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Abstract

The features of a number of theoretical models proposed to explain the cross-field transport
in the scrape-off layer (SOL) are summarised. Simple balances of transport parallel and
perpendicular to the magnetic field in the SOL allow one to derive predictions from these
models for the power law scalings of the SOL width, A, with plasma parameters in the
two cases of a collisionless and collisional SOL. Data on the SOL widths for a collisionless
SOL from COMPASS-D and for a collisional SOL from JET and Alcator C-MOD are then
used to test these models. Remarkably, the data from COMPASS-D, JET and Alcator C-
MOD all favour the same small subset of these models. Furthermore, direct comparisons of
the theoretical models for the cross-field thermal diffusivities with SOL data from JET and
Alcator C-MOD provide some support for this finding. These ‘best models’ can be used to
make predictions for MAST, the spherical tokamak under construction at UKAEA Culham,

and for ITER.

1 Introduction

The power that heats a tokamak plasma must ultimately be exhausted from the confine-
ment system. The fraction that is radiated is spread over the surrounding vessel and does
not pose a serious problem. The remainder is transported across the closed flux surfaces of
the tokamak to the plasma edge. The plasma edge can be defined by a limiter or magnetic
separatrix and inside this, ie in the bulk or core plasma, profiles of density and tempera-
ture are determined by local perpendicular transport coefficients. Beyond this edge, in the
scrape-off-layer (SOL), the profiles are determined by a competition between transport pro-
cesses perpendicular and parallel to the magnetic field. The former are characterised by a
perpendicular diffusion coefficient D, and the latter result from either parallel streaming in
the collisionless regime v < Vry/Lj (where v is a collision frequency, Viy, a thermal velocity
and L the distance along the field line to a divertor plate or limiter), or parallel diffusion
in the collisional regime, ie in the opposite limit v > Viy,/ L). Neglecting sources and sinks



of plasma energy and particles, one can estimate the SOL width as

Dy Ly
A~ 168
Vi (1.1)
in the first case, and as
D, L2
A 5 L~ g, VD/\L (1.2)
Il Th/Amfp

in the second, where Amg, is a collisional mean free path. This width is significant as it plays
a role in characterising the area of a divertor plate over which plasma energy is deposited.
Because the parallel transport is so much faster than the perpendicular, the SOL width
from eqn (1.1 or 1.2) is of the order of lem. In the case of proposed burning plasma
experiments such as ITER the anticipated heat loads on the divertor target plates are a cause
of great concern (and indeed, advanced schemes such as radiating and detached divertors are
under investigation®). In reality much more complex physics is involved (neutral particles
and ionisation, reflection at divertor plates etc) and the geometry is truly two-dimensional.
In order to calculate realistic situations one needs to use complex two-dimensional edge
physics codes such as B2-EIRENE, though these act rather as ‘black boxes’ and, as yet,
benchmarking of them is limited. Nevertheless, progress in interpreting the results from
these codes is being made, and more sophisticated versions of equations (1.1) and (1.2) are
emerging(®.

However, the results will still depend on the values chosen for D;. Typically, modellers
choose D (and yy; we will generally use D, to represent both perpendicular particle and
thermal diffusivities) to reproduce experimental data on A,, the density SOL width (and,
correspondingly, Az, the temperature SOL width). This is usually achieved by expressing
them as a number, say D, ~1m?s~!, which may coincide numerically with the Bohm esti-
mate. It is not clear that this is particularly useful for extrapolation to ITER or a power
plant. What is needed is a physics basis for D, and its scaling with plasma parameters.

In Section 2 we review theoretical models for D) which can be used to estimate A through
eqns (1.1, 1.2); we also include some marginal stability models that can be used to determine
A directly. When the theoretical expressions for D) depend on gradients of density or
temperature, one can estimate these using the SOL widths and solve self-consistently for
them using eqns (1.1) or (1.2). In this way one can obtain predictions for A in terms of
tokamak parameters: edge density n,, major and minor radii R and a, respectively, magnetic
field strength B, and edge temperature 7T,, or heating power P. Simple theoretical models
involving a single mechanism lead to power law scalings of the form

A o n;\nR/\Ra/\uBAEq/\qP'\P (].-3)

In Section 3 we compare the model predictions for A, of the form (1.3), with experimental
data over the wide range of parameters available from the three tokamaks COMPASS-D,
JET and Alcator C-MOD, in order to see if one can identify a suitable model for D) (or



A) for extrapolating to future devices such as ITER or MAST, the spherical tokamak under
construction at Culham. Investigations of the SOL in JET and Alcator C-MOD have allowed
the extraction of values for x, itself and in Section 4 we compare directly the scalings of
these with the theoretical results from Section 2. In Section 5 we discuss the results and
their implications for ITER and MAST and draw conclusions in Section 6.

2 Theoretical Models for SOL Widths

2.1 General comments

Models for turbulence in the SOL are based on familiar ones from core turbulence (ideal and
resistive ballooning and interchange modes and drift waves) but with the added ingredients
of effects arising from the presence of limiter or divertor plates, namely that field lines are
open and there is a sheath boundary condition to be imposed at these plates.

Ideal ballooning or interchange modes can be unstable in the SOL at sufficient values of
B because of regions of unfavourable curvature. However, the specific boundary conditions
on the endplate allows ballooning and interchange instability (® at lower 8. This has been
analysed in more detail in Ref 4. The authors of Ref 4 consider the stability of a flux tube;
charge conservation in it can be expressed as:

G2 % Y - ~
]B div (Jeurw + Jpot) gRAO + Jy(6:) + Jy (62) = 0 (2.1)
1

where jc,m, ig the current perturbation due to curvature and jpol that due to the polarisation
drift, while J}(6;,2) are the parallel currents through the sheaths at the ends 6, and @, of the
flux tube (the short stabilising lengths in a divertor chamber are neglected). These parallel
currents are obtained from an expression for the current at the endplate:

J” = ne [VTI-u — VThe exp (—;E)] (22)

where @ is the electrostatic potential. The equilibrium potential &, adjusts to ensure losses
at the ends are ambipolar, ie

i)
neVon = neVrye exp (— eTO) (2.3)
so that, when there is a potential perturbation ¢ (8)
-~ ne?
Ji(b12) = — T ¢(01.2) Vrni (2.4)

This current response, which is stabilising, is much less than the standard response to resis-
tivity in the core by a factor (m,/m;)"/ 2(k”VThe/ Ve), where kj| is the parallel wave number
of a mode. Furthermore, new, strongly unstable, electron temperature gradient instabilities
arise due to the presence of this sheath boundary condition.
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2.2 Ideal MHD ballooning and interchange instabilities

The simplest model by Peng(® assumes that, due to unfavourable curvature regions, the
SOL is at marginal stability to ideal ballooning modes. Balancing the release of pressure
gradient energy due to unfavourable curvature against the field line bending energy, assuming
line-tying at the divertor plates, one obtains a pressure decay length A,

BuLj
R

where 8, ~ 2puopy/B?, with the subscript b denoting the SOL region. Some experimental
evidence for this scaling has been cited by Peng(®).

A, (2.5)

Pogutse and Kerner(” have introduced a simplified version of the divertor geometry in the
SOL to calculate the critical ideal 3 for interchange modes, finding

2 ﬁbcritLﬁ
o — ~ il 2.
ﬁCrlt -_— APR 5 6 ( 6)
A more realistic analysis®) yields an analytic estimate
A ﬂbcrithz(w)
it = ————— =2 2,
t Pg (2.7)

where the safety factor gos ~ 3¢(7) and A,y is the pressure gradient length at the X-point
(numerical calculations indicate values smaller by a factor 3).

2.3 Effects of sheath and bulk plasma resistivity on ballooning and interchange
modes

Garbet et al® have considered the effect of sheath resistance (or ‘end loss’) on the ideal
interchange mode. If the curvature effects are destabilising, which occurs if

HO)2 > 0 (2.8)

where H(f) = (1 4 s)sin@ — sf cos§ with s = d(¢ng)/d({nr), then the maximum growth
occurs for a radial wave number k, = 0, although this growth is only a weak function of
k, for k, < kg, where kg is the poloidal wave number. The most unstable modes are found
when the end loss can be neglected, ie

2L, ]”4
@RH(0)|2G(8)|3

kopi > ~0.1 (2.9)

where L, is the pressure gradient scale-length, G = s26°/3+6, and the corresponding growth
rate is

o Yo [LRHQ Si]”z -

R |L,GO)E
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In the opposite case®)
v ~ kogpiH(8)|gwne (2.11)

where w,. is the electron diamagnetic frequency and p; the ion Larmor radius. An estimate
D, ~ v/k§ using equations (2.9) and (2.10) is

Vs
Dy ~ TR H(O) 3 (2.12)
p

where, for a double null divertor, H ~ 6. The turbulence is large scale, kyp; ~ 0.1(ky is
the wave number perpendicular to the magnetic field), there is a large phase shift (~ 60°)
between density and potential fluctuations and the phase velocity along the field lines is

large.

The instability mechanism in Ref 4 has been extended to incorporate bulk plasma resistivity
as well as the endplate ‘resistivity’®). The result is, in practical units (ie T in eV and all

other quantities in SI),

D. (2.13)

2TLy [7.21075TY2AY/? snLjn)
|4 T3/2

= 2.110°
BIL,|R T

Here the first term is the sheath contribution®), while the second is due to the bulk plasma
resistivity. The second dominates at lower temperatures. The quantity V = (m;/4mm,.)"/?
exp(—e®o/T) represents the ratio of equilibrium electron to ion saturation currents (it can
be unity), A is the atomic mass number and £nA the Coulomb logarithm.

Pogutse and Kerner have included the effects of both sheath and bulk plasma resistivity,
together with losses of plasma along the field lines, on the interchange modes”, and find
them unstable below 8. (eqn 2.6). A mixing length estimate for cross-field transport yields,
in the free streaming (collisionless) limit,

A

Dy~ ( p ) = (2.14)

-
wpi ﬁcrit L”

for a single null divertor (a linear dependence on ﬁ/ ﬁcm appears in the double null case),
where wy; is the ion plasma frequency ~ (ne?/m;e)!/? and ¢, is the sound speed (T, /m;)*/2.
Near /B 2 ﬁcrit

e
1, o e (2.15)
wei I

For bulk Spitzer resistivity 7,
-DJ_ et (H/QﬂO)ﬁ/ﬁcrit (216)

similar to the second term in eqn (2.13), for both single (SND) and double null (DND)
divertors.



Pogutse et al(®® have also considered the non-linear evolution of the resistive interchange
instabilities in the SOL. Results similar to eqn (2.13) were found: for bulk resistivity
L2
5 T 21T
ol LPR ‘Uﬂpe ( )
where v,; is the electron-ion collision frequency and p. the electron Larmor radius; for sheath
resistivity

Ly
LR
where p; is the ion Larmor radius evaluated at the electron temperature. Reference 10 pro-
vides self consistent expressions for D and A ~ L,, using eqns (1.1) and (1.2) to determine
A, in practical units.

Dy~ csp? (2.18)

A more careful analysis of the sheath boundary condition, considering the perturbations in
n and ® in eqn (2.2), and drift effects, was given in Ref 11. The resulting ‘mixing length’
estimates for | were

2 2
Leeshig 5 L 5 7
for the resistive interchange, where v = 0 for double null and » =1 for single null divertors,
and -
2
pscs (L
i i 2.20
L, (Ln) (2.20)

for the drift instability, where L,, is the density gradient length. The two expressions (2.19,
20) are comparable for a double-null divertor, but the drift instability dominates for a single-
null configuration. It is interesting to note that Cordey et al*?) have shown that the direction
of parallel current, jj|, in the SOL affects the sheath resistance for interchange modes in a
SND. As a result the predicted D) increases with j by a factor 2-4. Experimentally j
is found to be positive for ion-V B drifts away from the X-point; thus A increases in this
situation.

Another instability that can arise in the SOL is due to shear of the E x B frequency, wg,
along the magnetic field line *®, This variation is a consequence of the variation of the
electrostatic potential ®q along the field towards the divertor plate. Together with sheath
boundary conditions this can destabilise the shear Alfvén wave. To compare the strength of
this instability with the curvature driven ones, it is necessary to consider a self-consistent
treatment of the divertor geometry which controls the respective driving gradients of the two
instabilities. Reference 14 presents such a treatment based on a large aspect ratio, ‘two-wire’
model for the tokamak divertor geometry, with a Braginskii two-fluid model to determine
the equilibrium variation of ®; from Ohm’s Law. This is controlled by the variation of 7.
and two limits for parallel transport of 7, in the divertor are considered: collisionless, with
T. approximately constant along the field, and collisional. The stability problem is solved in
the high n (n is the toroidal mode number) ballooning limit including finite Larmor radius
(FLR) effects and electron resistivity or inertia. The presence of the X point enhances the
effects of FLR and the equilibrium shear in wg.



The MHD interchange mode is only weakly ballooning and is found to be stabilised by
line tying at low n and FLR at high n, with maximum growth for n ~ 50 typically. The
interchange drive dominates over the drive due to the sheath. The collisionality of the
divertor has little effect and resistivity (which plays a role for n > n, with n, ~ 10 - 50)
only a minor qualitative impact. The wg shear mode exists in the collisional divertor and
is localised between divertor and X-point, especially at high n. This mode is not stabilised
at high n by fluid FLR effects since wg o« n. Thus, while the interchange mode dominates
for lower n, the wg shear mode persists at high n. Indeed, estimating D), ~ +v/k%, the
contribution from the wg shear mode saturates at high n, dominating the MHD interchange
for n2200. Resistivity is found to enhance the growth rate of the wg shear mode by a
factor <3. Including gyro-kinetic effects (ky p; ~ 1) heuristically, does suppress the high n
contribution to D ; the MHD interchange contribution dominates for n < 100.

The MHD interchange mode drive gives rise to a contribution to D, on choosing the max-
imising value of n, of the form

1) 2
DY _gyx10-AY (ne
Dyoyi Z3? \ s1q1

in units (m, eV, T), where Z is the ionic charge.

n, Ty LeTgf?
Nep 1e RBL,

(2.21)

Here parameters with the suffix p are at the divertor plate, otherwise at the mid-plane.
The suffix 1 is at a poloidal angle opposite the X-point, suffix 2 in the vicinity of the X-
point and (s2¢2)/s1q1 ~ 7; Lg is the parallel gradient length of wg. Reference 14 also gives
contributions from the sheath drive to the MHD mode, although it was found to be less
important for the cases examined:

DY =39 10-3"11/2 s2a2\” [ me \M° LYP TIPTYC 2.99
Dooin " 2 \s1q1) \nep Li® BLY v

where Lr. is the electron temperature gradient length. Finally, for the wg shear mode,

| D‘?fh)m = 1.4 ¥ 10-3%%1}:5 (2:23)
Typically D(ll): D(f): Df) are in the ratios 13:5:0.02 and the respective scalings are

D'V & (BL)™ Dgopum (2.24)

D® & (BL)"Y(RT/L)"?Dpopem (2.25)

DY « (BL) T2 Dpopm (2.26)

where L is a typical SOL gradient length.

2.4 Drift resistive ballooning mode turbulence

The resistive ballooning modes can be unstable even in the core plasma, so before discussing
the effects of endplates and open field lines, it is appropriate to describe the characteristics
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of the resulting turbulence in the plasma edge region. The most recent version of the linear
theory of these modes has been given by Novakovskii et al™®. Tt is characterised by two
parameters

fi= By - W= Lf;w (2.27)

where the characteristic scale length is

o (28" () -
with 2, the electron cyclotron frequency, and the characteristic growth rate is
9 \1/2
SWEY -

Since & = w.e /Y0, it characterises diamagnetic effects. Typically, Lo ~ 0.25 — 0.75cm,
a ~ 0.5 for L-mode and Ohmic plasmas and 1.5 for H-mode.

For small 7 there is the conventional weakly ballooning mode which becomes almost stable
for s > 1, ie near the plasma edge. However, there is also a more strongly ballooning mode
which matches onto the ballooning mode with ideal growth rate

¥ ~ 0 (2.30)

which exists for 77 > 1. Furthermore, there is a transition from resistive ballooning to drift
modes when o > 1. Long wavelength resistive ballooning modes are stable for o > 1.5, while
short wavelength ones would be stabilised by realistic values of viscosity. Three dimensional
non-linear fluid simulations have been carried out by Zeiler et al®®'"). In the regime of low
o (a < 1) it is found that there is a large asymmetry of turbulence and transport between
inboard and outboard sides. For cases with 0.5 < a < 1.0

D, = c(8)Dyo (2.31)
where the characteristic diffusion coefficient is
Ez 2 R
_ A, 2 ng" o 5
D, RL. Veife X o E (2.32)

and ¢(0) ~ 0.07, ¢(r) ~ 0.035. The density and potential fluctuations also vary by factors
~ 2 from inside to out. For higher values of a, despite the stabilisation of the linear modes,
the turbulence remains strong due to a non-linear instability. It has a weakly ballooning
character, propagates in the electron direction and has a larger transverse correlation length.
In the limit that curvature is unimportant, the resulting non-linearly unstable turbulent
transport can be scaled as

D, = Df(p) (2.33)
where

. a‘z 2/3
b (%) -
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and

~ Ln e 2/3 _ Ps
p= (E) (as)*® = I, (2.35)
Here L) = (p}Lfivei/25*QL )/?) is the characteristic perpendicular scale of the drift wave
turbulence. The factor f is found to drop from f = 0.045 for 5 = 0, to zero for j ~ 0.12,
where the non-linear instability dies away. The inclusion of T; # 0 results in j being multi-
plied by a factor (1+7)'/? and « divided by the same factor, where 7 = T/T.. Allowing for
electron temperature perturbations T, makes some quantitative changes to these results(®.
Thus parallel electron thermal diffusivity, X|le> suppresses the VT, drive except at low T, in
the resistive ballooning regime; increasing o also loses the VT, drive. Furthermore, inclusion
of T, provides additional dissipation, so that the fluxes fall sharply with 7,. In the drift wave
regime (a > 1) the particle flux is suppressed by a factor 4 and the heat flux by a factor 2
due to including 7,. One finds f in eqn (2. 33) can be written

foc (2.36)
independent of 7.(= d(¢nT.)/d(¢nn)). Thus
(Rq)1%/35/3
BTMe L33

in this regime. However, a proper understanding requires a treatment of the interface between
the SOL and core plasma. A start on this has been made in Ref 19, where the SOL region
1s modelled independently of the core and boundary conditions at a limiter are introduced.
Thus using equation (2.4), a new parameter A is introduced

1/2 et R
) = (E) Vei (2.38)

m; VIhe

Dy (2.37)

In terms of practical units (10! m=3, m, eV)

nigg R
T2
so that typically A ~ 0.01 for TFTR, 0.1 for DIII-D and 0.5 for ITER.

A =20 Zeqt (2.39)

For 7 > 27 one recovers the strong ballooning result (2.29). In the other limit, 7 < 2w, and
with A <1 there is a flute-like mode driven by the geodesic curvature. For mzsl/ 2> 47r2/\
the SOL mode is more unstable than the core plasma mode but is stabilised by FLR if
m > 2/(rsa). In the opposite limit

mzs

= 2
oyt = Sﬂ'A o Jo (""40)
This leads to a mixing length estimate for the diffusion coefficient
T3/2q
2 o
DJ_ ~ ——)\‘TUL LnBz (2.41)



which exceeds equation (2.31) and resembles (2.12). For A > 1 the mode must vanish at the
endplates and this line-tying weakens the growth rate. For m 3> 1 the modes are strongly
ballooning and unaffected by the endplates. Even for small 7, finite a(~ 1) has a strong
stabilising influence.

The impact of electromagnetic effects (namely the self consistent magnetic fields induced by
the perturbed plasma currents) on drift wave transport has been considered by Chankin(®?).
This has the consequence that one must calculate the cross-field transport as the difference
between the motion of plasma and the magnetic surfaces, which is proportional to the plasma
resistivity(®"). Chankin finds this becomes significant when the collisional skin-depth becomes
comparable with the fluctuation scale-length. As a result

DJ_ Bt 7]/2#0 o Te_3/2 (242)

beyond this point. The condition for this can be obtained by equating a typical drift wave
diffusivity

Wye
to eqn (2.42). Using eqn (1.1) to determine L, in the SOL and choosing k. o< 1/p;, one finds
the condition for the collisional skin-depth to play a role is given by a critical value of the
quantity

D, (2.43)

T,}?’/S(Te + 1’;)3/8
BZg' (¢!
In the collisionless case, when k, ~ wy./c (the inverse collisionless skin-depth), one has the
condition

(2.44)

m
B > Berit ~ 2(‘131',03)2# (245)
and a corresponding diffusion coefficient
2
c e, T2
D, ~ —= < 2
+ (wpc) I, * nlL, (246)

The transport associated with the electromagnetic drift-Alfvén instability has been explored
by Pogutse et al(®®) as a potential explanation of the L-H transition. Using a collisionless
gyro-kinetic ion and fluid electron model, these authors obtained expressions for the tur-
bulent transport coefficients; these are based on dimensional arguments and quasi-linear
theory. The expressions are characterised by a collisionality parameter v, = (veiL|/Vrhe)
(Lp/Ly)Y*(mi/m.)* and a B parameter 8, = (mi/m.)"/* B(Ly/Ly). In their lower 3,
L-mode, limits they can be expressed in a somewhat simplified fashion as

2 1/4
Csps 1/2 (me)
D, ~—=L — 2.
1 Lg/g I m; s Vn, ﬁn <1 ( 47)
and
D & I3 vely e me\ /8 R
LR\ Ve (m:') G
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2.5 Temperature Gradient Instabilities

If one allows an electron temperature perturbation, Ty, in the boundary condition (2.4), then

(23)

< eenVoy | ed (e@o 1) T

Jjbrp)=———|=———+=) = 2.49

() = S [ (0 D) T (249
where € < 1 represents the absorption of ions at the endplates, and more accurate numerical
factors than in equation (2.4) have been introduced. The equilibrium potential ®; is given
by AT./e, where the parameter A = £n(Vrn/Vine) ~ 4; this parameter plays a crucial role
in the theory. Using a simple E x B convection model for 7., one finds an instability even
in the absence of curvature effects. Indeed it is much more important than that discussed in
Ref 4. It has a maximum growth rate v,

AT, \Y° L (T3 (N2 L3\ °
Y =~ 0.4 =] Vn (2) 1 (2.50)

where 7 = /7 L)/ €V is the particle lifetime along the magnetic field and Ly the temper-
ature scale length. This maximum growth rate occurs at

T3 /¢ Ly 1/3
o (B)° (£ ,
AT (A Lu) G
The instability leads to a mixing length estimate for transport given by
T 5/3 A‘/Thiﬂ 4/3 p2
by~ (%) (M) 2 |
g = () T ( Ir o (2.52)

For a typical example (A ~ 4,B =3 T, L; ~ 20m, T = 30eV), eqns (1.1) and (2.50) imply
Lp(~ Ar) ~ 2cm, while kgp; ~ 0.2 and a mixing length estimate yields 7i/n ~ 1/ksLy ~ 0.1.
Two fluid FLR effects are found to improve stability, but are numerically weak.

A more detailed electromagnetic, Braginskii two-fluid treatment of this instability has been
given.(®!). This also includes the effects arising from differences in plasma parameter values
between mid-plane and endplates, (eg n and n, for the density, where we again label the
plates by the suffix p), secondary emission of electrons due to electron and ion bombardment
(with coefficients 7. and v;, respectively) and finite ky effects. Although the sheath bound-
ary conditions on the energy flux at the endplates introduce a number of atomic physics
parameters, these have a negligible effect on the instability; in fact the only atomic physics
parameter of any significance is found to be ;. The resulting mixing length diffusivity is,
for k” o 0,

1/3
Dy ~018fip [ Allyegn 1Y

:LTe ZLTecsnp(]- + "Yt)Z (253)
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for § = (Ti/Tep)(L1e/ LpiA')/Z < 1 and

1/3
L CopPs 1 TiLycspn 5
b ——2BF8 .54
# 3 Lp. A 2Tepricsnp(1 +'Yi)Z ( )
for § 3> 1. Here c;p = (Tep/mi)*/? and
At =A+ (Tip/2Tep) = LTGP/LTip] (1 + Tip/Tep) (2.55)
The effect of finite k) is parameterised by the quantity
1/2
K=(14v)2 (@) v R (2.56)
2n
where
— 2""?“ilJcs]--JTt’.(l T 72) ﬁ — Qﬂonp(Tep + T*P) (2 57)
?EAICSPL” T .82 .

Its effect is only moderate for typical present day experiments, but can enhance D for ITER
parameters. Reference 24 also expresses the resulting D, in meaningful units:

D 2.3 Ta/z Al 4/3£1/3 1.5 e AIIZ_}_ n 1/3( 27, )1/66,
L= P ] I \(1++)z B2 \n, T + Bl

where Tp is in units of 25eV, Lz, in cm, L” in 40m, B in 2T. The value of G depends on
§and K: G~1lforé =K =0; G~ 2for§ =1, K =0 (typical for DIII-D); G ~ 1
for § = 1, K = 2 due to a cancellation; G = 3 for K > 1 (typical of a power plant).
Reference 24 considers particle and energy balances in detail to determine Ly, Lt., Lt; self-
consistently, leading to forms for v, D, kgps, T. etc. (It should be noted that the energy
lifetime along the field is Lj;/c,A, while that for particles is Lj/c;). A consequence is that
D, ~ (ps/Ly)""*A®° Dgohm, ie comparable to Dpohm, 80 that Az can be many p;.

(2.58)

Fluid simulations of the turbulence associated with the VT, instability have been carried
out in the electrostatic limit using the geometry of Ref 24, but without magnetic shear(**),
The effects of VT are retained. It is found that the satulated amplitudes of ¢ and T, are
somewhat above mixing length estimates, with the heat fluxes somewhat below them. Thus
the electron thermal diffusivity is given by

3csp? v
2L,

ALy
2,/1+T./T.Lr,

Xe = 0.02 (2.59)

For typical DIII-D SOL parameters, e¢/T. ~ 40%, f’e/T,3 ~ 15% and x. ~ 0.3m?*s~!, while
the phase shift between ¢ and 7T, is a factor 0.7. The fluctuations are peaked near the last
closed flux surface and penetrate into the edge plasma in the long wavelength regime. The
weaker transport is associated with an inverse cascade of the turbulence, so that turbulent

12



and equilibrium scales merge. (This effect justifies the approach of Ref 26 discussed below.)
Self-consistent simulations in which T, and L. are determined in terms of the heat flux from
the core were also carried out. T is found to fall exponentially in the SOL with Ly. ~ 1.0cm
typically, comparable to experimental values; this is insensitive to the heating power.

The turbulence calculations of Ref 25 showed an inverse cascade of energy to long wave-
lengths, blurring the distinction between turbulent and equilibrium scalelengths and making
the concept of a turbulent diffusivity inappropriate. It has been shown in Ref 26 how a more
general approach can be used to avoid making the separation-of-scales assumption needed
for the calculation of a local transport coefficient. The model for the SOL turbulence used
in Ref 25 has similar properties to the paradigmatic Hasegawa-Wakatani drift wave model.
Thus its non-linear interactions conserve two quantities, energy F and enstrophy 2:

_ g = ra [ )2
B=7 /dva , 0=1 /dV(VxVE) (2.60)

where Vi = E x B/B?% while energy cascades inversely to long wavelength, enstrophy
cascades to short wavelength. In terms of the overall energy balance, heat flows in from the
core plasma (alternatively one can consider VT, to drive the fluctuations) and is damped
at long wavelengths on the endplates and at short wavelengths by viscosity; enstrophy also
is dissipated by viscosity at short wavelengths. Thus the injection of energy and associated
entrophy to drive instabilities locally in wave number space, causes a forward cascade of
. This drives an inverse cascade of F, which continues until () is depleted; at this point
non-linear interactions cease and E becomes part of the equilibrium. However, the boundary
conditions on the energy prevent this being a state of zero enstrophy. Thus the equilibrium
can be obtained by minimising the enstrophy for given energy. This results in the variational
principle

§(Qo+NEp) =0 (2.61)

where 2y and Ej are the equilibrium values of  and E respectively, and A? is a Lagrange
multiplier. This condition leads to the following minimum enstrophy condition on the equi-
librium E x B flow in the SOL

ViV = )V (2.62)
For a toroidally limited SOL this has solution
Va(r) = Voe™ =) (2.69)

The equilibrium endplate boundary condition (2.2) with Ji| = 0 implies

—eB
AA

ie this is obtained without explicitly solving for the thermal transport! In the core the SOL
flow is damped by viscosity so that

V = Vyexp [—\/g(a = v)} r<a (2.65)

13

Te(r) = Va(r) (2.64)



where D and p are the coefficients of kinematic viscosity and drag. Overall energy balance
can be used to determine Vj in terms of A

V2 AN
Vo = —Y2rliQeAN (2.66)
2(2 + A)n.VrneB
where Q. is the electron heat flux from the core. Finally, dimensional analysis can be used
to write 144
ncﬂam,—) ~
X= - A(A (2.67)
( QeLy W

where X is an unknown function of A. It is interesting to mote that eqns (2.64 - 2.67)
determine an effective x. -
o i LY 2.68
Xe x Lu eB ("" )

2.6 Other Models

In this subsection we conclude the physics based models with some miscellaneous ones. The
first is to assume transport proceeds by charge-exchange collisions, yielding

T1/2
D~ ucx,\fx x (2.69)
n
The second is the ubiquitous Bohm coefficient,
T
D, ~= 2.
t 7 eB (2.70)

Two other arguments based on dimensional arguments can be advanced. If one takes the
collisionless skin-depth (c/wp.) as a step-length and the transit time along the field line to
the divertor (L);/cs) as a time-step in a random walk argument, then

2
c c Ti/?
D, w2 = 2.

= L“ (wpe) an ( 71)

Another model is to assume that the level of turbulent fluctuations, ¢, and their perpendicu-
lar wave number, k. , satisfy a balance of the E x B circulation frequency (€ ~ k% ¢/B) and
the transit frequency along the field lines (cs/Lyj). If we suppose the turbulent fluctuations
also satisfy ¢ ~ T,/e and that the fluctuation spectrum is isotropic with k; ~ 1/A, then

A~ (ps Ly)M? (2.72)
For completeness we include a frequently used model, but which has no physics basis,

D, ~ constant (2.73)
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3 Comparisons of theoretical predictions for the SOL widths
with experimental data ‘

3.1 SOL width scalings

In this section we compare the scalings for A corresponding to the theoretical cross-field dif-
fusivities discussed in Section 2 with respect to experimental data from COMPASS-D, JET
and Alcator C-MOD. In order to do this we use eqns (1.1) and (1.2) and power balance to
derive predictions for the scaling of A with various tokamak parameters (ie n, P, B, a, R, q)
for those theoretical models. Since the theoretical diffusivities often contain perpendicu-
lar gradient lengths (L, L,, Lt.) these too must be determined self-consistently. Density
transport along the field lines takes place at the sound speed and thus one might expect
that L,(~ A,) is always controlled by eqn (1.1), a ‘collisionless’ scaling. As a result one
would have L, < Ly; since Ly is controlled by convection in the collisionless case and ion
parallel thermal diffusivity in the collisional case. However, in the collisional limit the heat
flux to the target plates sets a temperature SOL width determined by electron parallel ther-
mal conduction, which dominates convection at the sound speed provided the collisionality
parameter is not too high: v, < (m;/m.)*?. In this situation strong recycling takes place
near the target, since the incident energy is high enough to ionise neutrals. As a result the
density and electron temperature SOL widths L, and Lz, would tend to be comparable and
both given by eqn (1.2) in the collisional limit. We therefore suppose that L,, Lz, and L,
are all controlled by eqn (1.1) in the collisionless case, v.. < 1, and by eqn (1.2) for the
collisional case, v.. > 1. However, we find little significant change to our conclusions if we
take L, always to be determined by eqn (1.1).

We suppose the cross-field thermal diffusivity takes the form
XL= 77— » XoX n®q*R"a’ B? (3.1)

assuming L) ~ Rq. We use the parallel and perpendicular energy balance equations(?”)

P

B
MVl = g AR (3.2)
and i »
nXidy
Ar  4der?aR (3.3)

where B and B, are the total and poloidal magnetic fields, subscript b denotes the plasma
surface and P is the total heat flow to one divertor leg. The numerical coefficient 1 /e is
introduced to denote that the average temperature gradient length, A7, is evaluated at the
position of the 1/e fall-off of the radial heat flux, while the heat channel width, Ay, and Ar
are considered to be proportional and characterised by A. Furthermore we suppose

x| = x|pT” (3.4)
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where 8 = 5/2 and xjp & n~"! in the collisional region and f =1/2 and xjp L) ~ Rg in
the collisionless case.

As a result of eqns (3.1) to (3.4) (or directly from the stability criterion and eqn (3.2) for
marginal stability models) we find the scalings
A o n*n R Rg*e BABghe pAP (3.5)
where, for the collisionless case (case I)
A = (36-2a+1)/u

/\R = 3(1/-|—1)/'LL
de = (Bo—2a+1)/u

Ap = 3p/u
A, = Bp+2a+2)/u
)\P = (Za—l)/u : (36)

with u = 2a + 37 + 5. For the collisional case with L, ~ Lt (case II), we find

A = T(E6+1)/v

Ap = (Tv+2a+9)/v

Ao = (To—2a+35)/v

Mg = Tplv

Ay = (Tp+da+4)/v

A = (20—5)/v (3.7)

where v = 2a + 8y + 9. However, if we were to assume L, is given by eqn (1.1) in the
collisional case (case III),

A = T(y+264+2)/ 2w

M = (Tv+2a+37/24+9)/w

de = (To—2a+27+5)/w

Ap = Tplw

Ap = (2a—2y-5)/w (3.8)

where w = 2a + 5y + 9.

In Table 1 we group and classify the theoretical models in Section 2. Each group in column
1 (ie A, B, ...) is given a ‘physics’ label in column 2 and the models in Section 2 which fall
within that group are listed in column 3 according to their equation numbers. Columns 4 -
10 specify the exponents a,7, 6, 1, v, o, p. In Table 2 we list the values of A,, Ag, Aq, A, Aq,
Ap for cases I, IT and III, under each group of models A-Q.

The models we have investigated belong to particular classes of physical processes. It is
possible to establish more general constraints on the exponents in scaling (3.5) using scale
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invariance or dimensional analysis®*®**®). Thus, if one supposes the anomalous transport
processes are controlled by purely plasma physics processes involving collisions and finite

effects, then

% oc{m B ) BRF S pRpR e Keghy (3.9)
ie
5 3
AR+ Ao =2AR+ZAB+ZAP+1 (3.10)

Alternatively, if one allows atomic physics processes to participate, but relaxes the need to
involve the plasma pressure parameter 3, then one can still obtain a constraint®!

% o (nR)™(BR)*®(P/R)* g (3.11)
ie
ARtF A=+ Ap—=Ap+1 (3.12)

Comparisons are made between the scalings in Table 2 and experimental data from the
COMPASS-D, Alcator C-MOD and JET tokamaks, using case I, II or III formulae as ap-
propriate. Preliminary comparisons with theoretical models appeared in Ref 28. "

For each scaling, scatter graphs of the predicted SOL widths against the experimental values
are plotted. A linear fit to the data is formed, minimising the RMS deviation in both axes
and allowing for estimates of experimental errors (both in the measurement of the SOL width
and in the parameters in which the scalings are expressed). Since the scalings do not allow
for any off-set, the linear fit is constrained to pass through the origin and is weighted to
account for grouping of the experimental data in parameter space. The various scalings are
compared for each tokamak using the minimised RMS deviation as a quality of fit parameter.

3.2 COMPASS-D data

Upstream SOL power width data from COMPASS-D L-mode discharges are compared with
theoretical predictions for A from the scalings listed in Table 2. Since COMPASS-D operates
with a SOL in the collisionless regime (typically v, = 0.25—4), the case I formulae are used.
As can be seen from Fig 1, model J and, to a lesser extent, models D and O provide
substantially better fits to the data than the remainder, followed by models Bl and B2.

Figure 2 shows the COMPASS-D SOL power width data against scalings for models J, D

and O together with the best-fit lines. It should be noted that models D and O lead to the
same predictions for A and are thus indistinguishable.
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3.3 JET and Alcator C-MOD data

Similar comparisons for JET®?) and Alcator C-MOD data(®3%) are performed. Since these
two devices both exhibit a collisional SOL (JET has v, in the range 20 - 90, Alcator C-MOD
in the range 40 - 180), the case II and III formulae are used, as appropriate. For the Alcator
C-MOD data, models D and O and, to a lesser extent, models M, J and Q stand out as
the best fits, as can be seen in Fig 1. In the JET case, Fig 1 shows models M, D and O
and J provide notably better fits than the other models. Significantly, there is a substantial
overlap of the best fitting models, not only between the two collisional devices but also with

COMPASS-D.

Figure 3 shows the Alcator C-MOD power width data against scalings for models D and O,
M and J, together with the best-fit lines. Figure 4 shows similar comparisons of the JET
data with scalings for models M, D and O and J.

4 Comparisons of theoretical predictions for y; with JET and
Alcator C-MOD data

A direct comparison of the models in Table 1 with radial profiles of x in the SOL obtained in
JET and Alcator C-MOD is also made, using the same method employed above in comparing
the theoretical predictions for SOL widths. This data is obtained using onion skin models,
which assume local power balances in each flux tube in the SOL. That used for JET is
the DIVIMP onion-skin model®®® which relies on density and temperature measurements at
the divertor surfaces; in fact, a modified form which includes convection with D; = 0.4y,
but assumes T; = T. at the target, is employed here. In the case of the Alcator C-MOD
analysis(®34) the upstream density and temperature measurements are used directly, and
folding into the divertor plate measurements allows an estimate of the effect of radiation to
be made; again D; = 0.4y, is assumed.

For the JET data, Fig 5 shows that model I provides the best fit, followed by models H, M,
C, D and O. Results from JET with model I have previously been presented in Ref 36. For
Alcator C-MOD, Fig 5 demonstrates that models D, O, N and I stand out from the rest as
the best fits. Again, it is significant that the data from both devices supports several of the

same models and that scalings derived from these models, in many cases, also provide the
best fits to the SOL width data.

Figures 6 and 7 show the JET x, data against model I and the Alcator C-MOD x data
against models D and O, N and I, together with the best-fit lines to each data set.
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5 Discussion

The comparison of theoretical SOL widths with collisionless COMPASS-D L-mode data
indicates the best three models for cross-field transport in the SOL are, in decreasing order

of success:

(1) model J (drift wave with collisionless skin-depth), which predicts
A  (Rq)?n1/3 (5.1)

(i) model D (collisionless MHD interchange near fB.;) or model O (collisionless skin-

depth), which predict
A x n~l? (5.2)

The best free fit has
A g g2 pOlin =08 g=01T (B ¢ not varied) (5.3)

and is broadly consistent with eqns (5.1, 5.2). If one can establish a fit to A on one machine,
then dimensional constraints, eg eqns (3.10) or (3.12), can be used to determine size scalings.
For instance, combining the empirical scaling (5.3) from COMPASS-D with the plasma
physics constraint (3.10), one finds A o« R*% at fixed ¢; alternatively eqn (3.12) implies
A RBP4,

The comparison with Alcator C-MOD and JET collisional data results in a significant over-

lap; with the equivalent ordering, it leads to

(i) model D (collisionless MHD interchange near fi) or model O (collisionless skin-
depth), which predict
A R3/10a2/5q—1f10P—2/5 (54)
(ii) model M (charge-exchange), which predicts
A o« Ra?/5¢3/5 p~¥/5 (5.5)

(iii) model J (drift wave with collisionless skin-depth), which predicts
A o RIONTGA/1T 817 pa/17 (5.6)

for the Alcator C-MOD data, and

(i) model M (charge-exchange)

19



(i) model D (collisionless MHD interchange near B ) or model O (collisionless skin-depth)

(iii) model J (drift wave with collisionless skin-depth)

for the JET data.

It is interesting to convert the free fit scalings for the Alcator C-MOD SOL pressure scale
length, A,, associated with Fig 8 of Ref 34 to a similar form. In the ‘open bypass’ case

A;p o RD.22a0.94q—0.72n1.3p—0.94 (57)

while for the ‘closed bypass’ case
A, o RO424067402511 p-067 (5.8)

While some of the exponents in eqns (5.7, 5.8) are broadly consistent with the best fits to
the theoretical models, others (eg that on n; indeed these best fits are independent of n)
are not. This might result from colinearities in the variables, which is not an issue when
testing theory models. One should also note that the scalings (5.7) and (5.8) do not satisfy
the constraints (3.10) or (3.12).

It is noteworthy that none of the data for the three tokamaks examined shows any sign of
dependence on B, as would be expected from Bohm transport, a choice often used in edge
modelling codes.

These best-fit results can be used to predict the mid-plane SOL widths in MAST and ITER.
(The SOL widths will be larger at the divertor plates by a factor depending on the divertor
geometry.) For the collisionless MAST case, eqns (5.1 - 5.2) provide the following estimates
for AMAST-

Model J : 5.7Tmm
Model D/O : 5.lmm

The constant of proportionality used to make these estimates is based on a weighted average
of COMPASS-D data and data from the START tokamak (not presented here), which has a
similar geometry to MAST. In the collisional ITER case, eqns (5.4 - 5.6) lead to the following
predictions for Arrggr, where the constant of proportionality is now derived from a weighted
average of the JET and Alcator C-MOD data.

Model D/O : 1.6mm
Model M : 4.1lmm
Model J : 3.6mm
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The errors in these predictions for MAST and ITER can correspond to upto a factor 2 in
A, typically.

The large negative exponent of P in the scalings for A makes extrapolation from JET (with
P < 4MW) and Alcator C-MOD (P < 1MW) to ITER (with P ~ 100MW) potentially
subject to large errors, say a factor 2 in A. Nevertheless, the mean predictions for ITER
from the simple zero-dimensional model for A correspond to rather narrow SOL widths,

< HSmm.

The use of such scalings to extrapolate to ITER also raises the question of whether new
processes intervene and invalidate the prediction. Physically it is more appropriate to discuss
this in the context of dimensionless variables (p. = p,/a, the normalised Larmor radius, 3
and v,, or possibly A/a, the normalised charge-exchange mean free path) rather than
engineering variables like n, B, R and P. The extrapolation in v, from collisional devices
like JET is modest; those in # and p. are more significant. Since ITER will have lower 8,
this is unlikely to change our conclusions as most of the best models are not dependent on
finite B. The p. scaling of A follows from the p. scaling of D,: if D) o p? Dgopm (Where
n = 0 for Bohm and n = 1 for gyro-Bohm diffusion), then eqns (1.1) and (1.2) imply
A/R x P2 Whereas one might expect a Bohm-like scaling to change to gyro-Bohm as
p« decreases, the converse is unlikely and most of the models considered are gyro-Bohm in
character (the relevance of model M, involving atomic physics processes, would only change if
the parameter Acy/p, varied greatly in the extrapolation and this is not the case). However,
a change in scaling with p, might become relevant if the extrapolated A approached a
microscopic distance like p;.

The comparisons with experiment and predictions for MAST and ITER have been based on
simple power law scalings; this is a consequence of using theoretical models for cross field
transport which are based on a single process and specifying the collisionality regime for
classical parallel transport. It could be the case that one or more transport processes are
operating simultaneously, leading to a more complex functional form for the dependence of
A on the SOL parameters. While this situation would be difficult to detect and analyse in
the data, we can take comfort from the fact that the favoured models have been compared
over a wide range of parameters from COMPASS-D, JET and Alcator C-MOD.

Some points remain that require further investigation. Fits to the COMPASS-D database
are strongly influenced by a relatively small number of points with extreme values of SOL
width (either narrow or wide). In addition the database is currently limited to L-mode shots.
Thus shots are needed to populate further the extremes of the database. This should involve
operating at high and low edge densities as well as including H-mode shots. Similarly, the
inclusion of lower power shots in the JET database would be helpful in increasing the range
of A for that device. The comparisons of SOL widths lead to a different ordering of the
preferred models for Alcator C-MOD and JET although a substantial overlap does exist.
Furthermore, the direct comparisons of theoretical models for X1 with onion-skin model
derived values for these two machines indicate other models, particularly model I for JET,
provide possible descriptions of the SOL transport, although again there is some overlap
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with those leading to the best fits for A.

6 Conclusions

The extensive data in the scalings of SOL power widths A with plasma parameters (eg
n, P, B, R, a); available from COMPASS-D, JET and Alcator C-MOD has provided an
opportunity to test a wide range of theoretical models for SOL transport. These models,
based on cross-field thermal diffusivities or marginally stable (or ‘preferred’), SOL profiles,
were summarised in Section 2. In Section 3.1, the implications of these models for the scalings
of A were derived, using simple SOL balances perpendicular and parallel to the magnetic
field for the cases of a collisionless and collisional SOL. Comparisons of these predictions
were made with the collisionless SOL scalings from COMPASS-D in Section 3.2 and with
the collisional SOL scalings from JET and Alcator C-MOD in Section 3.3. Significantly,
the data from both JET and Alcator C-MOD favoured the same small group of models;
collisional MHD interchange near fe (D), collisionless skin-depth (O), charge-exchange (M)
and drift wave with collisionless skin-depth (J). Models D, O and M were also favoured in
direct analysis of x, from the two devices, together with model I (drift wave with collisional
skin-depth) which provided the best fit for JET. In addition, collisionless SOL scalings for
three of these models, D, O and J also provided good fits to the COMPASS-D data. Thus,
although the fits were not always very good, the same models consistently tended to perform
best over a wide range of conditions, providing support for their validity.

The preferred transport models, none of which showed any scaling with B, were used to
provide predictions of A at the mid-plane for MAST (a collisionless SOL), and for ITER (a
collisional SOL) where the resulting rather small values are in part due to an adverse scaling
with power.
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Table 1

Group | Physics Equations o ¥ ) o v |o|p
A Marginal Ideal MHD 2.5 - - - - - -] -
Bl Endplate MHD 2.12 3/2 1 0 1 0 |0]-2
interchange; L, 2.13
2.18
2.19 (v =0)
B2 with L, 241 3/2 1 0 1 0 |0]-2
C Collisionless MHD 2.14 5/2 2 |1 3 1 |0]-4
interchange 219(v =1)
D Collisionless MHD 2.15 1/2 0 | -1 | -1 -1 [0]0
interchange near Bai;
El Resistive MHD 2.13 -1/2 |1 1 g 1 |0|-2
interchange; L, - 2.16
2T
E2 with L, 2.32 -1/2 |1 1 2 1 10]-2
F Drift 2.20 3/2 [4/3] 0 [ 1/3 | 1/3 |0]-2
Gl MHD interchange 2.2] 1 1 0 0 0 [0]-2
G2 End plate MHD 2.2 4/3 14/3| 0 | 1/3 | 1/3 |0 ]-2
G3 Axial flow shear 2.23 3/2 1 0 0 0 [0]-2
H Drift 2.37 -11/6 | 8/3|5/3 10/3 [10/3]0 | -2
I Drift with 2.42 3/2 10 0 0 0 |00
collisional skin-depth
J Drift with 2.46 1/2 1| -1 0 0 |00
collisionless skin-depth
K1 Drift Alfvén low 2.47 3/2 |3/2] 0 [1/2]1/2]0]-2
collisionality
K2 Drift Alfvén higher 2.48 5/6 |4/3[1/3] 2/3 | 2/3 (0]-2
collisionality
L1 VT, sheath mode 2.52 3/2 |4/3( 0 | 1/3[1/3]0]-2
2.59
L2 Minimum enstrophy 2.68 3/2 0 0 -1 -1 |0|-2
L3 Canonical profile 2.64 - - - - - -] -
M Charge-exchange 2.69 1/2 0| -1 0 0 [0]0
N Bohm 2.70 1 0 0 0 0 |0|-1
0] Collisionless skin-depth 2.71 12 0 | -1 -1 -1 10]0
P Dimensional estimate 2.72 - - - - - -1 -
Q Constant 203 0 0 0 0 [0]O
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Table 2

Group | Case | A, AR Aa AB Aq Ap
A I /5 [3/5 |-2/5 |-6/5 |8/5 |2/5
I1 7/9 1 -2/9 -14/9 |2 2/9
Bl [T | 2/i1 |3/l |-2/iL |-6/11 |8/11 |2/11
mo |7/19 | 12/19 |2/19 |-14/19 | 17/19 |-2/19
B |10 [ 7/19 [ 12/10 |2/19 |-14/19 | 17/19 |-2/19
| 21/37 |27/37 |8/37 |-28/37 | 33/37 |-8/37
C T [-1/16 |3/S |-1/4 |-3/&4 |1 1/4
m |12 |3/4 o 1 5/4 |0
D I -1/2 0 0 0 0 0
11 0 3/10 2/8 0 -1/10 | -2/5
E1 |1 [5/7 [6/7 |2/T7 |-6/7 |1 27
| 14/15 |1 9/5 | -14/15 | 16/15 |-2/5
E2 |1l | 14/15 |1 9/5 | -14/15 | 16/15 | -2/5
m | 35/17 |33/17 |16/17 |-28/17 | 31/17 |-16/17
F T [-1/6 [1/3 |-1/6 |-1/2 |1/2 |1/6
I |21/64 |43/64 |3/32 |-21/32|37/64 |-3/32
GI [T |-1/10 [3/10 |-1/10 |-3/5 |2/5 |1/10
mo |7/18 1118 |1/6  |-7/9 |4/9  |-1/6
Gz |1 [1/7 [12/35 |-1/T |-18/35 | 17/35 |1/7
I1 1/3 2/3 1/9 -2/3 5/9 -1/9
G3 |1 [2/11 [3/11 | 2/1L |-6/11 |5/11 |2/11
m |7/19 | 12/19 |2/19 |-14/19 | 10/19 |-2/19
H T |20/28 |39/28 |1/2 |-9/14 |25/28 |-1/2
1w |7/9 |43/36 |13/36 |-7/12 |5/6 | -13/36
I T |2 372 |2 0 /2 |2
|76 |1 43 |0 /3 | -4/3
J T |1/3 |1/3 |0 0 /3 |0
11 0 10/17 | 4/17 0 6/17 -4/17




Table 2 continued

Group | Case | A, AR Aa AB Aq Ap
K1 |1l |14/45 |31/45 |4/45 | -28/45 | 6/10 | -4/45
I |21/45 |23/15 |1/6 |-7/10 [6/10 [-1/6
K2 |1l [49/78 |71/78 |10/39 |-28/39 | 51/78 | -10/39
I11 84/95 |[104/95 | 36/95 | -84/95 | 68/95 |-36/95
1 |1 |-1/6 |1/3 |-1/6 |-1/2 |12 |1i/6
T |21/64 |43/64 |3/32 |-21/32|37/64 |-3/32
L2 I 1/4 |0 /4 [3/4 |1/4 | 1/4
II 7/12 5/12 1/6 -7/6 1/4 -1/6
L3 |1 |0 0 /8 [3/4 [1/4 |14
I o 0 1/t |34 |14 |14
M I -1/2 1/2 0 0 1/2 0
I o 1 2/5 |0 3/5 |-2/5
N T [-1/7 |3/7 |-1/T |3/7 |47 |i/7
m|711 |1 3/11 |-7/11 |8/11 |-3/11
0 [T |12 |o 0 0 0 0
I o 3/10 |2/5 |o 1/10 | -2/5
P T [-1/7 |3/7 |[-1/7 |3/7 |47 |i/7
I |o 8/15 |-1/15 |[-7/15 |3/5 | 1/15
Q I /5 | 3/5 1/5 |0 /5 |-1/5
I |7/9 |1 5/9 |0 49 | -5/9
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Figure Captions

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Normalised RMS deviation for all models

(in order of decreasing quality of fit) for SOL
width data from COMPASS-D, Alactor C-MOD
and JET

COMPASS-D SOL power width data against scalings
for models J, D and O together with the best-fit line

Alcator C-MOD power width data against scalings
for models D, O, M and J together with the best-fit line

JET data against scalings for models M, D and O and J
together with the best-fit line

Normalised RMS deviation for all models
(in roder of decreasing quality of fit) for Onion-Skin
Model x, data from JET and Alcator C-MOD

JET y. data against model I together with the
best-fit line

Alcator C-MOD y, data against models D, O, N and I
together with the best-fit line
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decreasing quality of fit) for SOL width data from
COMPASS-D, Alcator C-MOD and JET
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against scalings for models J, D and O
together with the best-fit line
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Figure 3 Alcator C-MOD power width data against
scalings for models D, O, M and J
together with the best-fit line
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Figure 4 JET data against scalings for models M, D
and O and J together with the best-fit line
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