting analytic stability
boundaries are compared with numerical output, finding qualitative agreement.

In Section IV we suggest how the proposed instability would operate in the practically
relevant case of a helical halo. We complete our outline of the full mechanism, not
captured by our example model, with a qualitative argument about the origin of the
plasma drift velocities, responsible for ‘footpoint motion’ and changes in the conductivity
of the halo plasma. Issues discussed in this section are the current distribution in the wall,
the reaction of the core plasma to the halo current, and the periodicity of the perturbed
current path. General conclusions are presented in Section V.

II The mechanism of ‘footpoint motion’

Halo currents flow helically within a doubly connected annulus enclosing the disrupting
toroidal core plasma. The annulus is composed of a plasma sector and a wall sector
meeting on inboard and outboard contact loci that initially form toroidal circles, see
fig. 1a. The plasma sector is an outer layer of the core plasma with magnetic surfaces
intersecting the wall, permitting current to flow into the wall sector, around the core, and
reenter the halo plasma on the opposite side. We assume that both sectors are sufficiently
thin for their contacts to be considered lines. Driving primary voltages exist due to the
changing magnetic fluxes in the enclosed disrupting core, and the usual toroidal drive.
For simplicity, we first consider the artificial case where current and magnetic field
lines are entirely poloidal, and the equilibrium magnetic field is sufficiently large that
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current perturbations in the halo do not significantly change it. We may then regard the
halo current distribution as a multiplicity of closed filamentary poloidal current circuits,
stacked along the toroidal direction, each comprising a plasma path and a wall path
connected in series.

An initial deformation of the inboard and outboard contact loci, hereafter ‘footpoints’,
will then clearly change both the resistance and inductance of an individual filament, by
changing the lengths of both the wall and plasma paths, characterized by different resistiv-
ities, see fig. 1b. This will change the current in the filament, while the existing inductance
will retard the change. We now assume that the footpoint positions are determined by
local force balance in the halo plasma, and that changing current can change, via force
balance, the average radial position of the plasma path (due to underlying plasma drifts).
The plasma-wall contact will then move according to the wall shape. Critically, if force
balance is such that the change in current reinforces the initia] deformation then insta-
bility becomes possible. A toroidal wavelength arises because the filaments are linked via
mutual inductances, and thus partially ‘mirror’ the current changes in their neighbours.
The result is an inductive ripple, with filaments ‘dumping’ current on their neighbours,
changing their ‘L/R’ time via footpoint motion, and leading to further dumping.

To predict the outcome, we must calculate such changes in resistance and inductance
in detail. However, because of the heterogeneity of the plasma-wall system there is no
simple coordinate system in which to solve globally. The partly ad hoc model we solve
below serves to illustrate the generic principle of the inductive ripple via footpoint motion.

ITIT A prototype model

We consider a straight vessel, with periodicity length L. The halo equilibrium fields
are entirely poloidal, invariant along the ‘toroidal’ direction 2. We postpone a physical
discussion of how force-balance links changes in filament current to changes in filament
size, as required to complete the feedback, but introduce instead a parameter of * positional
gain’ in an ad hoc manner. A specific mechanism will be suggested in Section IV on the
helical halo, as it requires separate physics.

A Ohm’s law

The current in each composite infinitesimal filament, introduced above, obeys the circuit
equation

, 5}
taz——a¢z+v. (1)

We adopt the convention that the subscript z refers to toroidal position (not direction), so
that . = Q(z,t) is the poloidal resistance per unit toroidal length at location z, 7, = i(z,1)
the poloidal current per unit toroidal length, ®. = ®(z,¢) the toroidal flux linked by the
filament, due to halo currents everywhere, and V the constant poloidal driving voltage,
common to all filaments. Figure la shows a schematic drawing of a toroidal cross-section.

We assume that the inboard and outboard plasma-wall contacts of a filament are at
mirror-symmetric positions described by a minor radius y, = y(z,1), equal to the distance



between a contact and the centre of the plasma core. We write
0, =0+ pAy. where p=17/é. (2)

Non-subscripted parameters, as above, will refer to equilibrium values. € is the initial
effective resistance of the mixed circuit per unit toroidal length and p its rate of change
with plasma radius, as the lengths of the wall and plasma paths are modified. 7 is an
effective resistivity and & an effective width, introduced only to make the dimensions of
the ‘“filament resistance’ Q explicit. The precise value of p will strongly depend on the
difference between plasma and wall conductivities and on the angle of incidence of the
magnetic field on the wall surface. Also, inhomogeneities of material, wall thickness or
structure may exist between inboard and outboard contacts, influencing these effective
values.

B Inductive coupling

To model inductive couplings we adopt expressions available for coaxial circular rings;
see for instance [10]. Calculation of mutual inductances in non-trivial geometries requires
numerical treatment.

Given a current loop of radius a, = a(z,t) —note index convention- situated in the
poloidal plane at z, the flux linked by a coaxial test loop of radius a. situated at a distance
¢ = 7' — z —see also figure 1b— is given approximately by ®... = ®(z,2',t), where

(I)zz' == ﬂOIzV azdz Fzz’ ) (3)

with . ( )2 ( 5.)?
a4+ az )" + (T + 0y
Fzz‘ = 5 lIl ].6 52 — 2 ’ (4)
and
k2 = (a; — a)? + (2 + 6u)%, (5)

where I, is the current in the loop. ®..r diverges logarithmically with decreasing &, as
the test loop experiences an increasingly singular current distribution. We have expressed
the toroidal inter-loop distance as z + &, adding a small but non-zero wall thickness
6w. This persists as the characteristic length of the radial width of a current loop in the
limit of z — 0, preventing an artificial singularity in the value of filament self-inductance
(in principle, the thickness of the halo plasma could play a similar role, but we assume
that the wall dominates the effect). Expression (4) is only valid near a filament. The
corresponding expression at large distances is listed in Appendix A.

We may suppose that the coaxial filaments are generally non-circular and expand in
a lop-sided way as contacts move on the wall surface. To account for non-uniformity, we
introduce an effective induction radius a, for a composite coil at z, related to variations
of the plasma radius y,, defined previously, by

a, = a+ Ay, , (6)

where a is the initial effective radius, { is the ‘inductive gain’, analogous to p of eqn. (2),
and dependent on geometry, for instance on the relative sizes of the im movable wall path
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and the movable plasma path. It is possible that the values of a and ! are influenced by
special structures existing between inboard and outboard contacts.
The original induction equation, (1), gives rise to an integral equation, holding at all

z’
P _ a rLe :
2+ TA): = —(HUF)E 6 /sy My d(2' —2) +V, (7)
~Ljz
where M, = F,,//F is a coupling coefficient normalized to the equilibrium value of

F,. = F, according to equations (4, A2).

C Force balance

Closure of the system (7) requires a relation between filament size and current, which is
in principle provided by considerations of force-balance.

For our example model, however, we choose the simplest possible closure scheme,
namely a linear relation between Aa, = a, — a and Ai,, by introducing a constant
‘positional gain parameter’ s, of unspecified value. This is defined at equilibrium by the

relation _
Az, B Aa,

= —5p

(8)

so 1s thus assumed to contain all information about the (saturated) amplitude of the
induced plasma drift, which effects force-balance, the amount of pressure sustainable in
the halo due to transport, and the consequences of these for footpoint motion given the
geometry of the wall-field intersection. We will return to consider the physical basis for
a positional gain in our discussion of the instability in the real halo, in Section IV, where
it will become apparent that this is especially complicated.

D Numerical solution

In numerically solving the system (7, 8) we used spatial grids with 20-50 points and time
steps of the order of a few percent 7o, defined below. Denser space-time grids yield similar
results. Figures 3-6 show the numerical evolution of the instability for different values
of the initial inductive aspect ratio (A = L/a) and the postulated positional gain (so).
The instability grows out of small random perturbations of the filament currents and a
single wavelength becomes dominant. The most obvious interpretation is that there is a
characteristic distance, of the order of the halo minor radius, over which the inductive
coupling between a pair of filaments decays, and thus the wavenumber is determined by
the number of times this distance fits inside the toroidal periodicity length. This number
should be large for large aspect ratio and vice versa. However, the following linear stability
analysis shows that very strong determinants of stability are also the positional gain s,
and the ratio 7o/7; of global and local timescales, defined below. There is a tendency for
the asymmetry to become increasingly peaked with time, as the dominant current channel
drains current from its neighbours on all length scales.
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E Linear stability analysis

We normalize the system (7, 8) using for current, effective coil radius, and position the
non-dimensional quantities a., g, Z defined by

a, =a,fa, ¢g:=1ift, and Z=2/L, (9)
and define
o poF'L o poF' L
Q= Q/CL ? 1= p/l ?
which are global and local ‘L/R’ characteristic timescales; see also equations (2, 6).

We consider small perturbations of current and effective radius, and linearize around
a toroidally symmetric equilibrium to find at each toroidal position z

(10)

0 (89:) [ (Moo + 202 87 — [ (250 — 1) M — 2M 19 Ago dz =
at 9z ~1/2 = ) 4 -1/2 8 o =% B gz 6% =
oo =/ g, ()
To
where 7 = 2 — z. We have eliminated « using relation (8) in the form Ag. = —so Ac..

The quantity M’,, = M,/ is the rate of change of the coupling coeflicient M.
with coil effective radius @, at equilibrium. It is not necessary to distinguish between a,
and a, because of the reciprocity of mutual inductances and the toroidally symmetric
initial conditions. Introducing a dependence

Agy o« cos[2mn(z + Z)] exp(7at) (12)

forn =0,1,2,..., it is straightforward to show that eqn. (11) yields a dispersion relation

alls + 2T + (1 — 280) 5 + 21,] = 2(50—2:’-/1) , (13)
shers
L = _11’:2 M.y dz ~ ﬁ%ﬂ (14)
B = /_ 11":2 M, dz ~ EII_IJ:l(té/:/lT)I (15)
L = _llf/zmu, cos(2nnE) dz ~ %S‘i(nmtm) (16)
E = _IZM;Z, IR ~ ﬁiﬁ—a)lsﬁ(nm/;t). (17)

The analytic approximations on the right of the above list are further discussed in Ap-
pendix B. A = L/a is the ‘inductive aspect ratio’ of the halo, the ratio of the toroidal
periodicity length to the initial effective poloidal filament radius. The approximations
above are valid for A > A, ~ 2.6, where A, is a characteristic aspect ratio defining the
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transition from an inductively ‘strongly coupled’ to a ‘weakly coupled’ halo. The value
2.6 is specific to a coaxial-ring geometry, representing the ratio of the length over which
M., decays, to the filament radius. We thus specialize to the case of a weakly coupled
halo. Further validity conditions are

by <a, and L/(27n)>6,, (18)

specifying a thin wall, and excluding wavelengths so short that they compete with the
filament radial thickness. Finally, we have defined the functions

—~ sin -~ 1 fzsint
sin(z) = . and Si(z) = :c/o dt, (19)
the sine and sine-integral normalized by their argument. Both functions tend to unity as
their argument tends to zero, and tend to zero as their argument tends to infinity (Si(z)
tends to 7 /2z).

The growth rate, given by eqn. (13), can then be evaluated using expressions (14) to
(17), together with (10) and (B1), to find approximately

—1 (80— P) 1
T Rw) = s0) i) .
where p_—
™= Q) Aa) 1)

roughly corresponds to the ‘L/R’ timescale of a solenoid of radius @ and length 4, «a
which, as mentioned above, is the characteristic decay length of inductive coupling along

the poloidal halo.
‘The remaining factors of expression (20) govern stability, with « = nr.4,/.A and

Si(u) + sin(u) + 2

R(u) = R(A,n) = 28i(a) , (22)
where R(0) = 2, while
p-To_ 2/t (23)
o Qfp

is a ‘resistance parameter’ of the halo. Equation (20) shows so = P is a cut-off while
50 = R(A,n) are resonances. Referring back to relations (2, 6) it is easy to see that Q/p
and a/l, appearing in the above expression for P, can be thought of as effective resistive
and inductive sizes of the halo. If the coils of the halo were homogeneous rings, then
P = 1. However, the differing coil resistances of the wall and plasma paths, and details
of geometry such as the strike angle —see fig. la, can not only make P # 1 , but even
negative or divergent.

Figure 2 shows the analytic stability boundaries of the first few modes in the (A, so)
plane. According to eqn. (20) a mode n is unstable if sq lies within the interval [P, R(A, n)],
and stable otherwise. All modes are stable if so = P, whereas s = R generates a
singularity in the growth rate, discussed below. Numerical results verify these boundaries,
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qualitatively, and quantitatively usually to within 30%. The waviness of the stability
boundaries is expected, caused by the behaviour of the integrals I3, /4 in equations (18, 1%
for a given aspect ratio there is a fixed coupling distance over which mutual inductances
decay; as n increases, the difference between the coupling distance and the closest integral
number of wavelengths oscillates. With increasing aspect ratio the coupling distance
progressively becomes much shorter than the wavelengths of an increasing number of
harmonics, which become locally indistinguishable. Thus, all R(A,n) tend to R(A,0) = 2
as A tends to infinity. Also, universal stability would be achieved by either lowering sq
below R(A,0) = 2 while raising P above so, or by having so = P.

Figures 3-6 show the initial evolution of the numerical model for different parameter
settings, with reference to their position on the analytic stability diagram of figure 2. The
results verify the analysis in a qualitative way, showing that as the system is taken across
a boundary the corresponding harmonic becomes gradually dominant until it suddenly
disappears, while the next harmonic takes over until the next boundary is reached, and
so on. The asymmetry becomes increasingly peaked with amplitude because of the in-
creasing inductive dominance of the current channel at the peak of the asymmetry over
. its immediate neighbours.

The singularities in the growth rate are, of course, unphysical. They arise in this model
when the rate of expansion of a filament with changing current changes its inductance
at a rate that would be just sufficient to sustain the very same change in current, if coil
resistance remained constant. In this limit the system is neutrally stable with respect
to current changes, but there is no extra voltage available to drive the current change
should the resistance be changing as well. Since resistance does change with filament
size, near this limit a divergent rate of expansion becomes necessary to provide the extra
voltage. A finite growth rate at such resonances could be restored by amending the model
to include drift velocities, recognizing that the adjustment of position through ‘s¢’ implies
an unphysical, instantaneous plasma displacement in response to current perturbations.

F Discussion

The example calculated above makes the point that, at least in principle, there is oppor-
tunity for instability in a hybrid plasma-wall circuit stemming simply from the reshaping
of the wall path by perturbed force-balance in the plasma. However, the issue of the
physical origin of contact-motion (se), which is a consequence of plasma drifts, cannot be
discussed within the above poloidal model, and is taken up in the section on the helical
halo below.

It is important to note that the size of the inductive and resistive ‘gains’ of the plasma-
wall circuits can be strongly influenced by the geometry of the intersection of magnetic
field and conductor; for instance, a very shallow angle of incidence of the magnetic field
on the wall, see fig. la, could be made to yield arbitrary, even divergent, values.

We emphasize that the instability does not exist simply because of the mutual back
emfs between the circuits —these serve to organize the mode spatially— but because of the
permanent gain in the conductivity of a circuit due to its change in shape and size, as
in the above model, or due to its accumulation of conducting material, as we shall argue
below.



Our use of simple formulae to model inductive couplings, rather than employ Fara-
day’s law, is dictated by the heterogeneity of the system: there is no simple coordinate
system, with eigenfunctions, to describe both plasma and wall circuits. This heterogene-
ity becomes even more critical in the case of a realistic helical halo, below. For example,
tracking footpoint motion in the helical case would require knowledge of the pitch of the
magnetic field, the pressure in the halo (zero pressure if the halo is force-free), the effect
of field perturbations, and the three-dimensional wall shape.

IV The case of the helical halo

We discuss, in qualitative terms, the topology and inductive couplings of helical plasma-
wall current circuits, the associated drifts induced in the surrounding plasma, and their
capacity to produce instability via both footpoint-motion and the perturbation of halo
plasma conductivity. We propose that these separate elements can in practice interact in
a self-consistent way, leading to a growing or propagating plasma-wall eigenmode.

A Rationalization via the wall sector

In the poloidal model the plasma-wall current path was automatically closed, but in the
helical case the ‘rationality’ of the composite path (i.e. self-closure after toroidal and
poloidal revolutions) is less obvious. Since the halo plasma is cooled by wall contact, we
may assume it is force-free. If we further assume a sufficiently large equilibrium magnetic
field, then both equilibrium and small perturbation currents will tend to flow along it.
(A related point concerns the distinction between current across the magnetic field due
to ‘magnetization’ and that due to drift. The latter may enter the wall, as it involves the
physical displacement of particles, but the former may not, being an apparent current due
to the superposition of localized gyro orbits in the presence of a pressure gradient. When
a particle enters the wall a complete gyro orbit is destroyed, and thus no magnetization
current is transported across the plasma-wall interface. If we are prepared to ignore the
drift component, we can therefore state that the ‘halo current’ only consists of the force-
free component of the plasma current, even in the presence of a significant halo pressure
gradient.)

Therefore, in a tokamak the toroidal angle ¢ traversed by the force-free current path
between inboard and outboard wall contacts will be approximately specified by the pitch
of the magnetic lines in the halo plasma sector

qn = B./(ABy) (24)
(the safety factor), and may be written as
C = 2“'1-(1 - )\JQh ) (25)

where A is the poloidal angular fraction occupied by the wall sector and A the aspect

ratio.
Turning to the wall sector, we see that, given ¢, the toroidal wavenumber and am-
plitude of a mode inside the halo plasma specify boundary conditions on both inboard
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and outboard sides of the wall annulus. Knowledge of the time derivative of the normal
magnetic field would then completely specify the streamfunction of the perturbed current
inside the wall sector.

A compound plasma-wall surface will therefore act in a way similar to a rational
magnetic surface, allowing current perturbations parallel to the field to exist, for any
mode number, and for any g of the magnetic surface involved. This happens at the price
of splitting the mode current into topologically distinct loops. In general, only a fraction
of the perturbation current will flow across the wall sector, while the remaining fraction
will recross the plasma-wall boundary on the same side.

This is shown in the stationary solution of Figure 7a. The ‘helical’ channels, connecting
across the wall, link the torus both poloidally and toroidally, while the ‘surface’ channels,
connecting on the same side, do neither. This is a fundamental distinction, as only the
helical channels can provoke the inductive ripple mechanism of our prototype model,
purely on topological grounds. Figure 7b shows a cartoon illustrating the distinction,
which carries over to the helical case. The helical channels are inductively linked in
the sense required by our inductive-ripple model, where an increase in the current of
one channel tends to induce a decrease in the next one. However, as may be verified by
inspection of figure b, the inductive linkage between surface channels acts in the opposite
sense, so that a current increase in one tends to induce a current increase in the next.
Surface channels would not, by themselves, grow via the mechanism of the prototype
model.

This prompts us to define a mode ‘quality factor’ @, as the ratio of helical to total
(helical plus surface) current fluxes. The closer @n is to unity, the less energy has to be
expended driving the stable surface channels. We may easily calculate a @, for the special
case of a saturated mode (8, = 0) and a flat, annular wall sector with circular plasma-wall
boundaries, as shown in figure 7a. By first locating the X-points of the current flow, we
find (see also Appendix C) that

_ 2A)?
Qn = T eos(n /2] (20)
with
Aw = Raut/Rin 3 (27)

where R;, and R,. are the inboard and outboard major radii of the plasma-wall inter-
section. Expression (26) shows that the value of @, is sensitive to the value of (. For
example, if ¢ ~ 2, current is almost entirely poloidal and n = 1 gives the largest Qn (i€
most favourable for instability). If { ~ m, the n = 1 mode has no contributing helical
component and n = 2 is favoured. In general, as either the aspect ratio tightens (z.e.
A, increases) or n increases, then @, decreases as the current flow completes the circuit
along the shortest path.

Expression (26) applies to a simplified case, and does not acknowledge either the
existence of eddy currents due to magnetic perturbations normal to the wall, or the de-
formation of plasma-wall boundaries. If the normal field were known, an eddy current
distribution, entirely contained within the annulus boundaries, could be simply super-
posed on the potential distribution, since the latter already satisfies boundary conditions.
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This would, in general, reconnect the total current flow and thus change @,. However,
(for reasons of energy conservation), growth is not driven by back emfs, but, in our pic-
ture, by a subset of plasma-wall circuits becoming better-conducting current paths. The
current perturbation caused by the perturbed conductivity alone is, of course, a poten-
tial distribution, and, for mode growth, we should expect that the associated back emfs
preserve a similar topology, as was trivially the case in the poloidal prototype. We may
also argue in reverse that if the mode saturated and were found to be in a stable, low-Q,,,
configuration, it would be difficult to see how it could have continuously evolved towards
it. Thus, the stationary expression given may still retain some correlation with halo in-
stability. The perturbation of the boundaries (footpoint-motion) is not addressed here,
but below we shall argue for an important halo ‘fueling’ process that does not depend

upon it.

B The effective g

- A global ‘effective’ ¢ may be defined for the composite helical channels. We introduce a

Swall’ ¢ by writing
qw = J7[(AJ), (28)

evaluated using only the ‘helical’ component of the current in the wall, as defined in the
previous section. We then find

m
Geff = AMw + (1 — A)gn = —is (29)

where m and n are the number of poloidal and toroidal crossings of a complete helical
circuit. The ‘toroidal mode number’ is the number of poloidal crossings, n.

We may note here that the most unstable plasma-wall modes may tend to be those
with wall current flowing mainly in the poloidal direction, since the quality factor is then
likely to be large. Then, from eqn. (29), with ¢, small and 0 < A < 1, g will generally be
larger than g.ss. Thus, as the equilibrium safety factor g falls, such modes will encounter
rationality before the halo magnetic field itself does. Given that the wall always allows
partial (helical) rationalization, we may expect a soft onset of instability as g, approaches
geff from above.

The effective ¢ is a conserved property of the plasma-wall eigenmode, analogous to
the constant wavevector of a helically symmetric plasma mode. We may then regard
the requirement Ag.;y = 0 as a first step in the construction of a dispersion relation for
the asymmetric plasma-wall mode. Of course, to gain any useful information out of it,
we would need to be able to evaluate the variation of the right side of (29) in terms of
a growth rate, and the appropriate equations of motion as applied to the plasma-wall
system. Given the geometrically complicated way by which plasma flow is generated,
discussed below, this probably necessitates numerical modeling. Nevertheless, we may
take a first small step in the quantification of Age; = 0, in order to illustrate the issues
behind eigenmode self-consistency.

Because of the unfavourable inductive coupling of the surface channels of Section A,
we will consider an idealized test-case where the plasma motion associated with a growing
mode occurs with the spatial distribution required to exactly preserve the ‘helical’ identity
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of an initial helical perturbation without spilling-over into a surface channel (i.e. @, =
1 = const.). Under the further assumptions of a force-free plasma and a nearly saturated
drift motion on the time-scale of the instability, so that a simple Ohm’s law in the field
direction may be used in the plasma, we find that in the halo plasma

iP

?:gA = qh, (30)

where gj is given by eqn. (24). Since all of the poloidal plasma current is assumed to
cross the wall sector, eliminating ig using g, = i¥/ipA (the continuity of 7y automatically
accounts for voltage redistribution between wall and plasma sectors), we find

iy
Guw = h7p - (31)
Ohm’s law (without plasma drift) requires
2= (8,/mp)EL, and ¥ = (u/nu)EY (32)

where 7, ,, are the plasma and wall resistivities. Relation (31) then gives

,
EY

Qo =T Ik (33)

which specifies the pitch of the helical current path in the wall, with

p‘Sw
il

=3

(34)

=
il
=

-

Substituting relation (33) into (29), we write the gy of the combined current path as
qor = qul(1 = A) + M(£/ ED)] - (35)

Since g.;f = m/n remains constant, variation of the electric fields during mode evolu-
tion must be compensated by variations in either g, and A, or 7. The first two are functions
of the contact point positions, which corresponds to contact motion as in the prototype
model. If we emphasize this limit,the ‘dispersion relation’ secures mode integrity by way
of the geometric deformation of the wall and plasma paths, and the growth rate must
adjust to this process. The other possibility involves the adjustment of 7. If we empha-
size this limit, mode integrity is secured via transport. Both processes are the product of
plasma drifts, as discussed next.

C Plasma drift and halo ‘fueling’

To complete our qualitative argument we now consider the central, kinematic aspect
of the instability and the generation of plasma flows according to the MHD ideal term
v = E x B/B?. The key observation, which also distinguishes the plasma-wall instabil-
ity, is that the symmetric, but generally non-rational, core magnetic field interacts with
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electric potentials induced by an adjacent asymmetric but globally rational current den-
sity perturbation, which itself achieves rationalization only because of the intrusion of a
different medium, here an isotropic ohmic conductor.

The irrational magnetic field inside the core winds through successive regions of pos-
itive and negative amplitude of the induced electric field. The induced voltage parallel
to the magnetic field is therefore electrostatically cancelled inside the core, since no net
current can be driven in that direction, and reappears in the cross-field direction as an
electrostatic potential. The total electric field is then entirely across magnetic field lines
and causes plasma drifts which deform the core. In particular, radially drifting plasma
crosses the plasma-core boundary, leaving the ideally-behaving core and becoming part
of the ohmically-behaving halo circuit.

Such core drifts (and drifts inside the halo itself), displace the local plasma-wall contact
areas and change their size, as postulated in our prototype model, by moving plasma into
or out of successive layers of equilibrium magnetic lines intersecting the wall. The drifts
also ‘fuel’ the cold halo by ejecting hot plasma from the core, locally increasing halo
conductivity. They are thus able to provide two distinct kinds of gain for the global
conductance of the local plasma-wall circuit, both of which can, in principle, lead to
instability. These two aspects were also implied in the requirement for the preservation
of gesr of eqn. (35). It is perhaps relevant that results from DIII-D [11] show that during
the distinct phases of the thermal quench and the current quench, the degree of halo
asymmetry varies from relatively large to relatively small. This is consistent with a
scenario where the fueling mechanism attenuates as the core cools, but the geometric
aspect of the instability persists.

The above argument establishes the basic reason for the existence of the required flows
and their likely effects. Their quantitative impact on the feedback mechanism can be
heavily modulated by the specific geometry of the intersection between wall and magnetic
field (which becomes itself perturbed), and by the transport laws regulating the evolution
of halo plasma conductivity in contact with the wall. These issues are beyond the scope
of the present discussion. In terms of the basic self-consistency of our mechanism, the
remaining issue is whether it is plausible that the flows can occur with the correct toroidal
phase to fuel or deform the corresponding plasma-wall circuit in a positive way.

Dispersion relations commonly specify complex frequencies, when mode propagation
and growth must coexist. Within the context of electromagnetism, a combination of
real and imaginary parts of the frequency phase-shifts the electric field induced by an
evolving current perturbation by 7/2 to 3x/2 —the remaining phase interval being, of
course, excluded for reasons of energy conservation. (This is easy to see by evaluating
V X V X E = —p8,J for plane-wave eigenmodes.) Although mixing growth and propaga-
tion always affords some phase flexibility, phase relations in our case will be also specified
by the vector product E x B and the characteristic asymmetry of the mixed-medium
circuits. In the absence of an exact calculation it is difficult to give a definite answer.
Nevertheless, we may specialize to pure growth, and try to envisage a scenario where
the plasma-wall mode self-consistently ‘fuels’ itself, by inducing the injection of hot core
plasma into the halo at the toroidal location of increasing halo current.

Since current perturbations in the force-free halo are approximately parallel to the
magnetic field, the electric fields induced in the adjacent layers of the core will cause
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R)rigin of electric field components |

E x B plasma flows and role in mechanism

E1:Primary induced FE-field in
the vicinity of the plasma sector.

Associated flows of secondary importance due to
near alignment with the B-field. Drives E3-5.

E2:Primary induced E-field in
the vicinity of the wall sector.

Not aligned with nearby B-field. Associated flows
as for E3,4. Drives E3-5.

E3: Electrostatic field to main-
tain continuity of current
through plasma-wall interface.

Changes in the induced E-fields are redistributed
anisotropically across and along the footpoint lo-
cus. The changing direction of the E-field in the
halo plasma produces flow and footpoint motion.

E4: Electrostatic field resolving
the global discrepancy between
the core magnetic ¢ and the ra-
tional structure of £1-3.

Flow is in the wall direction, indirectly driven by
E1-3. Radial expansion of plasma causes foot-
point motion. Expelled hot plasma changes halo
conductivity.

E5: Surface charges confining

Assumed negligible.

current into solid conductor.

Table 1: Summary of origin and effects of perturbation electric fields in the plasma-wall
system.

relatively small drifts, which we neglect. This is in contrast to the wall perturbation
current which flows in a completely different direction (g,), so that in the nearby core the
induced electric field will have a large component across the core magnetic field, which has
constant pitch. This remains true after cancellation of the external halo potentials along
core field lines. Following a magnetic field line of the core near the force-free halo shows
that charge must accumulate to cancel the approximately constant induced potential.
However, in the poloidal sector of the core neighbouring the wall, the pitch of the mode
changes drastically, the field line enters a region of opposite induced potential, and thus
the gradient of the charge density reverses. This shows that the maxima of the charge
density will appear in the vicinity of the wall, and we may expect that the maxima of
the resulting electrostatic field across magnetic lines, and of the associated radial drifts,
will be similarly localized. This supports what may be perhaps established simply ‘by
symmetry’, namely that plasma drift will mainly occur towards or away from the wall
current path, which is where the clash between geore and gy, is poloidally localized. Note
that in a vertical disruption these drifts would appear as a characteristic ‘tilt’ of the
plasma column, towards or away from the wall, without the sideways ‘shift’ of a core kink
mode.

The plasma and wall sectors constitute resistors connected in-series. As the plasma
conductance increases via fueling, voltages induced around the circuit will be electrostat-
ically redistributed to keep current divergence-free. Consequently, and despite the fact
that back-emfs oppose current growth, current and total electric field will always be in
the same direction inside and in the vicinity of the wall sector, as required by Ohm’s law
E = nyJ. The sense of this electric field (after the in-series plasma-wall redistributions),
together with the discrepancy between gy in the core and ¢, in the wall, suggest that in-
side the section of the core nearest the wall E x B flows are generated that eject plasma,
in phase with the growing halo current.



Table 1 summarizes the various electric fields and plasma flows present in the mecha-

nism.

V Conclusions and discussion

The observed toroidal asymmetry of the halo current during a VDE may be attributed
to the growth of a special plasma-wall eigenmode which has no direct counterpart in the
plasma itself. However, some comparisons with tearing modes can be made, and these
may clarify the nature of our argument.

Tearing modes are able to develop magnetic islands, with rational current channels
flowing within them, only on special equilibrium magnetic surfaces of rational ¢q. By
contrast, in the plasma-wall case, the presence of the conducting wall ensures the ratio-
nalization of perturbation current channels on magnetic surfaces with arbitrary ¢, and
irrespective of the formation of an island. The price for this is the splitting of the current
into discrete ‘helical’ and ‘surface’ channels, with very different topologies. The inductive
linkage between the helical channels makes them susceptible to instability, whereas the
surface component is stabilizing.

The plasma core, surrounded by the halo annulus, does not have a resonant magnetic
surface and reacts ‘ideally’, generating perturbation flows, much like the plasma regions
outside the separatrix of an island in the case of tearing modes. Plasma subsequently
crosses the halo-core boundary, fueling the halo circuits, in analogy to plasma crossing
into the separatrix of a growing island through magnetic reconnection at X-points.

In the case of tearing modes, magnetic perturbations determine the growth of the
necessary rational island, and simultaneously regulate the ‘fueling’ of a growing island
through X-point reconnection due to non-ideal layer physics. The balance between these
processes is central to the mechanism, and 1s usually reduced to the solving of Newcomb’s
equation in the ideal regions, and the matching to a suitable resonant layer response, all
in terms of the magnetic field.

In contrast, the halo rational channels may always exist beyond the first, arbitrary-q
magnetic surface intersecting the wall, which is thus externally imposed as a ‘separatrix’.
Hence, the exact relationship between the the plasma flow amplitude and the field pertur-
bation amplitude generated at the halo-core boundary is not critical for the existence of a
plasma-wall mode. Two novel issues arise instead. The displacement of the plasma-wall
contact via both field perturbation and plasma flow, leads to geometric changes in the
inductance, mutual inductance, and global resistance of the mixed plasma-wall current
channels. Also, the sharp density and temperature gradient between the core and the halo
leads directly to local changes in halo conductivity, as a consequence of boundary-crossing
flows.

In basic terms, the instability operates by changing the ‘L/R’ timescales of localized
plasma-wall current channels, in such a way that a channel becomes more conducting as
it gains more current. The inductive transfer of current from less conducting to more
conducting channels becomes then self-reinforcing and imposes a global wavelength. We
note in passing that even if halo asymmetry were driven by a kink, elements of this
mechanism would be likely to become involved.



Because of the three-dimensional interaction of the three distinct parts (the plasma
sector, the wall sector, and the core), it is not possible to write down, in a simple way,
the equations describing the system, to be solved within a single system of coordinates.
At the same time, this asymmetry is central to the existence of the instability. Numer-
ical modelling will thus be required in order to establish the ultimate coherence of our

qualitative picture.
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Appendix A: Inductive coupling

The expression of inductive linkage given in Section B is only valid for a test loop placed
near a current loop, a requirement quantified by restricting k ~ 1, where

da,a,
(a: + @)+ (z +6u)?

so that 0 < k < 1 is always true. When the test loop is far from the current loop, or
k — 0, the flux linked is approximated by eqn. (3), where now
3/2
Fo== (0504)" , (A2)
2 (@ @) + (2 + 6,77
which reduces to the inverse-cube dependence of a dipole field as  — oo.

The mutual inductances of the compound filaments of the halo change as the current
paths expand along part of their perimeter inside a generally noncircular vessel. This is
misrepresented by the above expressions, where circular rings expand along their entire
perimeter, even if the initial self-inductance and its linear rate of change were correctly
represented by a and . It may be possible to devise different analytic approximations
and include geometric factors. In realistic geometries however, the Biot-Savart law must
be used directly within an appropriate numerical simulation.

K =

(A1)

Appendix B: Analytic approximation of the coupling integrals

We calculate approximate analytic expressions for the coupling integrals I; — I4 on the
basis of the short-range coupling coefficient only, given by eqn. (4). The magnitude of
short-range coupling is much greater than that of long-range coupling, given by (A2).
However, this approximation becomes progressively worse for large aspect ratios as the
integrals are evaluated over an increasing number of far coils. The short-range coefficient
drops rapidly, becoming zero at an inter-filament distance d, = AAZ, = 1.3, at which
point the approximation has clearly failed. The long-range coefficient decays more slowly.
In the numerical simulation we included both near and far expressions, although we
switched between them by simply taking the greater of the two. We further restrict the
range of our analytic approximations by not considering very tight aspect ratios, that is,
we adopt A > A, = 2d, = 2.6. Our evaluation of the coupling integrals is thus solely
based on the short-range expression, over the toroidal range [0, d,].
It can be verified that the near coil coefficient can be approximated by

F.y ~Ind, —Ind (B1)

while F ~ |lndo|, where do = §/a < 1, with § the filament thickness. Using these
expressions, and restricting n < .A/27dy, it is not difficult to show that integrals /1, Is
are given approximately by the expressions in (14, 16).

To evaluate I, I we need an approximate expression for M’ = (0F/da)/F. It may
be verified, numerically or otherwise, that across [0, d;| we may take

P~ (B2)

which is sufficient for our illustration purposes. The expressions in (15, 17) follow.
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Appendix C: Calculation of the quality factor

We consider an annular wall sector between Ry, Rou, as in figure 7b, and assume J; = 0,
so that the current is curl-free. The current streamfunction then obeys

; 10 : af
Vif=0, where igp= Ea—j; , and 14 = T (C1)
The solution of eqn. (C1) is of the form
f =2 (AR + BoR")sin(nl¢ — () , (C2)

which may be evaluated given the current entering at the wall boundaries.

Considering a pure mode n, we may calculate the ‘helical’ fraction of the current by
finding the value of f, at an X-point, where iy = tg = 0. It is straightforward to show
that X-points are located at

¢ = 1
Ry =\/RinBow, and ¢o=z+—(m+7), (C3)

form=0,1,...,2n—1. (, given by eqn. (25), is determined by the equilibrium magnetic
field and is independent of n. By evaluating f, at an X-point we may calculate the required
ratio of the ‘helical’ amplitude to the total amplitude, as finally given by relation (26).
The calculation automatically becomes three-dimensional if d; # 0, because knowledge of
the global quantity 8; 8 normal to the wall is then required.
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Figure la. Schematic poloidal cross-section of the plasma-wall
circuit.
Shown are the basic elements and notation of the model.



Figure 1b. Schematic of the toroidal arrangement of filaments.

The plasma paths at different toroidal positions make contact with the wall at different
heights. The contacts slide up and down in response to force balance in the plasma, while
the poloidal filaments are inductively linked.
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Figure 2. Analytic stability boundaries of the poloidal model.

Shown are the resonances of the first 8 harmonics of the instability on a diagram of
positional gain so versus inductive aspect ratio A. At a resonance, when R(A,n) = 0, see
main text, the linear growth rate of a mode becomes singular. Our analytic approximations
cannot take us to very low A. The parameter P represents the ratio of the overall timescale
of the halo circuit to an equivalent timescale of the local wall. For illustration we have
chosen P = 3, indicated on the diagram by a dashed line. sy = P is a universal cut-off,
while a mode is unstable if sg lies between P and the corresponding resonance. Marked 2
to f5 on the graph are the positions corresponding to the numerical simulations presented
in figures 3-6. The parameters of these simulations have been chosen not to contradict the
details of this diagram, and are presented only to validate its general features.
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Figure 3. Case with universal stability.

Corresponding to f2 in figure 2, the positional gain in this case lies outside the inter-
val [P, R(A,n)] for all n. As expected, an initial random perturbation decays to 1.0, the
equilibrium value of current. Time in all figures is in units of 7o, defined in the main text.
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Figure 4. Instability with n =0 and n = 1 dominant.

Corresponding to f3 in figure 2, a superposition of n = 0 and n = 1 grow out of a random
initial perturbation, in accordance with the analytic expectation—see caption of figure 2 or
main text. We have adjusted the initial values so that both components are visible. The
resonances of the n = 0 and n = 1 are especially close, and tend to occur simultaneously.
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Figure 5. Instability with n = 2 dominant.

Corresponds to f4 in figure 2. A higher positional gain increases the mode number, at
the same aspect ratio. If close to a resonance, the amplification of a single harmonic out of
a random perturbation is expected to be extreme, as verified by the simulations. Away from
a resonance, more harmonics are present.
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Figure 6. Instability with n = 3 dominant, at large aspect ratio.
Corresponds to 5 in figure 2. The positional gain is the same as for figure 4, but the
aspect ratio has been increased from 2.75 to 7.0. As expected, the dominant mode changes

fromn=1ton=3.



Figure 7a. Current flow in wall annulus.

Top view of toroidal wall sector with n = 2 stationary current streamfunction. The
constant inboard-outboard phase difference ¢ due to the plasma path (e.g. B to C, or b to
c) is indicated by the dashed lines; thick lines highlight the ‘helical’ component of the flow.
(ABCDA) and (abeda) mark helical and surface paths respectively.



Figure 7b. Cartoon of the inductive topology of halo channels.

The diagram shows in a schematic way the splitting of mode current crossing the plasma-
wall boundary into ‘helical’ and ‘surface’ channels (the upper part of the drawing corresponds
to the plasma, and the lower to the wall). In reality, the helical loops link the plasma core
both poloidally and toroidally, while the surface loops do neither. It can be verified, via
figure 7a, that the distinction also holds for a helical halo.






