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Abstract

The ideal MHD £ limit of reversed shear equilibria, due ton = 1, 2,
and ballooning modes, is investigated for peaked pressure profiles,
consistent with those occuring when the internal transport barrier is
estabilished in JET optimised shear discharges. Higher Sy can be
reached with the control of the minimum ¢ value and a conducting
wall can further improve the stable domain. The n = 2 mode plays
an insignificant role, unless the conducting wall improves the n =
1 stability when the shear reversal is large. Increasing the amount
of shear reversal generally improves MHD stability and the effect is
stronger for the n = 2 mode. B* (=2u<P?>1/2/B2) increases with
normalised current (I,/aBp) but By is only weakly affected.

*permanent address : Department of Physics, Taegu University, Kyungbook, Republic
of Korea



1 Introduction

Recently, an interest in reversed magnetic shear equilibria in tokamaks has
been renewed both experimentally and theoretically. It has long been recog-
nised that equilibria with a hollow g-profile, where g is the safety factor,
can support a large pressure gradient in the negative magnetic shear region
because ballooning modes enter the second stable regime [1]. Also, a large
bootstrap current fraction, which is important for steady-state operation of
the tokamak, leads to hollow current profiles and to reversed shear equilibria
due to the lack of trapped particles in the core.

High performance with reversed shear has been observed transiently in
DIII-D [2], JET [3], TFTR [4], and JT-60U [5], with an early application
of heating power in the current ramp-up phase of the discharge to inhibit
current penetration. It was found that Sy as high as 4 could be reached in
DIII-D [2], while for very peaked pressure profiles in JET, MHD stability
limits Ay to less than 1.8 [6, 7]. Here, Ay is the normalised beta or the
Troyon coeflicient [8], defined as

a(m)Bo(T)

ﬂN = ﬁt(%) Ip(MA) )

_ 2uo [ PdS

B = —Bgf—dS’

where dS denotes the surface elements of the plasma cross section, By the
vacuum magnetic field at the geometric axis, a the minor radius, I, the
plasma current, and P is the plasma pressure. In these experiments, where
the current profile is controlled, internal transport barriers have been formed
and ion heat conduction has been greatly reduced, possibly by suppressing
microinstabilities due to E x B flow shear [9] or negative shear [10]. The

improved confinement leads to quite peaked pressure profiles. A peaked



pressure profile is favourable because the fusion power is roughly proportional
to P2, and so the fusion power increases approximately linearly with Py
for the same f;, where Py = Fy [dS/ [dS P is the pressure peaking factor
and F is the pressure on axis. However, peaked pressure profile discharges
face disruptions due to low-n MHD instabilities [6, 7] if Sy increases further
without broadening of the pressure profile.

It is important to understand and improve the MHD stability limit of re-
versed shear equilibria. In TFTR with circular cross section, it was found [11]
that increasing Ag=go—qypjp (Where go and dmin 2re the central g, and min-
imum ¢ value respectively) and the radius of shear reversal, has a stronger
effect on stabilising n > 2 modes than the n = 1 mode and that the wall has
a limited effect for a peaked pressure profile. In D-shaped plasmas, broader
pressure profiles, strong shaping and a conducting wall have a synergistic
effect [12, 13, 14] and can increase f5; by a factor of up to 5, compared with a
circular plasma with a peaked pressure. Similar results were found [15] with
different forms of pressure and g profiles. When reversed shear equilibria
have been stabilised to ideal low n modes (without a conducting wall), high
n ideal ballooning modes [17] and resistive interchange modes [18], the max-
imum By is reached for g5, ~ 1.2, with P between 2.5 and 3 [16]. This
broad pressure profile gives a better aligned bootstrap current, but it does
not match the profiles observed in high performance reversed shear experi-
ments [2, 3, 4].

In this study, we investigate the effect of g,,;,,, Ag, the conducting wall
and the total current on the 8 limit due to the ideal n = 1, 2 and ballooning
modes for JET type plasmas. Here, the pressure profiles are quite peaked,
consistent with L-mode optimised shear operation in JET, where the internal

transport barrier is at ¢ ~ 2 surface [7] This study is complementary to



previous findings [12, 13, 14, 15, 16].

The remainder of this paper is organised as follows. Section 2 describes
how reversed shear equilibria, which match the JET experiment, are gener-
ated to determine MHD stability in the §—gp;, space. Section 3 contains
numerical results and explanations. Conclusions and a discussion are given

in Section 4.

2 Numerical Model

The HELENA code [19] is used to generate the numerical equilibria and to
determine ballooning mode stability. A fixed boundary, up-down symmetric
D-shaped plasma, with elongation 1.7 and triagularity 0.3 at an aspect ratio
of 0.315, is used. This boundary shape approximates that of JET reversed
shear plasmas though they have single null X-points. Some stability cal-
culations using a JET-like single null equilibria are presented to show that
the up-down symmetrisation of the boundary makes no significant difference.
The pressure profile is chosen to match the experimental pressure profile of
JET shot #40847 at 47.0sec. This pressure profile is modelled by

4P 2 6
= A{O%(l—ly—a) +(1—II,—E)],

where ¥, is the value of the poloidal flux function ¥ the at edge and A
is the parameter used to vary B. The pressure profile is quite peaked as
shown in Fig. 1(d), consistent with the internal transport barrier in JET.
The equilibrium profile is then determined by specifying

dP AN

dlIl+R0 HZ?%B (1_\11_)
where B;’s are parameters used to vary the current profile, i.e., changing

Omin at fixed g,. The imposed conditions make the toroidal current vanish
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at the plasma boundary. Typical pressure and g profiles are shown in Fig. 1,
corresponding to the range of equilibria used in this paper.

The choice of the method of generating numerical equilibria makes Py,
Ag, and the radial position of gp,;, vary as Gy and gp;;, are changed. In
particular, Py changes because of the large Shafranov shift of the magnetic
axis at high (. It varies from 4.8 to 5.8 in the range of this study and
decreases with ¢;;,, and also slightly with 3. However, this parametrisation
covers a wide range of g i, and G, enabling us to investigate MHD stability
of reversed shear equilibria, at relatively low g,. It should be noted that
simple equilibria with very high qo at large # are hard to generate, because
the large dP/d¥ contribution on the toroidal current at the centre tends to
make the g profile have double minima. This limits the range of the S—gp;,,
space in this study.

The ideal MHD stability limit due to low » modes is determined by using
the MISHKA-1 code [20]. Generally, a total of 21 poloidal modes (-2 <
m < 18 for the n = 1 mode, and —1 < m < 19 for the n = 2 mode, where m
is the poloidal mode number) were used to find the growth rate of the mode.
In some cases, the number and range of modes has been changed to check
convergence. A conducting wall outside a plasma with toroidal rotation,
as confirmed experimentally [21], will favorably affect the stability of low-n
MHD modes. We have considered the effect of normalised wall positions
(Twarl) of 1.15 and 1.3 times the local plasma radius. This is representative
of the likely wall location for the complex structure surrounding the plasma

in JET.



3 Numerical Results

The § limits due to the n = 1 mode, are shown in terms of §* as a function
of qyjp in Fig. 2. Here,

v _ 2m(f P2dS/ [dS)'?
ﬁ = Bz ?
0

which gives a measure of the fusion efficiency (fusion power is roughly pro-
portional to P? for the temperature range of interest). The edge ¢ value (g,)
is fixed at 4.5, unless noted otherwise. In Fig. 2, B; = By = Bg = 0 are used.
The g-profile of an equilibrium that is marginally stable to the n = 1 mode
with 7o) = 1.3 at gpj, =~ 1.34 is shown in Fig. 1(a). It should be noted
that Ag and the location of g,;,, also change with gy,;,, as shown in Fig. 3(a),
where values are shown along the n = 1 stability limit with r,;; = 1.3 in
Fig. 2. The location of gp,;, is shown in terms of an effective normalised
minor radius \/m, where W in is the poloidal flux function at the
@min Surface. It can be seen that both Ag and m increase with
Gmin- However, the change in I,/aB, is negligible (1.08 < I,/aB, < 1.11)
as ¢, is held fixed.

The @ limit due to the n = 1 mode improves rapidly as g, is raised
above 1, as shown in Fig. 2, since the ¢ = 1 surface is removed from the
plasma. The ( limit due to the n = 1 mode without the wall reaches a
local maximum at g, =~ 1.3, where Ag ~ 0.7, §; ~ 2.6%, By ~ 2.4, and
B* ~ 4.2%, can be achieved. Here, By is lower than the Troyon limit for
a monotonic ¢g-profile, but the strong peaking of the pressure gives rise to
high g* (i.e., a high potential fusion power). It is interesting to recall that
the MHD limit in recent JET reversed shear experiments was Gy ~ 1.8 [7].
Therefore, improvement is expected if the ¢ profile can be controlled, even

without the wall stabilisation. The maximum Sy is also lower than the limit
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with a broad pressure profile [16] in reversed shear, as expected because broad
pressure is favorable for n = 1 stability (11, 13].

The mode structure at low q;, (Fig. 4(a)) shows large internal m =1
and m = 2 components, even if the rational ¢ = 1 surface is not present. This
is why the effect of the wall is small at low ¢p,;,. However, at higher g,;,,
contributions from modes with high 7 numbers as shown in Fig. 4(b), become
larger and have significant external components at the plasma boundary.
Therefore, the conducting wall has a stronger stabilising effect for higher
dmin equilibria. The wall stabilisation as shown in Fig. 2 for ¢,,;, > 1.2 is
consistent with previous results, i.e., the conducting wall is effective for D-
shaped cross sections as in D-IIID [13], while the effect is much less significant
for circular plasmas such as TFTR, [11]. We note that different reversed shear
equilibria with broader pressure and large g, were used in Ref. [13]. Since the
local maximum # due the n = 1 mode without a wall is limited by a mode
with large external components at higher ¢;,,; it increases significantly as a
conducting wall is fitted. Further investigation of the 4 limit for larger gy,
outside the range shown in Fig. 2 is hampered by the appearance of double

minima in the g-profile. For r = 1.3, an equilibrium with 8, ~ 3.2%,

wall
By =~ 2.9, and * ~ 5.1%, at g5, =~ 1.45, is stable to the n = 1 external
kink mode, but is n = 2 unstable. For a closer wall (rwall = 1.15), the £ limit
shown in Fig. 2 does not saturate, and 8; ~ 3.7%, By ~ 3.3, and §* ~ 5.9%,
are reached. With the JET experimental boundary shape (as shown in the
inset of Fig. 2) with a single null X-point, the 8* limit, which is denoted
by crosses, is in good qualitative agreement with the up-down symmetrised
results; ry..1) = 1.3 is used for these points.

The initial increase in §* for the n = 2 mode when g,;,, is raised above 1,

is steeper than that of the n = 1 mode as shown in Fig. 5. After then =2 §*



limit reaches a local maximum when g,;, =~ 1.15, it decreases as qp,j,, gets
close to another rational surface, i.e., m = 3/n = 2, and then increases again
when gy, is further raised. Over a wide range of gp,;,,, the mode structure
is dominated by large m = 2, 3 components, which are mainly internal, as
shown in Fig. 6. Therefore, the effect of wall stabilisation on the n = 2 mode,

with ro.1) = 1.3 (Fig. 5), is smaller than that on the n = 1 mode (Fig. 2).

wal
The n = 2 limit is well above the n = 1 limit without the conducting wall,
but for the more realistic r,1; = 1.3, the n = 2 mode sets a lower $* limit

1 = 1.15, the n = 2 mode

wal
than the n = 1 mode for gp,;, > 1.33. With r

wal
limits the increase of 3* well before the maximum due to the n = 1 mode is
reached.

Ballooning modes are stabilised rapidly as q,i, is raised, as shown in
Fig. 5. This improvement is largely due to increased potential well stabilisa-
tion when the local ¢ increases. Flux surfaces which first become unstable to
ballooning modes are in the low positive shear region just outside the g ip
surface. Since the ballooning #* limit can be improved by lowering the pres-
sure gradient locally in that region, it is not considered as a hard limit. The
ballooning modes only affect a small region. This is illustrated in Fig. 6
which also shows the §* limit when 10% of the surfaces are ballooning un-
stable, where 3* improves considerably. This limit is generally above other
MHD limits.

Figure 7 shows (* limits with the condition By = By = By = 0. The
g-profile for these parameters is less hollow and m only slightly
decreases, as shown in Fig. 3(b), compared with the previous case (Fig. 3(a));

again these parameters are shown along the n = 1, r, = 1.3 stability

wal
boundary. The g-profile of an equilibrium that is marginally stable to the

n = 1 mode with . = 1.3 at gpj, ~ 1.34 is shown in Fig. 1(b). The



behaviour of the 8* limits given by n = 1, 2, and ballooning modes remains
qualitatively unchanged, i.e., the n = 2 limit is unimportant unless there is
a conducting wall, and ballooning modes set the soft 4 limit for low gp;,,.
A local maximum of the n = 1 mode stability without the conducting wall,
(B ~ 2.5%, By ~ 2.3, and §* ~ 4.2%) is reached when g, ;;;, ~ 1.34 and
Ag =~ 0.5. With 1) = 1.3, the 8 limit improves and §; ~ 3.0%, Oy =~ 2.7,
and B* ~ 4.9% can be achieved when Imin = 1.37. This local maximum is
a lot broader than that without the wall, which means that detailed control
of the current is not needed to maintain stability. When Twall = 1-15, an
n = 1 stable equilibrium, §; ~ 3.7%, By =~ 3.3, and * ~ 5.9%, is possible.
Compared with Fig. 5, the local minimum §* limit due to the n = 2 mode
near g in = 1.5 drops closer to the 3* boundary of n = 1 mode without a
wall, and the ballooning mode stability deteriorates.

In Fig. 8, results are shown when the plasma current is varied by spec-
ifying By = B; = 0, B, = 4B;. The g-profiles along the n = 1 stability
boundary with 7,1 = 1.3 are only slightly hollow and the location of g,;,
has moved inwards as shown in Fig. 3(c), such that \/\m has decreased
by about 10% compared to the case used to generate Fig. 2 for the same gy,
The g-profile of an equilibrium that is marginally stable to the n = 1 mode
with ry01) = 1.3 at qpip = 1.34 is shown in Fig. 1(c). The noticeable differ-
ence due to the less hollow g, is that the n = 2 mode now sets the 8* limit
just after the n =1 no wall case passes the local maximum at g, ;, ~ 1.37,
with By >~ 2.3%, By ~ 2.2, and §* ~ 3.9%. We note it was also found [11]
for the circular tokamak, that higher n modes are more easily affected by the
change of profiles like Ag, while the n = 1 limit is only modestly affected.
With 7y0) = 1.3, the 8 limit due to the n = 1 mode reaches §; ~ 2.7%,
By ~ 2.5, and B* ~ 4.4%. This decreases slightly when the n = 2 mode



is considered simultaneously, due to the broadness of the n = 1 maximum.
However, the nearly saturated limit of §; ~ 3.7%, fy ~ 3.3, and §* ~ 5.0%

with r,.1) = 1.15 is reduced by 14% due to the lower n = 2 limit.

wal

The effect of raising the amount of shear reversal can be investigated
by comparing Figs. 2, 5, 7, and 8. In general, the §* limit improves as Ag
increases for all ideal MHD modes in the range considered here, but saturates
for larger Agq(> 0.5). For the n = 1 mode limit without a wall, the qp,;,
value where it reaches a local maximum decreases slightly and the peak 3*
rises from 3.7% to 4.2% when Ag is raised from 0.1 to 0.7, at g i, ~ 1.3. The
presence of the wall and raising Ag have the additional effect of improving
the §* limit of the n = 1 mode for gp,;; > 1.3, where the mode has a more
external character, and acts to increase and broaden the  boundary near the
local maximum. The effect of changing Agq is greater for the n = 2 mode over
the whole gp,;, range and the biggest change is seen near the local maximum
of 3*, where 8* can improve from 4.5% to 5.9% when Ag increases from 0
to 0.35, at gpjp =~ 1.15. The improvement in the ballooning § limit with
Ag, is attributed to the increase of m, due to the prescibed current
profile, which acts to broaden the second stable negative shear region and
to increase the positive shear outside. However this effect is small because
the main contribution is from an improved potential well in the low positive
shear region which remains unchanged when Ag varies at a fixed g

The results for g, = 3.2, when the total current is increased to I,/aBg ~
1.43, are shown in Fig. 9. Here, B; = B; = 0, and By = —2B, is used to
change gy ip. It can be seen from Fig. 10 that Ag and m (along the
Twall = 1.3, n = 1 boundary of Fig. 9), is comparable to those in Fig. 3(a) of
¢, = 4.5, where the amount of shear reversal is large. Qualitatively similar

results to Figs. 2 and 5, are found in Fig. 9. The §* limit reaches a maximum
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of By ~ 3.6%, f* ~ 5.6% at q;, ~ 1.34, which is an increase of more
than 30% from the low I,/aB, case (Fig. 2), for the n = 1 mode without
a wall. However, this increase is mainly due to the increased I,/aBy; i.e.,
By increases from 2.4 to 2.6. This differs from the broad pressure profile
(2.5 < Py < 3) results of Ref. [16], where S8y improves considerably when
I,/aBy is lowered. With a wall the maximum £ is limited by the n = 2 mode
to B; >~ 4.7%, By ~ 3.2 and * ~ 7.2% at qpy;, =~ 1.3.

4 Conclusions

The ideal MHD 3 limits set by n = 1, 2, and ballooning modes have been
investigated for a peaked pressure profile, of the type observed in JET re-
versed shear experiments [3, 7] with an internal transport barrier. This study
is designed to improve physical insight into the stability of equilibria with
reversed shear: a subject which has received considerable interest recently.
In summary, it has been found that when ¢p;, < 1.25 with g, = 4.5,
ballooning modes become unstable before n = 1, 2 modes, limiting further
increase of the total pressure. The ballooning unstable region is located in
low shear region just outside the g,i,, surface. The § limits due ton =1, 2
modes reach local minima when the mode rational surface is just resonant
(ie., ¢pjp ~ m/n), and reach local maxima in between. The effect of the
wall on the stability of the n = 1 mode stability is more pronounced for
higher g,i, where the mode structure shows a greater contribution from
large m components which have an external character. The conducting wall
not only improves the § limit but also broadens the local maximum of g%,
thus reducing requirements for fine scale control of the current profile. The
wall stabilisation is stronger for the n = 1 mode than the n = 2 mode, which

is dominated by large internal m = 2, 3 components. When qp,;, > 1.25,
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the n = 1 mode is the most limiting unless a conducting wall is introduced
to improve the n = 1 stability, or unless Ag becomes very small where the
n = 2 mode becomes more unstable.

Increasing the amount of shear reversal is beneficial for all MHD modes
considered and is more so for the n = 2 mode, though the effect saturates
for Ag > 0.5. A tight fitting wall and large Ag has the combined effect
on improving the § limit for the n = 1 mode for qp,;,, away from integer
values. For I,/aB, ~ 1.1, the highest §; ~ 2.6%, By ~ 2.4, and 8* ~ 4.2%
is acheived at qp,;, ~ 1.3 with Ag ~ 0.7, which is stable for all MHD modes
without the conducting wall. With r.; = 1.3, it improves to 8, ~ 3.0%,
By =~ 2.8, and B* ~ 5.0%. It is reported [13] that for a strongly shaped
plasma, a moderately close wall greatly improves Gy for broad pressure pro-
files and more than cancels the possible reduction in fusion yield due to the
broadness of the pressure.

Finally, at lower g,(= 3.2), the increase in the maximum £* is mainly due
to larger I,/aBp. The net improvement in normalised §*, 3*/ (I,/aB,), is
negligible and increases only with a close conducting wall.

The peaked pressure profile has relatively poor bootstrap current align-
ment, which is disadvantageous for steady-state operation of tokamak. It
may become unstable to resistive interchange modes [18] in the reversed
shear region, therefore limiting the pressure gradient in the core, although it
is also necessary consider such modes in the long mean free path regime in
large tokamaks [22]. This has not been considered in this work and further

study is needed.
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6 Figure Captions

Figure 1. Typical pressure and ¢ profiles. Here, equilibria have g, = 4.5,
@min = 1.34 and are marginally stable to the n = 1 mode when r_ .| =

1.3 with the parametrisation used in (a) Fig. 2, (b) Fig. 7 and (c) Fig. 8.

Figure 2. The limits of 8* due to the n = 1 mode as a function of gp,;,. The
effect of a conducting wall and experimental boundary shape (shown
in inset), denoted by crosses, is also shown. Here, g, = 4.5, and B; =
By = Bg = 0 is used.

Figure 3. The amount and location of shear reversal (Aq = gy — qpj, and

v/ ¥Ymin/Yae, where W . is the value of ¥ at the g,;, surface) as a
function of qy,j;, along the n = 1 stability boundaries with 7. = 1.3

in (a) Fig. 2, (b) Fig. 7, and (c) Fig. 8.

wal

Figure 4. An eigenfunction plot of the perpendicular displacement for the
n = 1 mode as a function of normalised minor radius, where the mode
is marginally unstable without a conducting wall for (a) g,;, ~ 1.1
and (b) gy, =~ 1.4

Figure 5. The limits of #* due to n = 2, and ballooning modes as a function
of gpip- Effect of conducting wall on n = 2 stability and the limit

when 10% of surfaces are ballooning unstable are also shown.

Figure 6. An eigenfunction plot of the perpendicular displacement for the
n = 2 mode as a function of normalised minor radius, where the mode

is marginally unstable without a conducting wall for qp;, =~ 1.45.

Figure 7. The limits of §* due to n = 1, n = 2, and ballooning modes as a

function of g;,. The effect of a conducting wall on n = 1 stability is

14



also shown. Here, g, = 4.5, and B, = By = B; = 0 is used.

Figure 8. The limits of 8* due to n = 1, n = 2, and ballooning modes as a
function of g j,. The effect of a conducting wall on n = 1 stability is

also shown. Here, g, = 4.5, and By = B; = 0, By = 4B, is used.

Figure 9. The limits of §* due to n = 1, n = 2, and ballooning modes as a
function of gp,;,,. The effect of a conducting wall on n = 1 stability is

also shown. Here, g, = 3.2, and B, = By =0, B, = —2Bj is used.

Figure 10. The amount and location of shear reversal as a function of g,

along the n =1 stability boundary with ry,,;) = 1.3 in Fig. 9.
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