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1 Introduction

Wave-particle interactions are ubiquitous to physical systems in general and
to plasma physics in particular. The distribution of particles in space and en-
ergy determines the class of waves able to be supported by the system and in
turn, these waves affect the trajectories of the particles, leading to collective
and nonlinear evolution of the entire system. This paper describes a means for
self-consistently describing an ensemble of energetic charged particles inter-
acting with a spectrum of magnetohydrodynamical (MHD) waves in toroidal
plasmas. This work was motivated by an interest in the behaviour of magnet-
ically confined fusion calibre plasmas such as those envisaged by JET and the
proposed International Thermonuclear Experimental Reactor (ITER), where
the confinement of a-particles is of crucial importance. The methodology may
equally be applied to wave-particle interactions in other contexts, such as those
occuring in the solar atmosphere for example.

The transport of fusion born 3.52 MeV a-particles across the equilibrium mag-
netic field is generally negligible on the time-scale for thermalization. However,
resonant interaction between a spectrum of Alfvén waves and supra-thermal
particles may take place [1,2], leading to significant anomalous transport of
the particles. The class of discrete waves considered in this paper are Alfvén
eigenmodes (AE) that can exist in the absence of an energetic particle popu-
lation. Of the various types of AE that have been predicted theoretically, it
is the toroidal Alfvén eigenmode (TAE) [3] that is most frequently observed
experimentally in toroidal devices. Experiments performed with neutral beam
injection (NBI) on tokamaks DIII-D [4], TFTR [5] and with a-particles in
D-T plasmas [6] have already shown that weakly damped TAE can indeed be
driven by fast particles and that under certain conditions this effect can give
rise to significant particle losses [7,8]. Due to the high a-particle pressure in
fusion machines such as ITER, it is feared that TAE amplitudes could become
sufficiently large for more than 5% of the a-particles to be lost from shot to
shot. This level of loss may be sufficient to cause damage to the first wall,
whilst larger values could lead to the quenching of ignition [9]. Hence there
is a need for studying fast particle interactions with Alfvén eigenmodes in
general and with TAE in particular. Note however, that the model presented
here is not restricted to Alfvén-like plasma disturbances and may equally well
be applied to examine, for example, fishbones or sawteeth [10].

The equilibrium magnetic field structure determines both the orbits of the
particles and the spatial structure of the AE that the system can support. A
coherent representation of these two facets of the problem requires an appropri-
ate choice of coordinate system. In what follows, the magnetic field structure
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is represented as a superposition of an axisymmetric equilibrium (which also
serves as a coordinate system) obtained from consideration of force balance,
to which is added an electromagnetic perturbation representing the TAE. The
spatial structure of the perturbation is found from solving the perturbed MHD
equations for the particular choice of equilibrium. The perturbations are de-
composed into Fourier components in the poloidal and toroidal directions,
with each eigenmode allowed two further degrees of freedom: the amplitude
and phase-shift, which are undetermined by linear theory. The effect of the
fast particles is thus to modify the amplitude and phase of the linear wave —
which is expected to retain its radial structure so long as Bhot/Beore < 1. The
evolution equations for each eigenmode are derived from a Lagrangian formu-
lation in which wave-particle interactions are included. Nonlinearities arising
from wave-wave interactions have been shown to be small [11] when v/w < 1,
and are subsequently ignored.

It is apparent that the model presented in this paper [12] is nonlinear, since
both waves and particles evolve in response to the collective motion of the
other, necessitating a self-consistent treatment. For the problem to be math-
ematically and computationally tractable requires the imposition of several
simplifying, yet plausible assumptions which enable the system to be solved.

Recent developments [13-17] have suggested an enhanced algorithm for per-
forming such simulations that has earned the epithet ‘0f method’. This pro-
duces less noisy results without the requirement for an excessive number of
simulation points through using these points to only model the change in the
particle distribution function rather than the whole ensemble.

In the early studies of the problem, without the §f formalism, the main re-
sults for nonlinear wave-particle resonant interaction were obtained for the
1D bump-on-tail instability [18] and for the TAE with enormous strains upon
computing resources. As mentioned above, the §f formalism was found to be
the most efficient method for the modelling of wave-particle resonant interac-

tions.

The first successful results for the nonlinear evolution of TAE instabilities
were obtained by Fu and Park [11] using 200,000 particles without using the
df technique. In this work the contribution of the energetic particles was taken
into account in the form of the pressure-stress tensor. One of the important
results of this work was an explicit demonstration that the main saturation
mechanism i1s wave-particle trapping and that wave-wave nonlinearities may
be neglected up to wave amplitudes of §B/B ~ 2 x 1072 at least.

In the mid-1980’s White and Chance at Princeton developed a Hamiltonian
guiding centre code, ORBIT [19], to examine particle trajectories in the pres-
ence of a spectrum of fixed amplitude AE [20]. This code was recently suc-



cessfully used to model the nonlinear interaction of energetic particles and
a single AE using a df approach [21]. However, by choosing to update the
wave amplitude from a consideration of energy conservation the treatment of
systems with more than one AE becomes impossible. In our code we use a
differential equation to continuously update the amplitude and phase of each
AE. In particular, this allows us to analyse the behaviour of several AE.

Another advanced approach has recently been used by Berk, Breizman and
Pekker [22] to analyse the nonlinear interaction of the resonant particles and
an AE using a mapping technique to rapidly describe the particle motion.
However, generating the matrix elements for the mapping requires detailed
information about both the particle orbits and the wave structure a-priort.

In the next section, a brief review of the magnetic field representation is pre-
sented for which the equilibrium field lines are straight. Particle drifts in this
coordinate system are considerably simplified, but the problem of obtaining
the equations of motion and identifying conserved quantities remain. This
is facilitated using a Hamiltonian formulation. The interaction of the parti-
cles with the spectrum of perturbing MHD waves and the evolution of these
waves is described using a Lagrangian approach. In section 3, the §f method
is described, and its implementation for isotropic and anisotropic fast particle
distributions is elucidated. Section 4 describes the numerical methods used to
implement the model and section 5 discusses the various tests that have been
performed to validate the code, both in terms of asymptotic limits that obtain
for a high magnetic field quasi-cylindrical tokamak and by comparison with
numerical results produced by other codes. Section 6 uses the code to simulate
a Kinetic TAE interacting with a slowing down distribution of a-particles in
a JET tokamak plasma. The final section summarizes the work and discusses
the problems that the code is able to tackle.

2 Dynamical Equations

The problem is formulated in a coordinate system determined by the equilib-
rium magnetic field structure with the ultimate aim being to obtain a simple
form for the Hamiltonian description of the particle motion. Assuming that the
magnetic field is toroidally symmetric and in scalar pressure equilibrium allows
the adoption of the Boozer coordinate system used by White and Chance [19].
This is a straight field line representation which enables the fast streaming
of particles along the field lines to be separated from the slow perpendicular
drift, combined with the property that the magnetic field components required
to describe the particle motion are functions of the flux label alone. The co-
ordinate system takes the poloidal flux ¢ as the radial coordinate with the
toroidal angle coordinate ( chosen to obtain straight field lines. The general



poloidal angle @-is prescribed by selecting a specific form for the Jacobian
to obtain a covariant representation of the magnetic field in which the field
components By and B, are functions of ¢ alone. Toroidal symmetry implies
that all equilibrium quantities such as the metric tensor and field components
are independent of the azimuthal angle (. With this choice, B may be written

as

B =VxAVo0+V(AVY, (a)
= V(¢ —¢0) A VY, (1b)

where y is the toroidal flux, since the safety factor

o) = gy = 22, ©)

From (1a), it follows that the vector potential A can be written as

A =xVl—$pVC. (3)

The corresponding covariant form of B is

B =4(4,0)Vy+ 1($)V0+ g($)V(, (4)

with the Jacobian written in the form

1 _ I+ gq (5)
V- VOAV( B

J =

to ensure that By = JB? — g(¥)q(v¥) = I(x).

The dependence of the angular covariant components [ and g on v alone arises
from the choice of Jacobian and is an important ingredient in the development
of the Hamiltonian formulation. The radial covariant component § can be

found from B - Vi = 0 giving

V- V§+gVC- Vi Ig?4ggh

§(,0) = e - gl! ?

where the superscripted terms g* represent the contravariant components of

3 (_) . . . .
the metric tensor & and the triplet ordering is (v, 8,(). As may be seen, ¢ is
related to the degree of non-orthogonality of the system and is very small for
equilibria with nearly circular cross-section.



The motion of the background thermal ions is adequately described by a mag-
netohydrodynamic representation. Energetic ions however, cannot be treated
in this way since their drifts due to the curvature and gradient of the magnetic
field are comparable with or larger than their electrostatic drifts. Consequently
an alternative approach must be developed. The guiding centre Lagrangian is
obtained from that for a charged particle in an electromagnetic field through
a gyro-averaging procedure [23] which reduces the phase space of the prob-
lem. Once canonical variables have been identified, the equations of motion
follow by differentiating the guiding centre Hamiltonian with respect to these
canonical variables.

Littlejohn [23] showed that the guiding centre Lagrangian L, could be written
as
: m ;

L=eA"-x+(;>,uf-—’H, (6)
where ¢ is the gyro-phase, p is the magnetic moment and x is the guiding centre
velocity and represents the total time derivative of the guiding centre location,
x. The term A = A + pB is known as the ‘modified vector potential’ [24]
and is defined through the ‘parallel gyroradius’ p) = v“/wci, where v and we;

are respectively the parallel velocity and gyro-frequency of the particle. The
particle Hamiltonian is given by

1
H= Emvﬁ + puB + ed. (7)

where ® 1s the scalar potential. The units used are based around characteristic
system quantities: the mass and charge of the fast particles, the toroidal major
radius at the magnetic axis and the inverse fast particle cyclotron time at the
magnetic axis.

Canonical variables are obtained by substituting the expressions for A and B
given above in equations (3) and (4) into equation (6) and rewriting it as

L= ijfi'j —Hs (8)

Once this form is obtained, the canonical momenta p; and coordinates g;
are immediately identified. Including a small electromagnetic perturbation
described by the vector and scalar potentials

Alx,t) = A,V + AgVE+ A, V( and  &(x,t), (9)



means that the fast particle Lagrangian becomes,

= (ol +x +As) 0+ (g -+ Ac) C+ ué —H + (6o + Ay) .(10)

The final term in this Lagrangian may be neglected because the total time
derivative £(dpjp) can be subtracted from £ without altering the equations
of motion that are obtained; the terms that remain are higher order in p and
may be neglected [19,25]. The canonical variables are then readily identified
to be

Py =pl +x+ Aﬂe, (11a)
P( = P||_9’-¢+A¢, (11b)
Pg = M. (110)

This leads via the usual Hamiltonian equations of motion to a set of 4 first
order differential equations for each of the N, particles. Obviously, it is im-
practical to attempt to solve such a system of equations for a realistic distri-
bution of guiding centres, hence one should think of each of these ‘particles’
as weighted markers, with each marker representing a discrete volume of the
particle distribution function. In this way the entire fast particle distribution
may be represented with a feasible number of differential equations.

The general set of particle guiding centre equations that follows from this
formulation are:

[pnf" (1—pug' = A7)+ 9{(P}B+p)B + &'}, (12a)
[p”B (o’ +a+ &) = I{(p} B+ p)B'+ &'}], (12b)

By = -% [(pug’ —14 fl:;)% — (! +q+ Az)%’%}
~pa -2, ” 2
o= -0 g 1+ Ap S — i+ g+ )] - 52, (120

where primes denote differentiation with respect to 1), steady state electrosta-
tic potential components are neglected (but may be trivially included) and

D=plgl'=g'I+1+q9- 1/12 + gAb,.
Although these equations completely describe the guiding centre motion they

do not represent the easiest numerical scheme to implement since it is nec-
essary to invert the equations for Py and F to obtain ¢ and pj. A more



practical approach is to evolve ¢ and pj directly by means of their total time
derivatives. ¢ is simply expressed through the chain rule and equations (11).
Once 1 is known, a simple expression for p|| can be formed from either of the
expressions for the canonical momenta, equations (11a) or (11b).

: Ac 04\, (,0A;, 9A .
¢=_[(1386f 9699)9+( BCC a;)ugpg IPQ},(ISa)

_1[p aAgé_aAgé_aAg_ aAg
PI=T1 " 86" " 8¢ ot Ty
These equations are then augmented by equations (12) such that the final
system of equations to solve is (12a), (12b), (13a) and (13b) for each particle.

+ pnf) w] (13b)

Choosing a particular form for the perturbed vector potential A, the equations
of motion may be simplified at the expense of generality. The description of
low-{ shear Alfvén waves permits the assumptions that 65 = 0 and B =
0. The first of these conditions places a constraint upon A, which can be
encompassed by representing the perturbed magnetic field in terms of the
variable, &(v, 8, (,t), defined through the relation

A =a(x,t)B. (14)

The condition that Ej = 0 provides a relationship between & and the scalar

potential ®:

= 0

Hence only one scalar field is required to describe the field perturbations aris-
ing from the AE present. Substituting for the covariant components of aB
into the above equations of motion produces the same expressions as used by

White and Chance [19].

The inclusion of non-ideal finite Larmor radius (FLR) effects within the ideal
MHD model to treat kinetic TAE (KTAE) leads to a finite parallel electric
fleld in a thin layer around the g(¥) ~ (m+1/2)/n surface. Since the energetic
particle orbit width is typically much larger than the width of this layer, the
majority of the wave-particle power transfer occurs at surfaces away from this
region [26] and it is therefore appropriate to retain the assumption that £ =0
everywhere, to compute the wave evolution.

The perturbative effect of the fast particles upon the waves present in the
model manifests itself through changes in the waves’ amplitudes and phases,
whilst the eigenstructure remains invariant. Each wave, characterized by a



distinct toroidal -eigenfunction (index k), has therefore just two degrees of
freedom, namely a slowly varying real amplitude A; and phase op. When
decomposed into a sum over poloidal Fourier harmonics m, each wave with
frequency eigenvalue wy can thus be represented in the form

{ik = Ak(t)e-—io'{t) z ngm (¢)ei(kmn-x—wkt}

- Ak(t)e—icr(t) Z Q'ékm, (¢)ei(nkq—m6—wk t),

where the wave vector kn, = nV({ —mV0, and in general the fixed linear
eigenfunction ¢y, may be a complex quantity containing information regard-
ing the relative phase-shifts between neighbouring harmonics.

The wave evolution, like the particle motion, can be derived by a consideration
of the system Lagrangian. The total system Lagrangian may be resolved into
four components: the fast particle Lagrangian Ly, describing the motion of the
energetic ions in an equilibrium field; the interaction Lagrangian L, describ-
ing the effect of the Alfvén waves upon the particle motion; the background,
or bulk, plasma contribution to the Alfvén waves Lyuy; the electromagnetic
wave Lagrangian Len describing the electromagnetic component of the Alfvén

waves.
Particle Wave
Lagrangian given Lagrangian,
in equation (6) L
Lsys — ﬁfp g gint + Ebulk + Een‘b
Wave
equations

In its simplest form, the interaction Lagrangian for an ensemble of N, particles
and a spectrum of waves may be expressed as,

Np
L= (A; v; — @), (16)

i=1

where the subscript j refers to the fact that the corresponding quantity is to

be evaluated at the spatial location of the jth particle, (1;,6;,¢;), and A; and
®; represent the sum of all the contributions from each of the waves present

at this point.



The wave Lagrangian [22,26] applicable for perturbative changes in the fre-
quency eigenvalue (dwg/wi < 1) 1s

Lw_gf: [426:],  where By = Z#DfMdaz, (17)

and vy is the Alfvén velocity.

Although the evolution equations for Ay and oy, are easily obtained from equa-
tions (16) and (17) the numerical properties of the ensuing equations of motion
may be improved through the introduction of the real quantities X; and )
to describe the degrees of freedom of the waves, where

Ap(t)e ™ 0 = x,(t) — i (2).

The perturbed scalar potential at the jth particle position can hence be writ-
ten as

‘iMe

Z[Xk JRme‘yk( ) ka}:

from which it also follows that

w

Z > kijm [Xe () Citem + Vi) Sitem)

1 Wk m

where

Cikm _ERe[gﬁ;m( ) 19]“]
Sitm = SM[Grm ;)€ ],

and

E)jkm = nij - mgj — wit.

Returning to the interaction Lagrangian, it is seen that it may now be written
as

P Nw l
Ling = ZkE ™y > (Ko — @) [XeCikm + YiSikm) - (18)
1 m

=1
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As indicated above, the relevant Lagrangian to vary to obtain the wave evo-
lution equations is Lint + Ly, which from equations (17) and (18) becomes

L= Eint + Ew
1 [ L
=2, ™ > (kmoyyj = i) [XeCikm + VeSjem) + Ei [Xkyk - ;t’kyk]} ;
k=1 j=1 m
Varying with respect to X} and ), gives
) 1 M
X = 5= D0 D (Kjmvil; — wi) Sikm, (192)
2F -
. 1 M
Vi = =57 202 (Kjmvy; — i) Cikm, (19b)
2F s

which forms a set of 2 x N, first order differential equations describing the
time evolution of the waves present.

3 éf Formulation

The step from which the f method [13-17] takes its name is the decompo-
sition of the fast particle distribution function f into two parts, a prescribed
component fp and the remaining component §f,
fo= fP) + &,y
—_—— ——

analytic markers

where T'P) represents the physical phase-space comprised of the six compo-
nents of space and velocity. The key element of the §f method arises from the
choice of fy to represent the initial distribution of particles so that only the
change in the distribution function is represented by the markers, or weighted
particles. This affords a favourable reduction in numerical noise in the system
of the order |§f/f|* [27]. Each marker is imparted an additional attribute,
namely the change in the distribution function at that point, with the evo-
lution of this quantity given by the relevant kinetic equation, which in the
absence of sources or sinks becomes f = 0 and can easily be rearranged to
give

5f; = —fo(TP), (20)

where j is the index identifying each marker. The separation of f into a pre-
scribed component f and a numerically described component &f is formally

11



valid in all cases and makes no assumptions regarding the fact that the lat-
ter be much smaller than the former. However, it is only for the case where
8f < fo that substantial reductions in simulation noise are expected. The
method becomes analogous to the solution of the Vlasov equation using a
fluid model on a Lagrangian grid. The value of the distribution function for
each marker is evolved according to the method of characteristics. The posi-
tion of each marker is the tip of each characteristic of the distribution function,
that is, the latest position of one of the natural paths for the solution of the
equations. The markers are like particles in that they move in space with the
same equations of motion. However, rather than representing single particles,
they represent evolving values of the distribution function.

The decomposition of the fast particle distribution function leads to the fol-
lowing transformation rule for integral operators:

/f (@) 1) (p(p t) dI(®) {,_>/f0 p) (p(p)t dI‘(P}-i-Ech F(P() t) AT

=1

where AT® is the finite physical phase-space volume element associated with
each marker and ¢ is an arbitrary function. If fy is specified such that it
is toroidally symmetric then upon applying this transformation rule to the
continuum form of the wave equations (19) it is found that the term containing
fo is identically zero, leaving only the contribution from the perturbed part of
the distribution function, df:

. 1 M
M= 35, > AT 3 (kv — k) S, (21a)
J=1 m
. 1 Np
yk = _EZ(%AP( Z }I.,Hm’t)”? — W Cjkm- (21b)
e a=1 m

As can be seen, the only difference from equations (19) is the inclusion of
the additional weighting factor c%-&l“gp) = dn;, representing the change in the
distribution function at each marker location.

Since in the absence of any plasma waves fy is expected to be invariant it is
defined in terms of the unperturbed constants of the motion,

fo = fo(P,E9; ),

where PC(O) = P, — ag, and €0 = £ - ®. This ensures that f, does not
contribute to the wave growth and allows the statistical noise which would
otherwise result from representing f by a finite number of markers to be

12



reduced. It also ensures that in the absence of any waves the initial number
of particles,

no= [ fo( P, €0 1) ar®,
v

is time-invariant since fy has no explicit time dependence. It follows then, that
in the absence of any particle sources and sinks the change in the number of

particles,

Np
bn= [ & dr® = 3 of; ATP = 0.

v i=1

The evolution equation for each of the markers that arises from these choices
follows from equation (20),

-0y 9fo £(0) dfo (22)

of ;= —F; OPC(‘?)_ i 5200
7 J

where it is recalled that within the guiding centre approach u is an exact
invariant and hence does not appear. It is reassuring to note that by specifying
fo = 0 so that §f = f, then the model regresses to a conventional particle
simulation with fixed weight markers, §f = 0.

Equations (21) which describe the wave evolution require the evaluation of
AT at each marker location, this being complicated by the fact that these
volume elements are compressible and therefore change with the marker flow.
However, their calculation is facilitated by the fact that the flow in canonical
space is incompressible (a consequence of Liouville’s theorem) and that the
canonical volume element associated with each marker AI'¢ is therefore inde-
pendent of time and need only be calculated once. The relationship between
the canonical and physical phase-space elements is described by the Jacobian
J#)(¢) and provides an elegant way of obtaining the physical phase-space
volume elements at any time during the simulation. The caveat, however, is
that it is necessary to determine the canonical phase-space volume element
associated with each marker.

Uniformly loading some chosen phase-space U offers a simple solution to the
problem of determining the canonical phase-space volume associated with each
marker since providing the total phase-volume is known, the volume associ-
ated with each marker Al is trivially calculated. This may then be related to
the canonical volume element through the relevant Jacobian, 7). Choosing
U to consist of physically more familiar variables, rather than the canonical

13



variables, allows the problem to become more intuitive and avoids difficul-
ties associated with inverting the canonical variables into the physical ones.
The loading algorithm adopted makes use of an elegant bit reversal scheme

described in reference [28].

Employing a ¢f formulation has not restricted the way in which the physical
space of interest is filled with markers. However, assuming that no prior knowl-
edge regarding the regions over which the resonant wave-particle interactions
will dominate, it would appear sensible to load markers uniformly throughout
the volume. Indeed for the physical case of a fusion population of a-particles
interacting with a collection of TAE the resonance structure may become so
rich so as to fill most of the region anyway. Even for the relatively benign case
of only one TAE, the resonant region will have a width associated with it due
to the departure of the fast particles from the field lines, and this alone may
be as much as half the minor radius of the machine.

The relationship between the various phase-space elements, AFE—P), AF&C) and
AlU; can be summarized as

ATV @) = 7F(t) T (0) AY; .
—
AT (0)

The method described above is suitable for use with an arbitrary analytic
distribution function fg, however in special cases where f; is highly anisotropic
in one of the dimensions allows additional simplifications. The fast particle
distribution that arises as a result of neutral beam injection (NBI) can be
highly anisotropic with all the injected particles’ velocity vectors distributed
within a narrow cone around A = 1 where the pitch angle A = v/v. The
assumption that the velocity distribution is uni-directional permits one of
the velocity dimensions to be integrated out, with the consequence that the
phase-spaces required to describe the distribution become 4-D. The volume
elements and Jacobians used to represent general and uni-directional velocity
distributions are summarized in Table 1 where s = (/t¢)/1; is a normalized
radial coordinate and 1 is the value of 1 at the plasma edge.

The distribution of fast particles is specified through the analytic distribution
function fy, which as indicated above is defined in terms of the unperturbed
constants of the motion. In general however, it is more natural to specify the
distribution function in terms of a radial flux function and the particle energy.
This can be achieved by constructing an expression representing an averaged
radial flux value (1) in terms of the constants of the motion, allowing fy to
be written as,

fo= fol(¥), €, ).

14



Quantity General Uni-directional

du dvd\ ds df d¢ dvyy ds df d¢
dr 2m dp df dPp d¢ dP; 27 df dPy d¢ d P,
dr@ 27 v? dvd) T dipdfd¢ 27 of dvyy T dipdf d¢
F () 4m s1p Dv?/ B? 47 sy D/B
J (#) JB*/D vtJB/D
Table 1
Volume elements and Jacobians used to represent general and beam-like (A = 1)

distributions of fast particles.

Clearly the best choice for () is the time-averaged 1 value but to avoid the
computational overhead associated with calculating (1) for each particle it
is more convenient to construct an approximate prescription for it in terms
of the constants of the motion. This will necessarily depend upon the orbit
topology of the particle under consideration. The definition, Pco) = gp| — ¥,
allows the averaged value of (1) to be written as,

() = <§f£¢3) V2(£© ——pB('d),B))) — PO,

where o is the sign of v). For trapped particles it is sufficient to define (1) as
the values of 1 at the tips of their orbits where vy = 0, since this is where
the particles spend the majority of their time. To lowest order in an inverse-
aspect-ratio expansion the definitions covering all classes of particle may be

summarized as,
V/2(E0@ — ) — Péo), for £© > p (Co-passing)

() =4 — c(o), for £O) < 4 (Trapped)

—/2(E©) — p) — c(o)’ for £ > 4 (Counter-passing)

which corresponds to the (1) surfaces indicated in Fig. 1. A simple form
for fo exploiting these definitions is to specify fy as the product of a radial
distribution function h;((#)) and an energy distribution function h,(€):

fo = Chi((¥)) ha(E), (23)

where C' is determined by specifying a global parameter such as the volume
averaged fast particle beta (8;), or the ratio of the number of fast ions to the
number of background ions, ns/n;. The form used in equation (23) is suffi-
cient to represent the main types of energetic particle distributions typically
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Fig. 1. Characteristic 1 values, (), for trapped and passing particles.

found in tokamaks. More general fast particle distribution functions may be
represented by modelling (numerical) solutions of the Fokker-Planck equation.

4 Numerical Method

The model developed in the preceding section forms an initial value problem
comprised of a system of 5 x NV, + 2 x IV, first order ordinary differential equa-
tions together with appropriate initial conditions. The code written to perform
the task of solving them is HAGIS, (Hamiltonian guiding centre system.)
The HAGIS code is written in standard FORTRAN-77 and has been complied
across a variety of platforms. It takes the specified initial conditions together
with equations (12a), (12b), (13a), (13b), (21) and (22) to simultaneously ad-
vance the spatial location of each marker, its parallel velocity, and the change
in the distribution function at that position, as well to update the amplitude
and phase of each wave present. The input data required by the HAGIS code
consists of three parts; the equilibrium field data, the perturbed field data, and
the fast particles’ initial conditions. The first of these, the equilibrium data
is supplied by the HELENA code [29] by solving the Grad-Shafranov equation
and the second by the MHD stability code CASTOR-CR [30,31]. The initial
distribution of energetic ions and the initial amplitude and phase of each of
the waves are specified in an input data file supplied by the user. An overview
of the data handled by the HAGIS code and the other codes which supply it
is shown in Fig. 2.

All values and derivatives of the plasma equilibrium required by the code are
calculated by splining the equilibrium data. Since the equilibrium is toroidally
symmetric this is only necessary over the poloidal plane; 1-D data using radial
cubic spline interpolation, and 2-D data using bi-cubic splines with appropri-
ate boundary conditions in the poloidal direction. The HAGIS code uses a 4th
order Runge-Kutta integration algorithm chosen in preference to more sophis-
ticated adaptive methods since if the phase-space is properly loaded there is
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Generates equilibrium ‘| Solves linearized MHD Initial conditions for fast
configuration from a equations to find parﬁdes and waves in
consideration of force eigenmodes for AE the system
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,/ \
Time evolution of Time evolution of fast
waves in system particles in system

Fig. 2. Overview of the HAGIS code showing flow of data.

no advantage in making modifications to the step size. The accuracy achiev-
able by the model is shown to scale correctly with the integrator step size used
and is ultimately limited by the accuracy of the spline representation.

5 Code Validation

To verify the computational implementation of the numerical model and assess
its accuracy, the HAGIS code has been extensively tested and validated. In
this section the details of some of these tests and comparisons with previous
numerical and analytic results are presented.

In the first section the accuracy of the integration algorithm used is assessed
by examining the conservation of various system invariants. The examina-
tion and comparison of various particle trajectories for which the exact orbits
were known, allowing the implementation of equations (12) that describe the
particle motion to be verified was described in a previous publication [32].
From a consideration of the behaviour of a single particle in the presence of a
fixed amplitude single harmonic wave, it is then possible to test that the cor-
rect wave-particle interaction is taking place. The final tests performed were
benchmark comparisons with other codes.

17



5.1 Integrator Performance and System Invariants

The integrator used within the HAGIS model determines the evolution of all
the quantities advanced within the model. Consequently a stringent examina-
tion of its performance was paramount before any further tests of the code
were made. One of the easiest tests to achieve this goal is to examine how
well the code conserves various system invariants. In the absence of any field
perturbations all the particles can be expected to conserve both energy and
toroidal angular momentum since a stationary magnetic field can do no work
upon the particles and the equilibria are toroidally symmetric. However, in
the presence of a single distinct toroidal eigenfunction,

qu — Zei(n(:j—mﬂj—wt),
m

particle energy is no longer conserved since d€/dt = dH/dt # 0. Similarly,
(; is no longer a cyclic coordinate and the toroidal component of canonical
angular momentum is also not conserved. Thus particle energy and angular
momentum can no longer be used as a measure of the code’s performance.
However using the above ansatz, the field perturbation rotates around the
equilibrium field’s axis of symmetry and a new constant of the motion exists

for each particle,

E; — (w/n)PcJ. = constant.

The additional rotation of the field perturbation in the poloidal direction does
not give rise to further constants of the motion due to the inhomogeneity of
the equilibrium field with respect to the poloidal angle.

Simulations with a single co-passing (A = 1) a-particle in the JET equilibrium
summarized in Table 2 have been performed in the presence of a single fixed

Parameter Value

E 0.334
Ra 3.0m
By 281T
90 0.87

Table 2
JET equilibrium parameters used for examination of integrator performance

amplitude (§B/B = 107*) n = 5 KTAE shown in Fig. 3. The scaling of &; —
(w/n)Pe; with the integrator step size used (measured in terms of the number
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Fig. 3. Principle poloidal harmonics of the n = 5 KTAE eigenfunction in JET.

of steps per wave period) is as shown in Fig. 4, showing convergence down to
the accuracy of the spline representation which is close to machine precision.
The HAGIS code employs a fixed time step 4th order Runge-Kutta integration
algorithm and as expected the error scales as approximately O(At%), where
At is the time step size. The run time of a particular simulation is inversely
proportional to At. Thus as a compromise between run time and accuracy, At
is typically chosen such that the integrator makes 64 steps per wave period.

Despite energy and the toroidal component of canonical angular momentum
not being conserved for individual particles, the total energy and angular
momentum of the wave-particle system is conserved, as it must be for any
isolated system. In fact, it can be shown that Fig. 4 may be equivalently
viewed as a plot showing the conservation of the total system energy with

integrator step size.

5.2 Benchmarking

Due to the complexity of making analytic estimates of quantities associated
with the interaction of fast particles with AE, comparisons with other codes
are invaluable. They avoid the need to perform simulations within restrictive
regimes such as at large aspect ratio (¢ < 1). For these reasons the HAGIS
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Fig. 4. Plot showing the scaling of the conservation of £; — (w/n)FP;; = K with time
measured in terms of the number of wave periods, for various integrator step sizes,
At.

code has been extensively benchmarked against many other codes including
the FACc and CASTOR-K codes.

The FAC code [33] is an independently developed Monte-Carlo §f code em-
ploying analytically described equilibria and perturbations to achieve compu-
tational performance benefits. The CASTOR-K code [34] is a linearized §W
code that uses unperturbed guiding centre orbits. Due to the completely dif-
ferent approach used by this code comparisons with it represent a particularly
good test.

5.2.1 Beam-driven TAE

The parameters used for the first comparison are summarized in Table 3 and
were chosen such that the simulations fell into the category of small-orbit-
width and large-aspect-ratio, allowing additional comparisons with analytical

estimates.

The beam distribution used was

fo=C exp(~258)exp (— =) 5(A),
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Parameter Value

€ 0.1
Ro 8.011 m
By 10-50T
90 1.25
n 5
m T
w 3.131 x 10° rads/s
f 49.83 kHz
ZA ‘He
n; 1% 10% m=3
(my) 2.0 my
(By) 5% 1077
N, 60000
b, (0.02,0.98)
£y (10 keV, 3.8 MeV)
At 27 /80w

Table 3
Simulation parameters for beam-driven TAE

where A = pBg/E, & = 3.52 MeV and the field perturbation used consisted
of a single (m,n) = (7,5) harmonic. The results of scanning in magnetic field
intensity are shown in Fig. 5, where the dashed line represents the analytic
prediction, whilst the points represent simulations performed using the HAGIS
and FAC codes as indicated. The solid line represents results from the CASTOR-
K code. The agreement is good, with small differences expected since the
CASTOR-K code and the theoretical estimate assumed that the particles had
zero orbit width (ZOW) whilst the full orbit width effects were retained within
the HAGIS and FAC codes.

For the cases where the phase of the wave was unlocked and allowed to vary
self-consistently in time, an additional comparison of the reactive frequency
shift with time was possible between that HAGIS and FAC codes. This is
presented in Fig. 6 where again good agreement is observed.
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Fig. 5. Variation of linear growth rate with magnetic field intensity.
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5.2.2 a-particle driven TAE in ITER-like plasma

The next case compared was that of an isotropic distribution of a-particles in
an ITER-like plasma interacting with an AE. The simulation parameters for
this test are summarize in Table 4.

Parameter Value

€ 0.375

Ry 8.0m

Bo 6.0T

0 0.8375

n 10

m 8,9

w 5.0 x 10° - 8.0 x 10° rads/s
ZA 1He

n; 1.1x10% m~3
(m;) 2.5 my
(65) 5 107

Te 25 keV

T; 23 keV

N, 60000

At 27 /80w

Table 4
Simulation parameters for a-driven TAE in ITER-like plasma

The distribution of a-particle used was chosen to represent the expected
distribution within an ignited tokamak. The energy distribution of this so-
called ‘slowing-down’ distribution i1s determined by the effects of electron and
ion drag upon the a-particle population. Assuming that the D-T reactants
share a common temperature T3, and that the a-particles are produced with a
roughly Gaussian energy distribution, the solution of the Fokker-Planck equa-
tion is [17,35],

_ 1
_v3—l—v§

FE) (24)

Erfc [5 — 80} ,

AE
where the cross over velocity, v, is the speed below which the ion drag on the
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a-particles becomes dominant and is given by

1
3 72
o = (W_mzl) U S - ..

dmg, NeIMy

1

v 15 the electron thermal velocity and Z; the charge on the 1th species of ion.
The spatial distribution used takes the form of a Fermi distribution function
with the parameters chosen to fit those expected in ITER,

1
) = o =P /A T

Yo is chosen to lie near the ¢ = 1 surface since m = 1 MHD instabilities
(sawteeth) are expected to flatten the distribution within this region [36].
Thus the final distribution used is,

_ 1 1 . [E—E&
#=0 (g =somarri) v

with vo = 0.2, Ap = 1/14, & = 3.52 MeV, &, = 329.6 keV, AE = 335.2 keV.

For this comparison a scan was made in the wave frequency whilst the phase of
the wave was held fixed. The results for the three models are presented in Fig. 7
and as can be seen the agreement is again very good. The non-smoothness of
the curves is attributed to different classes of particles becoming resonant with

different wave frequencies.
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6 Example Application

In this section the HAGIS code is applied to examine the case of a single KTAE
interacting with a slowing down distribution of a-particles.

6.1 Resonant Particles

To analyse the structure of the wave-particle resonances, a two dimensional
scan has been performed in initial particle energy and launch radius for the
case of a JET n = 5 AE of amplitude § B/B = 10~*. The particles considered
were deeply passing (A = 1) a-particles that were launched up to a maximum
energy of £ = 4.0 MeV, between R = 3.1 m and 3.6 m. Each of the particles
were followed for 50 poloidal transits with the change of energy represented
in terms of the intensity used in Fig. 8. The complex structure of the reso-
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=

z :

>

o Q

Z 5 oni08 g

£ 2,010 3

o 2

X &

= >

© )

o @
(5

1.00108

3.10 3.20 3.30 3.40 3.50 3.60
Radial Coordinate [m]

Fig. 8. Wave-particle energy exchange between deeply passing a-particles and an
n = 5 KTAE. The intensity in the plot represents the amount of wave-particle
energy exchanged. The primary resonance corresponding to particles moving at the
Alfvén velocity is clearly seen at around 1 MeV and is radially located near the
peak in the eigenfunction. The v4/3 sideband resonance is discernable at around

100 keV.

nances (even for deeply passing particles with A = 1) necessitates an accurate
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representation for the fast particle distribution, especially with respect to en-
ergy, since it is seen that there will still be a relatively strong exchange of
wave-particle energy near the cut-off energy to which particles are loaded.

Particles that are close to the resonance regions of the phase-space become
trapped in the potential well of the AE and the orbits of these particles form
island structures. With increasing energy, and therefore increasing orbit devi-
ations from a flux surface, the particles may experience additional side-band
perturbations arising from their radial motion across the wave eigenfunction.
Particle islands increase in size with AE amplitude and stochasticity arises
when these islands, caused by the primary and side-band harmonics, over-
lap; this process differs from magnetic island stochasticity, in that a single
harmonic can give rise to stochastic orbit motions.

6.2 Nonlinear saturation of a KTAE driven by a-particles

In the previous section it was remarked that for wave amplitudes above some
threshold particle stochasticity appears in the system. To establish whether
this threshold can be achieved due to the free energy source associated with
the radial gradient of the a-particles, a self-consistent nonlinear treatment is
needed. This section is devoted to the analysis of a KTAE interacting with
a distribution of a-particles in JET. Mode damping due to the bulk plasma,
particle sources and sinks are not included in this treatment. Hence the case
considered is an idealised scenario producing an approximate upper limit for
the AE growth rate and saturation amplitude.

The simulations presented in this section address the nonlinear AE evolution
by directly simulating the wave evolution and particle re-distribution arising
from the interaction of a single n = 5 KTAE and the expected distribution of
a-particles within a D-T JET plasma. The parameters used for this simulation

are summarized in Table 5.

The distribution function was chosen to represent an isotropic slowing down
distribution of a-particles,

A\ 3 1 E—EO
fo=c 1—11) ﬁErfClt ]
(1=9) &3 182 -

where & = 3.52 MeV, £, = 329.6 keV and AE = 335.2 keV.

The n = 5, m = 4,5 eigenfunctions used for these simulations are shown in
Fig. 9 along with the g-profile and the radial distribution of fast particles.
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Parameter Value

€ 0.334
Ry 3.0m
By 30T
qo 0.87

n 5

m 4,5

¥ 191.7 kHz
ZA ‘He

n; 4.8 % 10" m~3
(m;) 2.5 my
(By) e 12
N, 75000
At 27 /64w

Table 5
Simulation parameters for a-particle driven n = 5 KTAE in JET.
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Fig. 9. Plot showing the radial structure of the principle poloidal harmonics of the
n = 5 KTAE together with the g-profile and the radial distribution of fast particles.

30



The evolution of the KTAE that resulted from its interaction with this popula-
tion of a-particles is shown in Fig. 10 depicting the AE amplitude and growth
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Fig. 10. Evolution of an n = 5 KTAE in JET interacting with a slowing down
distribution of a-particles.

rate as a function of time. The diagram clearly indicates the two generic
stages of the wave evolution that arise in simulations of this type. The first
stage is the linear growth stage during which the wave amplitude increases ex-
ponentially with time. This behaviour may be understood by observing from
equations (21) and (22) that for infinitesimally small §f,

A « &f
ADCAéA:AOB'ﬂ.
of x A
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The second stage in the wave evolution is a saturated state which may be
understood by observing that the radial profile of a-particles has been signif-
icantly modified such that it no longer acts as a source of free energy, as in
Fig. 11. The particle conservation for this simulation is presented in Fig. 12
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Fig. 11. Radial redistribution of a-particles by n = 5 KTAE in JET.

showing the exceptional conservation of particles during the early linear stage
and the characteristic oscillatory behaviour following the onset of saturation.

It is interesting to note that the case presented has a growth rate of nearly
3% and saturates by itself at §B/B ~ 1073, in quantitative agreement with
the results found in [21, see Fig. 11], where an analogous treatment of the
wave-particle problem was performed without wave damping, particle sources

or sinks.

7 Conclusion

This paper has presented a formulation, implementation and validation of the
nonlinear self-consistent §f code HAGIS. This has been developed to investi-
gate the nonlinear resonant interaction of fast particle distributions with linear
MHD eigenmodes in toroidal geometry. HAGIS offers a high level of generality:
It employs general toroidal solutions of the Grad-Shafranov equation describ-
ing tokamalk equilibria [29] and a spectrum of linear MHD eigenfunctions of
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Fig. 12. Conservation of a-particles interacting with n = 5 KTAE in JET.

these equilibria generated as solutions of the resistive MHD eigenvalue formu-
lation with FLR corrections [31]. There are no restrictions upon the form of
the guiding centre fast particle distribution function.

The code is formulated in Boozer coordinates in which the equilibrium mag-
netic field lines appear straight upon a flux surface whilst the representation of
the magnetic field enables an elegant formulation of the Hamiltonian guiding
centre motion. The incorporation of the df method within the model enables
the time dependent solution of the kinetic equation for the deviation from an
mitially prescribed distribution of fast particles using a finite number of mark-
ers whilst still retaining the full orbit effects associated with the field geometry
and the nonlinear mode perturbations. Simultaneously and self-consistently
the model nonlinearly evolves the spectrum of linear modes present in the
system, accurately resolving the linear and nonlinearly-saturated phases of
the wave growth and the reactive frequency shifts.

The HAGIS model is applicable for those instabilities for which the principle
dynamics of the problem are determined by wave-particle interactions and for
which wave-wave nonlinearities may be neglected. The use of the guiding cen-
tre approximation restricts the model to phenomena with scale lengths larger
than a gyro-radius and slower than the cyclotron frequency. The Lagrangian
method of nonlinearly evolving the spectrum of waves present makes the fur-
ther restriction that the change in amplitude and phase occurs on timescales
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much slower than the wave frequency.

The HAGIS code has been validated through comparison with analytical re-
sults as well as with other numerical work. For the large aspect ratio, high
field, beam-driven TAE case presented, the agreement with both linear the-
ory and other numerical work is very good. For the a-particle driven TAE in
an ITER-like plasma the linear growthrates determined using HAGIS compare
exceptionally well with other work. Indeed for the simulations shown, the frac-
tional variation of the number of particles represented was dn/ng ~ O(1079).

The model has been applied to examine the self-consistent evolution of a single
Kinetic TAE and a population of a-particles in a JET plasma, (in the absence
of wave damping, or sources and sinks of a-particles). The results presented
clearly demonstrate the transition from the linear growth regime into a non-
linearly saturated state with the corresponding self-consistent, anomalous, re-
distribution of a-particles that arises from the wave-particle interaction. For
this case, the resonant regions of phase space for deeply co-passing a-particles
and a fixed KTAE amplitude have also been presented. This demonstrates the
extensive range of resonances that are present and dispells the notion of being
able to consider only ‘resonant particles’.

The HAGIS code has many natural areas of applicability beyond the study of
Alfvén eigenmode instabilities. For a while it has been known that the saw-
tooth instability [37] can be suppressed for a limited period of time through
particle heating by electromagnetic waves in the ion cyclotron range of frequen-
cies [38,39]. The additional heating creates a strongly anisotropic distribution
of trapped energetic particles having positive potential energy that contributes
to that of the ideal MHD internal kink mode [40]. Stabilization is achieved
because of the reduction in phase space that follows from the conservation
of the third adiabatic invariant for minority ions with large bounce-averaged
toroidal precessional drift frequencies. HAGIS provides a means for accurately
modelling the distribution for such particles in a variety of additional heat-
ing senarios. Moreover the potential for sawtooth stabilization by fusion born
a-particles is a problem closely allied to this and which is of increasing im-
portance to devices such as ITER, where sawtooth periods of up to 100s have
been estimated [41].

Future work with HAGIS will include simulations presenting the effects of
sources and sinks of fast particles within the model, as well as the consequences
of introducing wave damping. The extension to calculate transport coefficients
will also add to making HAGIS an invaluable tool.
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