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Abstract

The theory of neoclassical transport in an impure, toroidal plasma is extended to allow
for steeper pressure and temperature gradients than are usually considered. It is found
that the ion particle flux can be a non-monotonic function of these gradients for plasma
parameters typical of the tokamak edge. A sudden transition between states of low and

high confinement is therefore possible.

PACS Numbers: 52.25.Fi, 52.25.Dg, 52.25.Vy, 52.55.Fa



I Introduction

In well confined tokamak plasmas, the ion particle transport can be comparable to the
neoclassical prediction. On the other hand, the pressure and temperature profiles are
often very steep, especially near the plasma edge. It is well known that the observed
gradients are frequently too large for conventional neoclassical theory [1, 2] to be valid,
and the need to extend the theory in this direction is widely recognized [3, 4, 5, 6, 7].
Gince the conventional neoclassical transport fluxes are proportional to the gradients
but cannot increase indefinitely, one might expect that some saturation of the transport
should occur when the profiles become very steep. As we shall see in the present paper,
it is also possible that the plasma transport becomes qualitatively different under such
conditions.

The essential difficulty in generalizing neoclassical transport theory to steep gradi-

ents lies in the use of the expansion parameter

=0

=T
where pg is the poloidal ion gyroradius and L, the radial scale length associated with
the density and temperature profiles. Neoclassical theory requires § < 1, and it is very
difficult to envisage constructing a tractable transport theory when this assumption
does not hold. There is then no separation of scales, so the transport fluxes become
non-local and depend not only on the local gradients but on the entire density and
temperature profiles.

While constructing transport theory in the regime § = 0(1) is fundamentally dif-
ficult, it is nonetheless possible to allow for steeper gradients than are admissible in
conventional neoclassical theory while still assuming § < 1. The point is that not only
is 6 assumed to be small in conventional theory, but it is also effectively taken to be
the smallest of all parameters of the transport problem. This has the consequence of
making all densities and temperatures flux functions, essentially because the system of

lowest-order drift kinetic equations
'Unvnfa = ; Ca.b(fa.v fb)

for all species a only has solutions that are Maxwellian and are constant on flux surfaces

[1]. The only two-dimensional feature of the plasma that survives in this ordering is the
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magnetic field inhomogeneity, which is what gives rise to the neoclassial enhancement
of the transport over the classical level.

When § is made larger, poloidal asymmetries become possible. Typically the first
plasma parameter to develop a poloidal variation is the density, n., of highly charged

impurity ions [8, 9], whose poloidal modulation is of the order [10]

?—1:5 ~ A= 617,','22, (1)

where D;; = Ly /Aii is the collisionality, with Aii the mean-free path for the bulk ions
and L the connection length. If the plasma is not deep into the collisionless regime,
A can easily be of order unity while § remains small.

Here, we study neoclassical transport in an impure plasma with steep profiles, with

the ordering
6«1, A = 0(1), (2)

enabling a non-uniform distribution of impurities over each flux surface. For simplicity,
we restrict our attention to the case of a hydrogen plasma with a single species of
highly charged (z > 1) impurity ions. The electrons (e) and H ions () are taken to
be collisionless while the impurities are assumed to be collisional, as is typical of a
tokamak plasma somewhat inside the last closed flux surface. The analysis presented
here complements earlier work by Hsu and Sigmar [10], who considered a collisional,
isothermal plasma in a torus with large aspect ratio and circular cross section.

In order to calculate the poloidal distribution of impurities, it is necessary to solve
their parallel momentum equation. This is accomplished in Sec II, where it is shown
that the impurity density generally has both up-down and in-out asymmetry. This
has surprising implications for the neoclassical transport, which is evaluated in Sec III.
When the gradients are sufficiently steep the confinement is improved, and the radial
ion particle flux can even be a non-monotonic function of the gradients for plasma
parameters typical of the tokamak edge. Sudden transistions between states with low
and high particle confinement are therefore possible. The conclusions are summarized

in the last section.



II Parallel dynamics

We begin by estimating the time scales associated with the transport along and across
the magnetic field. The frequency of collisions of one particle species (a) with another

(b) is, generally [11]
1 nyes eg InA
Tap  (4meg)*miurs v’

where vrs is the larger of the thermal velocities vy, and vrp. In a tokamak, the
mpurity density is usually large enough to make the jon-impurity and ion-ion collision

frequencies comparable, so we assume
Zeg— 1= nzzzln,- = O{L): (3)

The time scale on which a parallel equilibrium is established for the impurities is

Lu

m-~

Vo Taz
where L is the connection length, and the time scale associated with the cross-field

particle transport is
L3
P2/’

with L, the perpendicular scale length and p; = vr: /9, the impurity gyroradius. The

TL ™

ratio between these time scales can be written as

"ﬂ‘_ (Zef[— 1) s
TL 23/2 ’

which is small because of the orderings (2) and (3). The parallel dynamics can thus
be analyzed on each flux surface separately. If this were not the case, the transport
problem would be effectively two-dimensional and much more difficult.

Since z > 1, the assumption (3) implies n.z X 7. As a result, the electrostatic
potential is approximately constant on flux surfaces, ® ~ ®o(v), which can be verified
a posteriori. The first-order drift kinetic equation for the H ions is

Iy 3f,o) + ey V) 21
O 0 T,

V) (-fﬂ +35. fio = Ci(fa),

where fio is a Maxwellian at rest, i = eB/m;, and the magnetic field is B =I(y)Ve+
Vi x V4, so that 1 is the poloidal flux. The gradient is taken at constant magnetic



moment x and lowest-order energy & = m;v?/2 4 e®. The first-order ion distribution

function thus becomes

Iv o fio ed
fa = —QL57 = o+ hiléo,m%,0),
where o = ) /|v| and h; vanishes in the trapped domain. The electron distribution is
of a similar form (but with m; — m, and e — —e), and the impurity density can be

related to ®; by quasineutrality,

where 2no/To = neo/Te. + nio/T;:, and "0, Tio, neo and Tyg are the densities and tem-
peratures associated with the lowest-order, Maxwellian, distribution functions fio and
feo. Since the impurities are highly charged, their perpendicular velocity is dominated
by the E x B drift, and from the continuity equation, V : (n,V;) = 0, it follows that

there must be a parallel impurity return flow equal to

__Id%  K.(y)B
I="Fap t T,

where the integration constant K ¢>(3) is proportional to the poloidal flow ‘velocity.
Since the H ions generally have a different parallel flow velocity, they exert friction

on the impurities. The ion-impurity collision operator is
u,'z(v) a
5 (1-¢ ) 5 i

1/2 A3
Viz(v)= A (P'E) 1

47, v

:'U“V:z

Ciz = ”.fzﬂy

with V| the parallel impurity flow velocity, vy; = (2T;/m;)*/? the ion thermal speed,
£ = yyfv, and 1y, = 3(2n)%/ 26[2)':'?’1}/ 2T,-3/ ?In,2%tln A = (ni/n,2%)r; the ion-impurity
collision time. The parallel friction force between H ions and impurities is

3, _ _ pil (dlnp; 3dlnT) m,-n,-( _£)
B = = [ mioCatha)bo = 20 (S50 - SO0+ B (o Ke) g,

where
Tiz
U= ;l;—ﬁ-/’l)”l/,’zhg dsv ' (6)

is a flux function since d*» o Bd&odp/v.



We now turn our attention to the parallel momentum equation for the impurities,
m,nzb - (Vz . sz) = —nzzeV“tﬁl - V”pz -b-V.m,+ Rzu.

Here b = B/B is the unit vector along the field and 7, is the impurity viscosity tensor.
If the radial electric field is of the same order as the temperature gradient, e®’ ~ T
the flow velocities of both ion species are of the order V}| ~ dvr;. The ratio between
the inertial term and the friction is then

mon.b - (Vs -VVs)
Ry 205

For simplicity, we shall assume that this parameter is small, which is realistic in edge
plasmas where the bulk ions are not far into the banana regime. This also enables us
to neglect any poloidal variation in the impurity temperature, which is detemined by

the impurity energy equation, where compressional heating,
sz . Vz ~ 6pz'UT;/L”
and the divergence of the diamagnetic heat flux,

5Pz
V-qz = V. ('2_2(29'13 X VTz) r~ 6?2’01','/2:1;”,

tend to produce poloidal asymmetries. Both these terms are, however, overwhelmed
by ion-impurity energy equilibration,

sz i Vz FAVAE qzA Epszi/L" _15_ T,‘
in in nz(Ti — Tz)/Tzi Zﬁii Ti - Tz,

so that (T; — T3)/Ti ~ §/z0; < 1. In addition, the parallel viscosity associated with

the impurities becomes smaller than the pressure gradient

b-V:m, Pszzw[/Lﬁ 6 g
V| |p2 pz/ Ly 2320 22

With these simplifications, the parallel momentum equation reduces to
nzzeV||¢I>1 + T,'V"nz = Rz", (7)

from which we can now calculate the poloidal impurity rotation K. by noting the

solubility constraint <BRZH> = 0, where

. )df
(=P g VBIfB
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is the flux surface average, with 6 the poloidal angle. Thus solving for the poloidal flow
K, appearing in (5), and inserting the resulting friction force in the parallel momentum

equation (7), we obtain

2
(T,- + 2 To) Ve

2120
_ (dlnp.- B gdlnT,-) T (n.) B? 4 Miniu _ {n.B?) 5
T T\ dy 2 dy n, (B2 )" mon, \'* T B2 :

where we have used (4) to eliminate the electric field. Finally, we write this equation in

dimensionless form by introducing n = n,/ (n), b= B/ (Bz)l/ 2 a=(n,) 22T /20T,

__eu s o\ (dlnp; §dInT,-)“1
1= IT,-<B>(¢¢ 2 dy ’ ®
and a modified poloidal angle coordinate ¥ defined by
_{B-.V6)
dd = B.vo dé,

so that the flux-surface average is equivalent to an average over ¥. The parallel mo-

mentum equation then becomes

(1+ an)% = g [n - b4 (n - (nbz>) b2] ; (9)

= IB (dlnp; _ §dlni”,-)
I="" QraB- v\ dp 2 dp )

It is straighforward to verify that g = O(A). This parameter measures the steepness

of the pressure and temperature profiles, and is assumed to be small in conventional
neoclassical theory [12]. The pressure gradient is then larger than the friction force,
and it is immediately clear from (9) that the impurity density is nearly constant on

each flux surface, n ~ 1, with a small up-down asymmetry [10],
on 2 2
(1 +a)75 = 9(1-5%) +0(g?) (9<1),

which changes sign if the toroidal field is reversed. It is not affected by a reversal of
the plasma current.

In the opposite limit of very steep gradients, g > 1, the friction force exceeds the
pressure gradient and causes a substantial rearrangement of impurities within each flux

surface. If we expand n in powers of g—1,
n=mng+ns+0(g7%) (9> 1), (10)
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the lowest-order solution is in-out asymmetric,

_ o] b
T ((ERVO e SR (11)

The first-order term ny contains up-down asymmetry and is determined by
dno 2\ 52
(1 + O."ng)a_ﬂ =g [nl + 7 (nl = ('n]b >) b ] . (12)

In a torus with small inverse aspect ratio, € =7 /R < 1, the variation of the impurity
density is small, n—1 = O(e), [10]. In the opposite limit of tight aspect ratio, there are
very few circulating particles, so that u — 0 and thus 4 — 0. Then ng — b2, implying
a much larger impurity density on the inside of the flux surface than on the outside —
by an order of magnitude in the edge of a typical spherical tokamak. This should be
an experimentally verifiable prediction of the theory. It is, however, worth noting that
rapid toroidal rotation (which is ruled out by our orderings) has the opposite effect

since the centrifugal force pushes impurities to the outside of each flux surface [13].

III Radial transport

The rearrangement of impurities on each flux surface we have just calculated has sur-
prising implications for the neoclassical transport. The radial neoclassical flux of H

ions is driven by the parallel ion-impurity friction force and is equal to

(T80 . T4y = <IR§"> — (B - V6) ei’z-”g% K%) ~147(1- ('nb2>)] o (13)

€

It increases linearly with the gradients when g is small, and is then proportional to
(b=2 — 1) g as is characteristic of Pfirsch-Schliiter transport. (Note that the particle
flux scales like the Pfirsch-Schliiter value although the H ions are in the banana regime
[14].) However, when the profiles become so steep that g > 1 then Eqs (10) - (13) show
that
(I . V) gt (14)
The contributions to the flux from both ng and n; vanish, and as a result the neoclassical
particle flux decreases with increasing gradients when the latter become sufficiently
steep!
We have tacitly assumed that y does not vary too much when g increases. This

assumption can be justified in the limits of large and small aspect ratio. The function
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hi, which determines u and hence v by Eqs (6) and (8), is obtained from the solution
of <(B/'v“) Ci( f,-1)> = 0 [1, 2]. The redistribution of impurities which occurs when
g = O(1) affects this equation by making the ion-impurity collision frequency vary over
the flux surface and by changing V- If the inverse aspect ratio is small, these effects
are no larger than O(€). The function h; is therefore not much affected by the impurity
redistribution and is approximately equal to that found in the conventional theory. The
quantity u is thus proportional to the gradients, which makes 7 independent of g. In
the opposite limit of tight aspect ratio, - is small since the function h; is non-zero only
in the small circulating domain of velocity space.

As the neoclassical channel is suppressed, classical transport becomes relatively

more important. The classical particle flux is

(1. vy) = < B ¥ Bat R‘*> ,

€

where R, is the perpendicular friction force,

R,, = T (Vu_ V- — b VT.-) .
; 2m;§;

iz
Since the difference in diamagnetic velocities is V;; — V,; =~ b x Vp;/n;eB, and

V- (b x V¢) = —B2 /B, the classical flux becomes

o ____piB? (dlnp,-__3_d1nT,—) R?B}
(et v) = miQron, \ dy 2 dp )\ B2 ) )

It is immediately apparent that this flux can also be affected by the redistribution of

impurities. To understand the behavior of the total (classical + neoclassical) trans-
port, it is instructive to take the limits of large and tight aspect ratio, now considered

separately.

A Large aspect ratio

In a torus with large aspect ratio and circular cross section, b%(9) = 1—2e cos 9+0(€?),

and we can expand the impurity density similarly,
n(J) = 1+ n,cosJ + nysin d + O(€?).

The solution then found from (9) is

. — 2¢(1 + a)g
T (1 +a)? + (14 7)Y
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o 2¢(1 4+ 7)g?
T (1+a)2+ (1479

Thus, the in-out asymmetry increases monotonically with increasing gradient, while the

up-down asymmetry has a maximum at g = (1+@)/(1+7). It is now straightforward

to evaluate the fluxes (13) and (15) to obtain

o neo , = &Pz 2
(vt V) + (T3 - Vo) = 5 )

where ¢ = 7B/ RBy is the safety factor. The second term represents the neoclassical
contribution and exceeds the first, classical term by the Pfirsch-Schliiter factor 2¢% when
the gradients are weak, ¢ < 1. On the other hand, if the profiles are steep (g > 1)
the neoclassical flux is suppressed and classical transport dominates. As the latter is
not much affected by the weak [O(e€)] impurity redistribution, the flux then increases
linearly with g. The total flux is non-monotonic if ¢ > 2.

Figure 1 shows the fluxes as functions of the normalized gradients g in a torus
with safety factor ¢ = 3. The total flux (solid line) depends on the gradients in a way
characteristic of bifurcating systems [16]. If the flux is raised above the local maximum,
a sudden transisition occurs to a state with much steeper gradients. Conversely, if the
flux is decreased below the local minimum of the curve, the gradients suddenly become
much smaller. Sudden transitions between states of high and low confinement are thus

possible.

B Tight aspect ratio

At tight aspect ratio the situation is slightly different. Not only is the neoclassical
transport suppressed when the gradients are large, but the classical transport is also
affected. Since n = b? when g > 1 most ion-impurity collisions then occur on the inside
of each flux surface, and the step size in the ion-impurity collisional walk is reduced,
resulting in weaker classical transport, cf Ref [13].

To illustrate the transport when g varies from small to large values, we have solved
Eq (9) numerically, with a periodic boundary condition, for the equilibrium shown in
Fig 2. This has been obtained by magnetic reconstruction of experimental data from a
discharge (no 35096) in the Small Tight Aspect Ratio Tokamak (START) at Culham
[15]. The transport fluxes calculated from (13) and (15) are shown in Fig 3. The
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neoclassical flux (dotted line) is completely suppressed when g > 1, and the classical
diffusion coefficient is reduced by a factor

(ret-vp)> g (R2B2)

(rst . vy)o<V ;g ~ (R2B}/B?) (B?)

At tight aspect ratio it is also possible for the classical diffusion coefficient to exceed

~ (.27.

the neoclassical one when ¢ < 1. An example is shown in Fig 4, where we have calcu-
lated the transport in a different START discharge (no 36544), in which the toroidal
magnetic field was much lower than in the previous example. The classical transport
is about twice as large as the neoclassical transport when ¢ < 1, and dominates com-
pletely when g > 1. The total flux is a monotonic function of the gradients, and no
bifurcation can occur. However, the plasma confinement is still significantly enhanced

when g > 1, with a particle diffusivity less than one third of that for gkl

C General remarks

It should be pointed out that the neoclassical heat fluz is generally not expected to
be a non-monotonic function of the gradients. Not only ion-impurity collisions, but
also jon-ion collisions, drive the heat flux. The redistribution of impurities reduces the
lon-impurity friction but does not affect the jon-ion collisions.

As we have seen, the transition to improved particle confinement need not be sud-
den but can also be gradual, depending on whether the flux decreases for large g or
merely increases at a slower rate. This is sensitive to the magnitude of the classical
or anomalous transport and also to processes we have neglected. In order to estimate
the maximum gradient allowed in the present ordering, we note that, when inertia and
compressional heating are included, the solution (10) is expected to acquire additional
terms of order O(6/zP;;), which compete with the O(g~?%) term when the gradients

become so steep that

1 "
i/ = A vf,-laz.
2V

)

v

This suggests that our banana-regime analysis is limited to g < 6 for realistic impurities.
However, as follows from the work by Hsu and Sigmar [10], the phenomenology can
be similar in the Pfirsch-Schliiter regime (% > 1). Indeed, it is apparent from Sec II
above that although the ion-impurity friction force may depend on the collisionality,

11



most other aspects of the impurity dynamics do not. Crucially, in the equation that
controls the behavior of the impurities (9), only the definitions of g and v are sensitive

to the collisionality, not the form of the equation itself.

IV Summary

In conclusion, in an impure toroidal plasma with steep gradients, heavy impurity ions
undergo a spontaneous rearrangement on each flux surface, reducing their parallel fric-
tion with the bulk ions. This is the driving force for the neoclassical flux, which therefore
decreases if the gradients become sufficiently steep. This gives rise to the possibility of
a transport bifurcation. Indeed, the relations between particle flux and the gradients
shown in Figs 1 and 3 are remarkably similar to that postulated by Hinton and Staebler
[16] for the anomalous heat flux.

The neoclassical heat flux is less influenced than the particle flux by the impurity
redistribution, since heat is transported by both ion-ion collisions and ion-impurity
collisions but only the latter are affected by the redistribution. However, if Zeg —1 =
O(1) so that the contributions from these different classes of collisions are comparable,
the heat flux is significantly reduced as the contribution from ion-impurity collisions
becomes less important.

The circumstance that neoclassical transport is suppressed when the gradients are
steep may be of importance for interpreting tokamak experiments where the transport
appears to be lower than the conventional neoclassical prediction [17]. More specu-
latively, the presence of a neoclassical transport bifurcation could be related to the
H-mode (which involves a reduced anomalous heat flux). For instance, the latter could
be triggered by a suddenly improved neoclassical particle confinement, leading to a
steepened pressure gradient, increased radial electric field, and shear stabilization of

the plasma turbulence.
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Fig 1. The neoclassical ion particle flux (dotted curve), the classical flux (dashed line),

and the total flux (solid curve) vs gradient in a toroidal plasma with circular cross

section, large aspect ratio, and safety factor ¢ = 3.
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Fig 2 A magnetically reconstructed flux surface close to the edge of START dischage
no 35096.
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Fig 3. Same as Fig 1, but for START discharge no 35096, assuming 7 = 0, & < 1.
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Fig 4. Same as Fig 3, but for START discharge no 36544
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