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Abstract

We have investigated a non-linear model of the rotational stabilisation of the Resis-
tive Wall Mode (RWM). Central to the model is a cylindrical plasma that is idea] MHD
unstable in the absence of a wall, and possesses an internal resonance (J. M. Finn, Phys.
Plasmas 2, 198 (1995)). This system is then a qualitative model for the actual toroidal
external kink mode that is relevant in Advanced Tokamak scenarios. It has been shown
in the past that the RWM can possess stability windows for modest rotation frequencies.
However, the equilibrium parameter regime in which stabilisation can take place is small.
We present a non-linear formulation of the problem, with plasma rotation determined
self-consistently by an equation of torque balance. It is found that, within the same
small parameter regime, stability windows can be considerably extended at the expense
of the growth of a magneticisland. On the other hand, depending on the initial rotation,
the system can reduce the plasma rotation rate asymptotically to zero while the island

continues to grow.

PACS: 52.30.-q, 52.35.Py, 52.55.Fa



I. Introduction

It is generally accepted that Advanced Tokamak (AT) equilibria require wall stabil-
isation in order to benefit from the optimised central shear and produce attractive 3
limits.!? In other words, they must achieve the 8 limits that are predicted when the
surrounding wall is perfectly conducting.> However, if the actual finite resistivity of the
wall is taken into account, the Resistive Wall Mode (RWM) can be destabilised.* Ad-
vanced Tokamaks will be particularly vulnerable to this mode, as the flat current density
profile in the core indicates that the external kink version of the RWM can be present.

Much work on the RWM in the past has been in the context of the Reversed Field
Pinch (RFP). This was at the stage of RFP research when pulse lengths were becoming
comparable to wall (vertical field) penetration times. In HBTX1C® it was reported that
wall locked perturbations were observed to grow (on the wall time) to large amplitude
(6b/By ~ 10%) and lead to discharge termination due to the large non-Spitzer loop
voltage caused by field penetration of the wall. The observed mode numbers, growth
rate, and wall locking of these perturbations all appeared to agree with linear theoretical
predictions of the RWM, making a good case for their positive identification in this
experiment. Observation of the RWM was also reported in Ref. 6. In contrast, Ref. 7
reported experiments on the OHTE ‘thin shell’ RFP which displayed pulse lengths greatly
exceeding the wall time. This was later interpreted as being due to the formation, in
OHTE, of a so-called ‘slinky’ mode (a phase coherence phenomenon) that allowed the
RWM to be somehow rearranged and removed. This intriguing situation has not been
resolved, due in part to the discontinuation of the two experiments involved.

Early in the theoretical analysis of the RWM it was realised that bulk plasma rotation
mi ght have an important effect. If the plasma was modelled as a rotating current-carrying
helical wire, for instance, then we would expect suppression of the magnetic flux entering
the wall by the classical skin effect. On the other hand, a real plasma has more degrees of
freedom than a wire and can ‘choose’ to lock its perturbation to the wall and vitiate such
skin effect. In Ref. 4 it was shown that an ideal RWM in cylindrical geometry did indeed
lock to the wall for sub-Alfvénic plasma rotation. Further, when the rotation approached

Alfvénic, the effect of inertia was initially to increase the RWM growth rate (in fact a



stable RWM could be destabilised by this effect - see Ref. 8 for a recent investigation).
When the rotation was trans-Alfvénic the growth rate did decrease, but there was always
a residual instability. In contrast, for a RWM that was resistive in origin, and thereby
created a magnetic island at an internal plasma resonance (e.g. a tearing mode®), the
interaction between the island and the wall now permitted stabilisation of the mode,

typically when
Q ~ O(/tw)+0(1/m), (1)

where (2 is the plasma rotation frequency, 7, is the tearing layer characteristic time,?
and 7w is the wall time. These rotation frequencies are, of course, generally much less
than the Alfvén frequency.

In the case of AT equilibria, the important RWM is the one that derives from the
pressure driven toroidal ideal external kink mode. Moreover, although the mode is ‘ideal’
in nature, unlike a cylindrical kink the toroidicity of the mode means that in general
there will be a sideband component of the instability that will possess a resonance in the
plasma. There is, then, the immediate possibility that a stabilisation mechanism similar
to that leading to eqn.(1) exists in the AT.

This possibility was first investigated in a series of papers due to Finn.'® At the
centre of his analysis was the construction of a model cylindrical equilibrium that was
ideally MHD unstable yet possessed a resonance at some radius. It should be noted that
this is not a common occurrence in cylindrical plasmas and requires atypical equilibrium
profiles. Nevertheless, the model is useful in producing qualitative results for the full
toroidal case. In this report we show how to produce a standard representation of the
I'inn model, and use it as a basis for the subsequent analysis. The Finn papers, which
do indeed display stability windows (in rotation, wall placement etc.) for the RWM,
deal with linearised MHD and the plasma rotation is an undetermined parameter of the
model. We extend this to the non-linear case by considering the torque balance equation,
which is used to self-consistently determine the plasma rotation rate.

The motivation for this theoretical research comes from experimental results obtained
on the DIII-D experiment.! It is possible to calculate the 8 limit that the RWM would
impose on the plasma by using an ideal MHD stability code that uses the boundary
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condition that there is no wall at all. Using the normalised Sy = 8(%)a(m)B(T)/I(M A)
(a, B, I the minor radius, toroidal field and current), the RWM Gy limit is shown as the
dotted line in the bottom section of Fig. 1. The middle section shows the magnetic
perturbation (m/n = 3/1) signal and comparing the two sections we see that the RWM

starts to develop when (y exceeds that limit.
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Figure 1: Experimental results from DIII-D

However, the rotation at the ¢ = 3 surface (top section of Fig. 1) appears to suppress
the mode for a while. Note in passing that the observed rotation rate is a few kHz, and
this is orders of magnitude less than the Alfvén frequency (~ a few MHz). Then we see
that even though the Neutral Beam injection power is held constant the rotation starts

to decrease, the mode grows in a corresponding manner, and eventually enters a rapidly
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growing phase on the wall time scale (~ 5 ms). Thereafter the high Sy phase terminates
owing to confinement deterioration.

The suggestion that plasma rotation, if it can be maintained, leads to RWM stabilisa-
tion motivated various theoretical models attempting to explain this. A review of these
models is to be found in Ref. 12. In summary, many of these models invoke a dissipation
mechanism of some sort and it would appear that, with very few exceptions, either the
rotation rate or dissipation required for RWM stabilisation is too large to account for
the actual DIII-D results. So, the Finn model merits further investigation, in principle
providing stability at realistic slow rotation rates. In Sec. II we present a standard form
of the model, and Sec. III studies the different types of linear stability window within
this generic representation. Then in Sec. IV, we discuss the torque balance equation,
a non-linear or quasi-linear effect, that self-consistently determines the fluid rotation
rate. These two aspects of the problem, torque balance and stability windows, are then
brought together in this section. We discuss the implications of this work for rotational

stabilisation of the RWM in AT scenarios in a final Conclusions and Discussion section.

II. A standard form of the Finn model

As remarked above, Ref. 10 modelled a toroidal instability in a cylinder by construct-
ing equilibria that were ideal MHD unstable, and yet a resonance existed in the plasma.
This required non-standard current (and hence safety factor, ¢) profiles. We point out
that a somewhat generic formulation of this is possible. The technique is examined in
detail in Ref. 12, so it is simply outlined here. The equation that determines the MHD
eigenfunction in a cylindrical plasma is a second order ordinary differential equation. It
follows that different radial stations in the plasma are ‘connected’ by this equation in a
simple way. The radial stations of interest in our problem are the resonance (where a
resistive layer response is formed®) and the wall itself, where a simple ‘thin shell’ response
is appropriate.! Collating all this information and assuming exp (pt) time dependence,
we can find the standard dispersion relation

1 — éprw
(p7z) = (2)



The left hand side is the plasma response at the resonance, with 7, the characteristic
resistive layer time.® This is related to the wall response, prw, as shown on the right
hand side. To ensure we have an unstable RWM we require ideal instability if there were
no wall (7w — 0), implying € > 0. Indeed, the appropriate response at the layer in this
case is the ideal inertial one, —1/(pr4), with 74 the Alfvén time. So, € is a direct measure
of the ideal growth rate in the absence of a wall. If the wall were perfectly conducting
(tw — o0) we see that —& gives the stability of the tearing mode in this case (positive
§ corresponding to a stable tearing mode). The Finn dispersion relation is indeed of the
form given in eqn.(2); in his case € and § are directly computable from the equilibrium

parameters. So, the results we obtain using eqn.(2) will apply to Finn’s equilibria.

ITII. Stability structures within the standard model

The relatively simple dispersion relation, eqn.(2), displays considerable structure
which we now investigate. For a non-rotating plasma, eqn.(2) with € and é both positive
always yields an unstable root (R(p) > 0 with R denoting real part), and this is the
RWM. The natural question to ask is how does the mode behave when the plasma is
rotating (to simulate this, we can simply Doppler-shift p — p — {2 in the left hand side
of eqn.(2), where € is the bulk plasma rotation frequency). For the moment we treat
as a free parameter, and return to its self-consistent determination in the next section
(Sec. IV). As in Ref. 12 we can note that if the RWM were ever to stabilise (the obvious
question of interest) then there would have to be a point, as {) increases, at which p was
purely imaginary, p = tw with w real. Inserting this into eqn.(2) it was shown that this

implied a necessary condition for the existence of such marginal points was
0< e <0.04. (3)

This is, essentially, the statement that a necessary condition for stabilising the RWM
is that the ideal mode in the absence of a wall (growth rate ~ €) should not be too
unstable, while similarly the tearing mode which exists when the wall is perfect (growth
rate determined by §) be only weakly stable. The smallness of this region of € — § space

implies stringent conditions on specific equilibria.



In fact, if eqn.(3) is obeyed there are exactly two marginal points. This information,
by itself, does not guarantee the existence of a stable window in Q. In fact, extensive
numerical investigation of eqn.(2) in the parameter regime of eqn.(3) revealed that four
different topologies exist as roots are tracked with increasing Q. To recap, when = 0
there are three physically acceptable roots of eqn.(2). The RWM is a non-rotating mode
associated with the wall; the two other roots are stable ‘backward’ (b) and ‘“forward’ (f)
rotating stable tearing modes associated with the resistive layer. When ( is increased,

the forward mode (rotating in the same sense as the RWM) always remains stable and

never achieves marginality.

Im(p) exp(pt)

RWM
Re(p)

Figure 2: A stability window for the RWM

Figure 2 shows schematically the locus of the three roots as Q increases for the case
€ = 0.05,6 = 0.5. Here we see that the f and b roots remain stable. The RWM is the
root that possesses the two marginal points, and a stability window in § is encountered.
If we now hold € at 0.05 and reduce § to 0.25, then the topology of the loci of Fig. 2
changes. This topology change occurs via a ‘reconnection’ of the RWM and b modes -
and this in turn requires the existence of a double root, see below for a discussion. The
two marginal points are now shared between the RWM and b mode and Fig. 3 shows
the schematic tracks of the three roots for this case.

Although the topology changes, a stability window still exists in this case as the

T
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Figure 3: A stability window shared between the RWM and the ‘backward’ mode

rotation frequency ©; at which the RWM stabilises is less than the rotation frequency
Q, at which the b mode destabilises. However, as we continue to reduce 4, this window
shrinks until eventually Q; = Q, and the window disappears (this is discussed further
below). Further reduction of § leaves the topology of Fig. 3 unchanged, but there is no

stability window now, as ; > ,.

A. Topology changes at double roots

As mentioned above, the topolo;gy changes in the loci of the three modes occur at a
double root. At this point an ‘X’-point forms in € — § space and a ‘reconnection’ occurs
between the loci tracks. We can estimate when this happens, as follows.

" Starting from eqn.(2), note that at a double root py, the dispersion relation must
adopt a form where the double root appears quadratically as (p — ps)?. Consequently,
the differential quotient of eqn.(2) with respect to p must also be zero. Performing this
operation, and using eqn.(2) again in the resultant expression we find that at a double

root

dp—i)(es—1) = 5(1—6p)(p—c). (4)



Clearly, the dispersion relation itself can also be written as
N(p—i(p—e! = (1-6p) (5)

Here p and () have been normalised to 7w, and A = 7,/rw. Now, introducing p = €p,

eqns.(4) and (5) together give
(I-ep)(p—10°¢ = -T , T=(4/(51)°" (6)

As we are only interested in the regime 0 < e¢§ < 0.04, a good approximation (to be
checked a posteriori) should be to drop the first factor on the left hand side of eqn.(6)

to give an immediate solution for p:
p = e+TYexpib, , (7)

(where 0, = 7(1 + 2n)/9,n = 1,2...). In a similar vein, the €§ term can be dropped

from the left hand side of eqn.(4) to find
P o= —(9p— 4iQ — 5e) . ()
56

A technicality arises concerning the choice of n. This can be traced to the analysis
that leads to the particular layer response on the left hand side of eqn.(2). In fact, we
must use the imaginary parts of eqns.(7) and (8) to find 2 at a double root, and then
find the value of n which ensures that R((p — iQ)/A") and R((p — i2)/A")?) are both
positive!® (A’ is the familiar discontinuity in the logarithmic derivative of the perturbed
flux®). These conditions ensure that perturbed layer variables asymptote correctly, and
so represent physically acceptable solutions. Applying these conditions leads uniquely
to n =2, and so we conclude that topology changes in the ¢ — § plane occur at

0.92 0.35
T )\10/9 A5/9 °

(9)

€ =

B. The disappearance of the stability window

We can also find a good approximation for the line in € — § space where the stability
window disappears. To do this, recall that at marginality, with p = iw,w real, eqn.(2)
gives

b+ (1—eb)(V2—1Dw+e = 0, (10)
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and

A e+ w? (11)

1[14w26%]°
= w—— [—-—+ = l ;
(the physically admissible 1/5 root of -1 implied in eqn.(2) is determined by the same
arguments applied in the above subsection). Now, solving the quadratic eqn.(10) for two
values of w and inserting into eqn.(11) we generate two values of 2, ; and Q_. At the

closing of the stability window Q4 = Q_, and (employing the approximation €§ << 1))

we find that the stability window closes along the curve

6 = 0.89\e® . (12)

C. Topology of the ¢ — 6 plane

We are now in a position to collate all this information and summarise the situation
with a graph of the ¢ — § plane, with the relevant regions marked out. This is given in
Fig. 4.

(In the descriptions that follow, disregard for the time being the two dashed lines
of Fig. 4 labelled A = 1/3 and 3 as we will discuss the case A = 1). Regions D and
C possess a stability window in {2, and undergo a topology change as illustrated across
the dotted line (given, with A = 1, by eqn.(9)). Regions B and A do not possess a
stability window, but similarly have a topology change as illustrated across the same
dotted line. Regions B and C are delimited by the disappearance of the stable window
(the dashed line labelled A = 1 and given by eqn.(12)). We also show the effect of varying
the parameter A = 7 /Tw by giving the lines of vanishing stability window for the cases
A =1/3 and 3 as shown. Note that as A — 0 the region possessing a stability window
fills the entire 0 < € < 0.04 space. This is not surprising, as in this limit, the wall is

becoming an increasingly better conductor (we estimate A ~ 0.2 in JET).

IV. Torque balance and stability windows

In the preceding section, the plasma bulk velocity was not determined, and remained

a free parameter. In this section we first introduce a simple model of torque balance
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Figure 4: € — 6 space and topology changes

that determines the plasma flow. This is necessarily a non-linear process as the net
electromagnetic torque is quadratic in the perturbation amplitude, and is a function of
the mode frequency w. It is well known that the electromagnetic torque on an ideal
MHD fluid is zero, and that torques are only generated across non-ideal MHD layers.

Further, the general form for the net electromagnetic torque 7., on a resistive layer

obeys

Ton ~ (85,7Z(A), (19
where 6b, is the perturbed radial magnetic induction, and Z denotes imaginary part.
Equation (13) is not unique to plasmas, but is rather a general formula that applies to

solid conductors as well.!®> Because of conservation of total torque on the system, we can

choose to evaluate eqn.(13) either at the tearing layer, or at the wall. As the wall A" has
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a particularly simple form (A;V = prw 50 Tem o wTw ), we choose to evaluate it there.
This torque has to be balanced against a viscous plasma torque and a given driving
torque, the latter being that which gives rotation in the absence of any perturbed fields.
So, if 2y is the plasma rotation frequency of an unperturbed plasma equilibrium and
is the actual bulk plasma rotation (in the presence of an RWM), the viscous torque will
be proportional to the difference between them Tyisc o (2 — 2). Accordingly, a simple

steady state model of torque balance is
QQ — Q = CLL) . (14)

Here, w is the mode rotation frequency, in the laboratory frame, normalised to 7. The
quantity C' encapsulates the balance between electromagnetic and viscous torques and
will be discussed further below. A variant of this model was used as a basis for successfully
interpreting the experimentally observed ‘forbidden’ bands of plasma rotation on the
COMPASS-D tokamak.'® We can now couple eqn.(14) to the magnetic island/resistive
wall system studied in Sec. III. This simply implies that eqn.(14) has to be solved in

conjunction with
1—ép

V154
Mo =" = — -

(15)

At this level, then, it is apparent that we can expect the system dynamics to be de-
termined by the existence of stability windows and the presence of forbidden bands of
plasma rotation.

We will only be interested in those parts of the e — é plane where a stability window
exists, so, as a first illustration, we take a case in region D of Fig. 4 and take € =
0.05,6 = 0.5. Recall that in this region, the RWM by itself displays a stability window,
the b and f modes remaining stable. We show the window by tracking the RWM growth
rate v and frequency w against bulk plasma rotation € in Fig. 5.

Note that the stability window (negative ) occurs in ; = 2.1 < < 4.5 = Q.
Now what must be done is to use this record of w(§2) (lower trace of Fig. 5) in eqn.(14)
to produce a graph of § against C, for a sequence of different {}g. The resulting graph
is given in Fig. 6.

We see immediately that despite the apparent simplicity of eqn.(14) (which arises

from the choice of referring the torque to the wall), there is multi-valued structure in
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Figure 5: Growth rate and frequency of the RWM against rotation

the result. This multi-valuedness is the direct reason, of course, for the forbidden bands
of rotation mentioned above. Various possibilities present themselves. (For guidance
in interpreting this graph we have entered the upper and lower limits of the stability
window as the two horizontal lines in Fig. 6.) If, for instance, the system is started off
with a rotation frequency less than 2;, then the RWM is unstable and as the mode grows
C will increase while {2 monotonically decreases, asymptoting to zero. (The island size
corresponding to the value of C' can be estimated using the analysis of Subsection. A
below.) This scenario could, in fact, be used to describe the DIII-D experimental result
shown in Fig. 1 where mode growth and a decrease of rotation leads to termination of
the discharge.

If, of course, the system is started off with 2; < @ < Q, then the system is stable

13



Figure 6: Path of the RWM in 2 — C space

and would remain in the window. In the case of initiating the system with £ somewhat
greater than (}; then the RWM is again unstable, leading to growth in C. Once more,
this will lead to a reduction in 2, but now this growth will be arrested when © drops
to the top of the stability window at Q;. In this case we see that, at the expense of
a saturated island being present in the plasma, the effective stability window has been
enlarged (the top boundary of the window has moved from 4.5 to ~ 8, as explained
below).

The last possibility in this regime is that which occurs when the initial { defines a
curve in Fig. 6 for which the top ‘knee’ is above (2, (this happens whenever the initial
() is greater than ~ 8 (not shown)). Again, the RWM is unstable, C' will increase and

decrease until the knee is encountered. At this point, it is well known that the system
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does not follow the re-entrant track of the curve (the dotted sections of Fig. 6) as this is
unstable.'®!® Instead, it is forced to migrate vertically down the graph to meet up with
the lower branch of the curve. Further, this point (for the € and § chosen) is beneath the
stability window - so that C' continues to increase and the island asymptotically locks to
the wall.

The second case we consider is one in region C of Fig. 4, by keeping ¢ = 0.05, and
changing 6 to 0.2. Now, we know from Sec.III that the topology of the window has
changed. The window is formed by the RWM stabilising at 0; = 2.54, and the backward
b mode destabilising at ; = 4.96. It follows for this case that both modes have to be
kept track of. We can produce curves of Q against C for both modes, and these are
shown in Fig. 7.

The top part of Fig. 7 gives the b mode behaviour and the bottom gives the RWM.
In both cases we have delineated the stable and unstable parts. It can now be seen that
behaviour in the ranges 0 < < £ and Q; < Q < §, is entirely analogous to that
described in the first example. Then, a similar extension of the stability window occurs
above ;. The chief difference between the two topologies arises when that initial value
of {} is encountered which has a track with a top knee above £2;. When the system now
tracks vertically downwards to a new equilibrium value, the original mode is stable and
will decay. However, at this point the RWM has become unstable and will start to grow,
once more leading to asymptotic locking.

We point out in passing that if the bottom branch of an equilibrium lies inside the
stable window, the modes will decay and C' will drop until the equilibrium encounters the
bottom knee. Here, the system migrates vertically up in Fig. 6, where again an unstable
mode is encountered. In this way there is the intriguing possibility of a ‘hysteresis loop’
being followed for all time. Other possibilities also present themselves, dependent on the
relative positions of the top and bottom knees, Q;, Q;, and whether the system is in

region C or D of Fig. 4.
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A. Validity of the tearing approximation

Although the torque balance used in this paper means that the problem is non-linear,
we have coupled this with the assumption that the resistive layer is in the linear tearing
regime (eqn.(15)). As the island grows, however, and the island size becomes comparable
with the tearing layer size, the linear response is then not appropriate and non-linear
tearing must be adopted.!” We can translate this into a condition on the parameter C
that appears in eqn.(14). The parameter C is essentially a non-dimensional number that
characterises the mode amplitude and the ratio of the viscous to the electromagnetic

torques. The viscous torque ~ porv/l, where pg, v, and v are, respectively, the plasma
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density, kinematic (shear) viscosity, and bulk velocity. [ is a characteristic plasma length
(~ the minor radius a). A characteristic viscous damping time is 7v = a?/v. The
electromagnetic torque ~ (6bw)*Qrw /po (recall that §bw is the magnetic perturbation

at the wall). We can now find that C is given by

o ~ Obw)Orwry (16)
Fopoav
and this can be manipulated into the form
dbw ? TWTy @
o~ (%) %% 1

where By is the equilibrium magnetic field strength, 74 is the characteristic Alfvén time
in that field = a,/piopo/ By, and Ry is the device major radius.

Now, the island width W; ~ a\/mw where 8by, is the magnetic perturbation
at the resistive layer. The tearing layer width I, ~ aS=%/°.° Here, S is the Lundquist
number given by the ratio of resistive decay time (~ a?/n with n the plasma resistivity)
to 74. On assuming a relationship §b;, = fébw, the ratio of island to resistive layer

width, A, is given by

UL/ i G, (&)1/401/4 (18)
I,, (TwTv)1/4 a ’

and we note that eqn.(17) can be written

4

o101 o
Now, recall that the limit of linear tearing response occurs at A ~ 1. To see what
this implies for C' we may estimate S ~ 107 in the outer plasma region, 74 ~ 10~ 7s,
mw ~ 10ms, and 7y ~ ls. This gives C ~ (6.3/f2)(a/Ro), and at larger C than this the
linear tearing response is not correct. Now, in the nomenclature of Ref. 19, if the mode
in question is a ‘plasma’ mode (approximately moving with the plasma) we have flux
suppression at the wall and f will be large. On the other hand, if the mode is a ‘wall’
mode (approximately locked to the wall) then there is flux suppression at the resistive
layer and f will be small. This latter case is thus more likely to be handled correctly by

our analysis; it is in fact the primary unstable mode in the system.
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V. Conclusions and Discussion

We have investigated a non-linear model of the rotational stabilisation of the Resistive
Wall Mode (RWM). Central to the model is a cylindrical plasma that is ideal MHD
unstable in the absence of a wall, and tearing stable were the wall perfectly conducting.
The question arises as to whether this model is applicable to the full toroidal case. In
Finn’s original paper Ref. 10(i) he argues that his cylindrical model, which incorporates
an internal mode rational surface in the plasma, will be representative of toroidal kink
instabilities which must also involve internal mode rational surfaces, because of coupling
to poloidal harmonics (ballooning effects). Further, in Ref. 12 it was shown that the
exact toroidal dispersion relation for the ideal ‘infernal’ RWM for a simplified equilibrium
is indeed of precisely the same functional form as Finn’s (see Ref. 12, eqn.(8)). However,
in this case the internal nature of the mode precludes RWM stabilisation. (The infernal
tearing mode RWM can be stabilised as its 3 limit is wall dependent.) In addition, it
was shown in Ref. 12 that the dispersion relation for the current driven toroidal kink
mode in a more conventional (monotonic q) equilibrium, though not identical to Finn’s
dispersion relation, is similar (see Ref. 12 eqn.(13)) and displays similar windows of
stability in the plasma rotation.

This system then is a qualitative model for the actual toroidal external kink mode
that is relevant in Advanced Tokamak scenarios. The rotation frequencies required for
RWM stabilisation are of order the inverse wall time (Fig. 5). In the case of DIII-D this
translates to a rotation frequency of a few kHz, and this is indeed the observed typical
rotation (see Fig. 1). Other theory on RWM stabilisation requires much higher values,
typically a few percent of the Alfvén frequency.

| However, the model shows that the parameter regime in which stabilisation can take
place is small, and would translate into stringent requirements on equilibrium profiles.
Essentially, the plasma has to be only slightly ideal unstable in the absence of a wall, and
slightly tearing stable were the wall perfect. A non-linear formulation of the problem
(with plasma rotation determined self-consistently by an equation of torque balance)
indicates that the parameter regime for stabilisation remains small (even more pessimistic

staternents can be made when the layer response takes into account the effects of averaged
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toroidal curvature!®).

Nevertheless, within this parameter regime, stability windows can be considerably
extended at the expense of the growth of a magnetic island. On the other hand, depend-
ing on the initial rotation rate, the system can alternatively reduce the plasma rotation
asymptotically to zero while the island grows. This appears to be the case in experiments
performed on DIII-D. Here, although wall stabilisation of low-n modes based on plasma
rotation works (discharges can be sustained for many wall times), once the 8 limit for the
ideal external kink is exceeded, plasma rotation decays and the RWM develops, leading
to discharge termination. What is more, in an Advanced Tokamak power plant design,
high energy neutral beams will be required for plasma penetration. In this case, the
injected mofnentum density is relatively low.?® There is a formula available?! that takes
this effect into account and gives a rotation frequency for given device parameters and
injection power. We estimate from this that a ‘typical’ power plant with ~ 25MW of
injection power would have a plasma rotation frequency ~ O(1)kHz. To be in the range
where Finn stabilisation would occur then requires a wall time constant of only ~ 5ms.
We stress, however, that as we have seen above, the equilibria that are susceptible to
this stabilisation are very tightly constrained. Recall that equilibria were required to
be ‘slightly’ ideal unstable were there no wall, and this is unlikely to be the case at the
Bn values (~ 6) found in power plant designs. From all these points of view, it would
appear that rotational stabilisation of the RWM in future Advanced Tokamaks can not
be relied upon, and some other strategy must be employed.

Feedback stabilisation of azisymmetric modes in Tokamaks is now a standard capa-
bility.?* Feedback stabilisation of a non-azisymmetric RWM in the HBTX1C RFP was
reported in Ref. 23. Here, a specific mode (m,n) = (1,2) was targeted. Growth of the
mode was detected with poloidal field coils, and then dedicated external helical coils were
activated. Mode amplitude was successfully suppressed for many wall times (however
the overall global plasma confinement properties were not improved).

A scheme for replacing the resistive wall by an active system of current loops (the
so-called ‘intelligent shell’) was proposed in Ref. 24. This was a scheme whereby the
current circuits were activated to suppress the flux passing through them and thereby

simulating a perfectly conducting wall. This scheme would of course seek to suppress all
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RWMs, not just ones with a specific helicity. The idea was further developed in Ref. 20,
where a number of autonomous feedback loops covering a fraction of the wall area was
used.

A further possibility for stabilising all RWMs was suggested in Ref. 25. Here a
rotating secondary wall was envisaged (simulating a flowing lithium blanket). The RWM
clearly cannot lock to both walls simultaneously, and a condition on the wall rotation

frequency for RWM stabilisation was found to be
QO ~ O(1/rw1) + O(1/mw2) , (20)

so the required rotation rate is determined largely by the inverse time constant of the
least conducting wall. (Essentially, this is the same effect that led to eqn. (1).) It was
found that the requirement on the position of the secondary rotating wall was that it
should be within the marginal point of the most unstable mode that exists with no wall.
Recently, this idea has been further developed in Ref. 26 where it was shown that a
network of conductors external to the plasma could be so configured as to simulate the
rotating secondary wall of Ref. 25 - the so-called ‘fake’ rotating wall. As found in Ref.
25, the rotation rate is determined by the fake wall’s inverse time constant, and the fake
wall has to be located within the marginal point of the most unstable mode without a
wall. In practice, this is a difficulty as power plant designs demand that any feedback
devices be placed outside the blanket. However, Ref. 27 demonstrated that the fake wall
could be ‘projected’ within the critical radius even though the actual hardware was well
outside it. Reference 27 also stated that the gain, bandwidth, current and total power
requirements of the feedback system could be estimated as less than a hundred, a few Hz,
a few tens of kA and a few MW respectively. These requirements are within the scope of
present technology. This scheme, then, which is more eflicient than the intelligent shell
proposal, would appear to be more power plant relevant than the approach of inducing
bulk plasma rotation.
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