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Abstract

Tokamaks exhibit several types of relaxation oscillations such as sawteeth and Edge Localised
Modes (ELMs) in H-mode. Several authors have introduced low dimensional (ie, systems
with a small number of modes or degrees of freedom) nonlinear models which can illustrate
the generic characteristics of such oscillations. In models of this kind, no attempt is made
to simulate all the myriad details of the fundamentally nonlinear phenomena in question,
but the focus is on physically ‘relevant’ degrees of freedom. These often involve the plasma.
macroscopic quantities such as pressure or density and also some measure of the plasma
turbulence which is thought to control transport. In addition, ‘coherent’ modes may be in-
volved in the dynamics of relaxation, as well as radial electric fields, sheared flows etc. In the
present work we present a minimal extension of our earlier sawtooth model which effectively
contained only two degrees of freedom. We have introduced additionally a pressure-driven
‘coherent’ mode which interacts with the turbulence in a specific manner. The price paid for
this increased realism and generality is that the number of parameters which are involved in
the dynamical specification of the model also increases. Holding all but two of them fixed
, we have studied some of the bifurcation properties of the system. These turn out to be
remarkably rich and varied and strongly suggestive of the behaviour found experimentally in
actual tokamaks. More specifically, the present system with three degrees of freedom is the
simplest known to us which can yield features reminiscent of sawteeth, compound sawteeth,
intermittency, chaos, periodic and ‘grassy’ ELMing according to the choice of the control
parameters and model interpretation. The main message of the model seems to be that
linear instability behaviour of systems, while useful in elucidating ‘drives’ for instabilities,
can be misleading in understanding the dynamics of nonlinear systems over time-scales much
longer than linear growth times and states far from stable equilibria.
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1. Introduction

The purpose of the present paper is to consider qualitatively, by means of a physically
motivated extension of a previously developed nonlinear model, some of the generic features
of two basic relaxation phenomena found in tokamaks: namely sawteeth and Edge Localised
Modes (ELMs). In earlier papers!~ we had developed a version of the model which effectively
had only two degrees of freedom and which we then applied to experimental situations. Our
aim in the present work is rather different: firstly we seek to consider more explicitly, the
possible influence of a ‘coherent mode’ on the system dynamics. Such a mode is known
to exist in the sawtooth case, but is not always seen as a ‘precursor’ to the crash. The
crash generally involves a thermal energy redistribution within the core, but not necessarily
a magnetic one (ie most modern tokamaks exhibit partial reconnection, whenever an attempt
is made to measure the g-profile within the core). It is one of the outstanding problems of
sawtooth dynamics to understand in detail how partial reconnection of the magnetic flux
can be compatible with a temperature or 3 crash.

Our second aim is to study the bifurcation properties of the model and consider such
questions as: is dynamic stabilization of relaxation phenomena possible? Can simple models
exhibit ‘subcritical’ bifurcations or ‘metastable’ behaviour? As we demonstrate by means
of numerical solutions to the present model, answers to both questions is a qualified ‘yes’.
It was an unexpected outcome of the model that some solutions exhibit ‘bursty’ chaos and
‘long time memory’ related to ‘monster sawteeth’. The model also demonstrates that it may
be possible to dynamically stabilize (as suggested by us® in the case of the m = 1 resistive
internal kink) at least some of the large-scale relaxation oscillations. The chaotic solutions
tend to become periodic under the influence of external perturbations of a simple form
and relatively small amplitude. Another key conclusion one can draw from the examples
presented is the fact that a linear ‘trigger’ is not necessarily involved in crashes. The system,
in effect, has memory and this is sufficient for periodic, ‘double periodic’, quasi periodic and
chaotic behaviour. On the other hand, linear theory does appear to provide valuable guidance
on the kinds of drive necessary for relaxation oscillations to occur and in determining regions
of parameter space where transitions are likely to occur between steady and periodic states
of the system.

Apart from the papers by us on the sawteeth cited above, several authors have proposed
semi-quantitative dynamical models of relaxation phenomena (fishbones®,L-H transitions” &,
ELMs '°) in tokamaks. Typically these low dimensional models are based on a small num-
ber of dynamical variables (ie functions of time) which satisfy coupled nonlinear equations
of motion. The latter are sometimes derived from the full set of plasma equations (fluid or
kinetic) after the introduction of certain simplifying assumptions. The idea is to capture the
essence of the qualitative properties of the real system in a model which is simple enough
to understand. The analytical and computational tools which are required for this purpose
often turn out to be impractical in the case of the real system due to the very large number
of degrees of freedom typical of such systems. Often, one uses physical arguments to derive
the equations governing these ‘reduced’ model systems. The constants (ie system parame-
ters) in the relevant equations are related to discharge and machine properties through the
medium of standard equilibrium and stability theories. The models, although grossly simpli-
fied, are supposed to provide physically understandable paradigms which enable one to reach



qualitative understanding of the rather complicated, but hopefully generic aspects of the dy-
namics involved in actual experiments. The models also provide markers for more complete
numerical simulations involving the full set of plasma fluid/kinetic equations. Although,
in principle, the latter remain the most general method of of theoretical investigation of
relaxation phenomena, they are subject to many limitations and resource constraints which
are unlikely to be overcome in the near future. It has been noted by several authors (eg.
Diamond and co-workers® and by us) active in this field that, in analogy with condensed
matter physics and ecology, reduced models such as ‘Ginzburg-Landau theory’ or ‘predator-
prey’ population dynamics are very useful in bridging the rather large gap between strictly
phenomenological descriptions of experiments and ‘microscopic’ theories based on complete
equations of motion.

In earlier investigations™ ® ® we attempted to construct a picture of sawtooth dynamics
based on a two degree-of-freedom model, taking account of both turbulence and transport.
Although the m = 1 mode was present in the background turbulence, it did not play the
central role required of it in the more conventional approach of Aydemir et al'!, for exam-
ple. In the present paper we further develop our model to include the interaction between
a ‘pressure-driven’ coherent mode and the turbulence. This more general study results in a
three degree-of-freedom system and is relevant, with suitable interpretation of the dynamical
variables and control parameters, to both sawteeth and ELMs. It is, nevertheless, consid-
erably simpler than the full-scale numerical simulation of the complete tokamak plasma
dynamics. It is generally accepted that microinstabilities can enhance or damp coherent
modes, depending upon the conditions. Equally, single, coherent modes can easily give rise
to ‘secondary microinstabilities’ which can alter the transport properties of the system dras-
tically. It is also well-known '? that three or more degrees of freedom can lead to quite new
qualitative effects such as ‘chaotic’ behaviour, as opposed to periodic solutions characteristic
of two degree-of-freedom systems. The model presented below is not intended to be a sys-
tematic approximation to the full set of equations, and as such, we do not attempt a rigorous
derivation. However, physical arguments will be advanced to motivate the formulation of
the mathematical model.

The material presented is laid out as follows: in the next Section, we take our sawtooth
model of the earlier papers and develop it further as described above to include the dynamics
of a coherent mode. This mathematical formulation is supplemented by the physical ideas on
which it is based. In Section 3, the analytical results relating to steady states and linear sta-
bility of such stationary solutions are given. Section 4 describes the rather diverse ‘zoology’
of the solutions of the system of three nonlinear differential equations as certain system pa-
rameters are varied. In particular, we discuss the bifurcation properties of the system as the
growth rate and nonlinear saturation characteristic are varied. The concept of ‘coexistence’
or metastability of the system is introduced and the regions where chaos, quasiperiodicity
and intermittency with ‘monster’ sawtoothing occurs are discussed. In Section 5, we abstract
the generic properties of the system and suggest that the dynamical equations, with suitable
reinterpretation, may be applicable to ELM physics. Experimentally, ELM characteristics
often present a remarkable formal similarity to sawteeth wave forms, and theoretically this
may be a reflection of similar dynamical mechanisms in both sets of phenomena. We also
present a brief discussion of the relation between our approach and two recent works® '°
which are based on rather different physics but share a philosophy similar to the present



work. Our conclusions are presented in Section 6.

2. Description of the model

The model involves the dynamical interaction of three functions of time. These relate
to suitable integrals over space of appropriate variables (eg. plasma pressure). Of the first
two, Z(t) is a nondimensional measure of the pressure, and W (t) is taken to be a dimen-
sionless measure of the turbulence intensity . In the present model we do not distinguish
between electrostatic and electromagnetic turbulence, although this could always be done
by introducing separate electrostatic and magnetic turbulence levels®. However, this would
increase the number of degrees of freedom by at least one. In principle, W stands for both
effects, although in the ‘sawtooth’ interpretation and possibly also the ELM interpretation,
it more nearly represents magnetic fluctuation levels. The third function of time, X (t) is
a nondimensional measure of ‘coherent mode’ activity. For example, X could represent the
m = 1 island width. We first consider the sawtooth model in the following discussion.

In the equations which follow, all variables and parameters, except the time, ¢, and 7,
will be dimensionless; as in our earlier papers® 3, r, is a typical energy confinement time
appropriate to the problem.

Guided by our earlier work®?® we take the three variables mentioned, to satisfy the
following system of nonlinear ordinary differential equations:

dZ
Ts-a—t— = 1-Tz(W)Z (1)
RSl = Tw(Z,W, X)W 2)
ne = Tx(ZW,X)X ®)
In the above equations, the nonlinear rate functions, I'z  x are assumed to take the forms,
Lz(W) = (W+k) (4)
Tw(Z,W,X) = [2(W)A(Z — 1) +2(X — X)(Tz(W)Z - 1)] (5)
2W
d(W) =
(W) W T (6)
Ix(Z,W,X) = v[(Z - Z.) — aXTz(W)] {T)

We note that these forms do not include explicit time dependence (ie the system is au-
tonomous) or show singular behaviour, and are, apart from the ¢(1¥) function, polynomials
of at most third degree. In particular, they do not contain Heaviside functions as ‘triggers’.
These properties are qualitatively similar to the structure of the evolution equations of a
tokamak plasma with constant sources and boundary conditions. From our earlier papers it
is clear that that this model assumes partial reconnection at the sawtooth crash and takes
from experiment the fact that the ¢ = 1 radius is hardly affected by the crash. Thus it
describes thermal redistribution within the ¢ < 1 zone in terms of anomalous transport trig-
gered by the crash, but the current redistribution (in principle describable by the induction
equation) is never complete (ie the g profile is only slightly affected by the sawtooth).
From the structure of these equations, it is clear that Eqs.(1-3) imply that Z, W, and
X can always be chosen to be positive, and cannot change their sign. Equation(1) has an

4



inhomogeneous ‘source term’, which is normalized to unity. This implies that « is a measure
of nonturbulent losses relative to the ‘drive’, or source. As it stands, the model involves six
nondimensional control parameters, «, A, X, Z.,y and a. We have already noted that 7 is a
characteristic time involved in the problem. It can of course be eliminated by an appropriate
re-scaling of time, setting for example, t = 7,u, where u is a dimensionless ‘time’ variable.

The physical interpretation and the provenance of these equations will now be given.
The equation for Z, ie Eq.(1) has already been derived in this form in our earlier papers® >.
In these papers, it was assumed that the change in pressure (represented by Z — 1) due to
the dynamics was small compared to its time-average value (normalized to unity), and the
turbulent loss was assumed to be linearly proportional to the normalized turbulence level,
W. In the present paper, we allow for large changes in the pressure (to describe ‘monster
sawteeth’, ‘giant ELMs’ etc) by making the turbulent loss term, —W Z, rather than — . All
other ‘nonturbulent losses’ such as neoclassical and radiative are modelled by —xZ, where
K is a suitable constant. We note that the present model reduces to the previous one in the
limit, | Z — 1|,k < 1.

Equation(1) then represents the change in the plasma stored energy due to heating (rep-
resented by the normalized source term), taking into account the turbulence-dependent losses
(the WZ term) and any residual losses (due to neoclassical and/or radiation effects) repre-
sented by the £Z term. The model is highly simplified in that the residual (ie ‘non turbulent’)
losses are crudely represented by a simple ‘relaxation time’ approximation. The parameter
K is expected to be a number lying between zero and unity in problems of interest, although
larger values may be appropriate in certain conditions. This change in form of the turbulent
losses (relative to our original model) has an important qualitative effect: even in the ab-
sence of the k term and the terms in the W equation coupling all three dynamical variables,
the present model does not have a constant of the motion, unlike our earlier one, and is
fundamentally irreversible. In this sense, the present model is more ‘generic’ of driven dissi-
pative systems than the previous model which, in a limit, led to exactly integrable, periodic
solutions.

We note that the coherent mode amplitude (eg. island width), X, does not enter this
energy ‘balance’ equation directly. The transport due to the coherent mode is indirect in
our model. Thus any losses are mediated directly by the turbulence W, which will, itself,
generally be affected by the presence or otherwise of the coherent mode.

We next turn to Eq.(3), which governs the temporal evolution of the coherent mode.
We have chosen a ‘Landau-Stuart’ type model equation of virtually definitive simplicity to
represent the physics. In the absence of turbulence (ie, when W = 0) and in the linear
limit, (X < 1), observe that I'x ~ (Z — Z.). This says in effect that if ¥ > 0, and
Z exceeds a certain ‘threshold value’, Z., the mode is driven unstable by pressure (for
example, a mechanism of this kind was proposed by Bussac et al'®). This fact suggests that
this is a generic feature of all temperature-gradient (eg. ion/electron temperature gradient
modes) or pressure driven modes (eg. interchange, neoclassical tearing or ballooning modes).
It should, in principle, be possible to extract suitable expressions for v, Z. from analytic
(linear or nonlinear) stability theory. It is clear that that the actual ‘linear’ growth rate is
Y(Z — Z.)/7s. The interpretation of the second term of 'y is now straight forward: It is
a nonlinear saturation effect, frequently encountered in tearing mode theory and elsewhere.
The constant & measures the strength of this saturation term. The smaller the value of a,



the larger the saturation amplitude of the mode. Note that if & < 0, we have a case of
nonlinear amplification of the linear instability (as might happen with major disruptions).
In such cases the whole model breaks down and recourse must be had to the full equations
of motion. We note that the form of the saturation term embodies the following intuitive
idea: it is envisaged that strong turbulence would have a damping effect on the coherent
mode, since nonlinear coupling of a linearly unstable mode to a ‘sea’ of stable modes of the
plasma would tend to reduce its growth by a form of nonlinear radiation damping. We note
that it is also possible to interpret this term as representing turbulence-driven E x B flow
shear damping. In this interpretation, the flow is assumed to be self-consistently generated
by W (via the sum of Reynolds stresses and neoclassical effects, and is hence assumed
proportional to W + k). This completes the motivation for the choice of I'x. At no point do
we introduce explicit ‘trigger’ effects involving Heaviside functions which discountinuously
affect the dynamical evolution, as done by certain authors®.

Finally we discuss Eq.(2) which governs the time evolution of W. Firstly, we note the
close resemblance of I'yy to the corresponding function in our earlier works® 3. We envisage A
to be a large number, say > 100, representing the fast growth rate of the microscopic modes
which constitute W , relative to the ‘slow’ time-scale represented by 7. However, the growth
and decay of the turbulence are related to the turbulence level itself, as explained in earlier
works. Thus, we have here a nonlinear instability of the turbulence driven by the pressure
excess above threshold (ie Z > 1) which achieves the full linear growth rate, A/7;, only for
large turbulence levels. This means that small levels of turbulence tend to reduce growth
rates to below the levels predicted by linear theories. This again is an instance of nonlinear
effects tending to ‘ameliorate’ linear instabilities, in this instance, at small turbulence levels.

In the sawtooth interpretation of the equations, A is related to the ratio of the sawtooth
period to the crash time. The first term is exactly what we had used earlier. The provenance
of the second term, proportional to —7;(X — Xc)% is more subtle. Qualitatively, this term
describes the fact that as the coherent mode rises above a certain threshold amplitude X,
it can drive ‘secondary instabilities’ which grow from it. This is analogous to the generation
of modulational or parametric instability familiar in plasma theory and elsewhere. The form
we have chosen is possibly the simplest, given the basic requirement that the model resemble
our earlier model as much as possible. A key feature of this second, coupling term is that,
for X > X, the factor multiplying it is directly proportional to the heat flux out of the
system (ie to —%). The significance of this in the ELM interpretation of the model is
that it is actually a mathematical embodiment of a ‘heat flux-driven’ instability. When the
pressure is falling, the heat-flux to the plasma edge can cause extra recycling which drives
certain linear modes unstable. Thus when the coherent mode amplitude is above threshold,
rising pressures (at constant heating rate, this means that the heat-flux to the boundary is
reducing) have a stabilising effect on the turbulence through this term, whilst falling pressure
adds to the growth of W. In effect this term describes the transformation of internal energy
(or pressure gradient) to turbulence and vice versa. Note also that unless Z ~ 1, this term is
always small compared with the first term, except at ‘crashes’ when the time rate of change
of Z can be high, or X is particularly large.

We had shown?® that the second term can be formally derived, at least in part, from the
equations of motion by making certain moment closure approximations. In fact, although
we shall not give the argument here, following a detailed extension of our earlier model, it



is possible to derive the —TS% form of the second term without making moment closure
approximations. It turns out that Lenz’ law (ie, the induction equation) is responsible for
the form taken by this term. However, neither of these derivations leads to the (X — X,)
factor which is crucial to describe the interaction with the coherent mode. The inclusion of
this factor is essentially postulated here rather than derived from the complete dynamical
equations of the plasma. It is this factor which is truly specific to the model, and makes it
similar to semi-phenomenological, ‘predator-prey’ or ‘Ginzburg-Landau’ models which are
not stricly derived from microscopic equations of motion.

3. Steady states and linear stability properties

Having described the rationale and principal structural features of our three equation
model for relaxation oscillations, we turn to a discussion of some of the simplest properties.
It is evident from the equations that there are essentially two sets of steady solutions. Thus,
W =0,Z = 1/k together with X =0 or X = Xy = a'(ZT_ffa gives one set. The second
set has, Z =1,W =1—-kand X =0or X = % All of these solutions may not be
realized, since we require, on physical grounds, that the three dynamical variables must be
nonnegative. :

Consider the solution, W = X = 0; Z = 1/k. This is a ‘neoclassical’ or ‘turbulence-free’
state in which there is no coherent mode activity. It may correspond to a sawtooth-free
discharge. Suppose that &, Z, satisfy, Z = 1/x < Z, < 1 for arbitrary, positive A, v, o, X,. It
is obvious from simple inspection that the solution is linearly stable. Numerical calculations
also support this conclusion. When k < 1, it is elementary to show that this solution must
necessarily be linearly unstable, whatever the value of X, A, vy, X, Z..

Another steady solution is obtained by setting Z = 1, W = 1 — k. This can only exist
(since we require W > 0 on physical grounds) if x < 1. There are two possibilities: either,
X =0o0r X =(1-2)/a. If Z, > 1, the second solution is impermissible, but X = 0 is
allowed. If Z, < 1, both solutions are allowed, but it is easily seen that X = 0 is linearly
unstable. Let us therefore consider this case. Assuming A > 1, a relatively simple linear
analysis of the full set of equations about this steady solution is easy to carry out. This
shows that the steady state with, Z = 1,W =1 — k,X = (1 — Z.)/a is stable provided

1-2)/a—X. < 2(11—_5) If o is sufficiently small (ie when, o < y-_ll_"—zi—) this steady solu-
e 2(I-x)

tion then becomes unstable and gives rise to periodic ‘limit cycle’ oscillations, characteristic
of a Hopf bifurcation. Note that the criterion is independent of A,~, 7,. This completes the
enumeration of the steady solutions of the system and their linear stability properties. It
is not hard to show that the dynamical variables cannot grow unboundedly (this is called
‘Lagrange stability’) in time. Furthermore, if the second, coupling term in the W equation is
removed and k = 0, the quantities I, Z satisfy a conservative system which can be explicitly
integrated in terms of elliptic functions?.

4. Numerical simulations and classification of dynamical behaviour



It turns out that very little more can be learned about the model using purely analytical
methods. For example, to discuss even the linear stability of the periodic solutions which
arise from the steady ones through a standard Hopf bifurcation, one must have analytical
forms of the solution to apply Floquet theory. Unfortunately, no such forms are known. For
this reason, we consider the solutions of the initial value problem purely numerically. By
taking a sufficiently small time-step and using a semi-implicit scheme (deliberately chosen
to be similar to those employed in large-scale numerical simulations of tokamak turbulence
to mirror their properties), we time-evolve the equations of motion with chosen sets of
parameters and specified initial conditions.

We begin by considering the analytically predicted Hopf bifurcation. It turns out that the
most interesting transitions occur in the @, v space when all other parameters are kept fixed.
For definiteness, the following values were assigned to the ‘fixed’ parameters: 7, = 25ms,
A =100.0, k = 0.1, X, = 0.1, Z, = 0.25. The transition from steady to periodic solution
takes place at @ = 1.14. We show solutions in this «,~ plane in a log-log plot (Fig.1).
Essentially it is a bifurcation diagram of the system. This shows several remarkable features
which will be described.

The most interesting (and unexpected) fact about this transition between stationary and

periodic behaviour is the following. According to linear theory, at & = a, = 52=%—, the
e 2(1—k)

steady solution bifurcates to a periodic limit cycle. Remarkably, we observe that the system
appears to be ‘metastable’ at this transition. This is most clearly seen for v = 10.

Thus, when the system is started off with initial conditions very close to the stationary
solution, whenever « exceeds the ‘critical’ value, a,, we find the solution is ‘attracted’ to
the stable stationary solution. However, for initial conditions which are ‘far’ from this state,
the system evolves into a finite amplitude, periodic solution! Thus, the system evolution is
partly determined by the initial conditions and both the stationary and the periodic solutions
‘coexist’ in some neighbourhood of the ‘critical’ value for & (the reader will recall from the
analysis of the previous section, the transition is independent of 7).

For v = 10, Fig.1 shows that as long as o does not exceed a second critical value of 2.9,
there is a ‘coexistence region’ where we obtain both the periodic solution and the station-
ary one depending on the initial conditions. Figure 2a shows the three-dimensional ‘phase
portrait’ (in Z —1,log W, X space) of the trajectory of the system, starting with initial con-
ditions: Z, = 1.05, Wy = 0.9, Xy = 0.6. In these simulations we have taken the time-step
At = 1.25 x 1075, The final epoch is 2.4 secs.

It is clearly seen that the trajectory spirals into the fixed point. Keeping all the system
parameters exactly at these values but changing the initial conditions to Z; = 5.0, Wy =
0.1, Xy = 0.6, we obtain the periodic solution, as illustrated in Fig.2b. The three-dimensional
‘limit cycle’ is pictured in this diagram whilst the function Z(t) is given in Fig.2c. It is evident
that this finite amplitude ‘sawtooth oscillation’ is very different from the stationary solution
and yet, equally stable (ie numerically computable).

To demonstrate the stability of this periodic solution to small amplitude, externally im-
posed perturbations, a finite amplitude ‘noise’ or perturbation term of the form, W'/2a cos(wt)
was added to the W equation with @ = 1.0 x 107?,w = 3/7,. The solution was found to
be unaffected by this level of externally imposed perturbation. At larger amplitudes, the
solution is affected but its qualitative feature of periodicity is preserved.

This metastability or simultaneous coexistence of a periodic and steady solution for the




same set of system parameters is of considerable conceptual importance. It demonstrates
a fundamental limitation of linearized stability analyses of complex nonlinear systems such
as tokamak plasmas or fluids. For example, although the laminar flow in a pipe may be
linearly stable to small amplitude perturbations at arbitrary Reynolds numbers, above an
experimentally well-defined ‘critical Reynolds number’ the system may exhibit turbulence.
In the present case, a linearly stable steady solution and a periodic solution (though not
a turbulent one as in fluid mechanics) are shown to coexist at the same parameter values.
Such behaviour, has not previously been reported (to the best of our knowledge) in low
dimensional dynamical models systems such as ours. This type of metastability can, under
appropriate circumstances, lead to hysteresis as the parameters o and v are varied on longer
time-scales than the typical period of the system(due possibly to the sources imposed on the
system varying in time).

The next type of bifurcation exhibited by the system is found when, for fixed 7, one lowers
a. At a value of a < o, (= 1.14 in our case), the system acquires ‘double periodicity’. This
is illustrated by Figs.3a,3b. In a rather narrow range of parameters, this periodic solution
appears to bifurcate into a ‘quasi-periodic’ one with two independent periods. An example
is shown in Figs.4a,4b. In fact, this type of solution is difficult to readily distinguish from
the ‘chaotic’ solutions, and only a few examples have been found. This suggests that the
region in the parameter space where such solutions are found is rather small.

As we noted earlier, the key feature which distinguishes autonomous systems with three
or more degrees of freedom from those with only two is the possibility of chaotic solutions.
We have indeed found chaotic solutions (as indicated in Fig.1) for a variety of parameter
values. For example, Figs.5a,5b,5¢ illustrate the solution obtained for o = 0.25,v = 0.5. The
sharp ‘corners’ in the three dimensional phase portrait (Fig.5¢c) are an artefact of insufficient
graphical resolution of the ‘crashes’, not actual numerical simulation errors. This is because
the time-step of 0.125us is easily able to resolve the crash, but the time between successive
plotted points is of the order of a millisecond.

In Figs.5d,5¢ we plot the frequency power spectrum of X in the chaotic case and a
‘periodic’ case o = 0.8,y = 0.5 for comparison. As might be expected, chaotic spectra have
a broad band decaying at high frequencies like an inverse power of the frequency in addition
to sharp ‘line spectra’ indicating coherent components. The purely periodic solutions have
mainly sharp lines at the harmonics of the fundamental sawtooth frequency. In the chaotic
solutions, it is interesting to note ‘frequency chirping’ effects in the neighbourhood of crashes.

We have studied the effects of externally imposed periodic perturbations on the chaotic so-
lutions. As an illustrative example, Figs.6a,6b show the ‘dynamic stabilization’ of the chaotic
solution presented above when an external perturbation of the form, F,,; = eW1/2 cos(wt); € =
0.1,w = 3/7, was applied. It is seen that the solution is very similar to the ‘double periodic’
case. It is remarkable that this periodic solution which bifurcates into the chaotic one can be
‘reconstructed’ in this way by applying an external perturbation, which itself is not signifi-
cant except at very small turbulence amplitudes. The latter fact can be seen by comparing
the external perturbation with AW, for example.

Keeping v = 0.5, if we lower « to 0.2, we find ‘bursty chaos’. This type of highly irregular
intermittent solution is illustrated in Figs.7a,b. The rather large coherent mode excursions
are notable in these states.

As < increases, we observe solutions which have qualitative features of the so-called



‘monster’ sawteeth. Thus, for @ = 0.2,y = 1, we find solutions plotted in Figs.8a,b,c A
curious feature of this type of solution is the fact that the ‘pressure’, Z, attempts to rise
to the steady state, Z = 1/k during a period when there is very little turbulence, but
rather large and rising values of X exist. As the linear theory shows, this state is unstable,
and the evolution is always terminated by a crash when a very substantial degradation of
plasma pressure takes place. The coherent mode is virtually totally suppressed for a while.
The sawtooth exhibits both precursors and, interestingly, ‘postcursors’. The crashes appear
to follow a random pattern. The power spectrum of X shows the ‘1/f’ type behaviour,
illustrative of the concentration of power at the lowest frequencies.

It is interesting to note that these ‘monsters’ can also be ‘tamed’ by dynamic stabilization.
As before, when we include a periodic perturbation: Fe;y = W2 cos(wt),e = 5.0,w =
3/7s, we find that the solution becomes nearly periodic with relatively short period and
low amplitudes. The results are shown in Figs.9a,b,c. The power spectrum shows that the
power at 3/7, = 120Hz. is relatively small compared with the oscillation amplitudes of the
sawtooth.

This completes the description of the ‘zoology’ of this system. It should be emphasised
that we have by no means explored all parts of the parameter space. We have, however,
considered the case when ¢ = 1, corresponding to purely linear growth of turbulence in the
W equation. A very similar bifurcation diagram is obtained with the difference that the
‘metastability’ of the periodic solution appears to be absent.

5. Alternative interpretation of the model: ELM dynamics

Edge Localized Modes (ELMs) are of great importance in H-mode tokamak physics since
they provide the means to exhaust impurities and helium ash, and help to keep the edge
plasma density stable. A recent survey with references can be found in the review by
Connor'®. It is believed that large ELMs (‘giant’ or Type I) may place unacceptable thermal
loads on divertors and other edge components. On the other hand, continuous small ELMs
may be beneficial to a power plant. Much effort has gone into understanding the root causes
of L-H transitions, ELMs and phenomena associated with them. It is probable that ideal
MHD pressure -driven (‘ballooning’) and/or current-driven (‘peeling’) modes are responsible
for ELMs. It is also likely that radial electric fields and flow shear associated with them play
a role in stabilizing ELMs.

In the present work, we take a qualitative approach and consider the ELM phenomenon
as a type of relaxation oscillation due to the coupling of pressure (or its radial gradient;
the model does not differentiate between them), electromagnetic turbulence, and a large
scale, MHD ‘coherent’ mode. In H mode, when the turbulence is low, the pressure profile
at the edge steepens, and drives both the coherent and the turbulent fluctuations of the
magnetic field. The latter increases the transport and serves to bring down the gradient,
but due to nonlinearity, there is overshoot and one obtains either a limit cycle or chaotic
oscillations. The model deliberately avoids the explicit introduction of radial electric field
effects and electrostatic fluctuations, not because they are unimportant, but simply to keep
the conceptual structure simple and the number of free parameters as minimal as possible. It
shows that given the form of anomalous transport and any pressure or temperature gradient-
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driven instability mechanism, a relatively simple set of equations can qualitatively reproduce
a variety of properties of ELMs. Of particular interest are the ‘chaotic’ solutions and the
fact that they may be stabilizable by suitable external perturbations. The model makes
the qualitative prediction that such dynamic perturbations could, in suitable conditions,
ameliorate the effects due to large ELMs and may be employable using various heating
and/or momentum sources.

We now relate our work to two previously published papers'®® which are closest in
spirit to that of our own. Taking them in turn, we compare and contrast their salient
features and results with those of the present investigation. In order to study the dynamics
of the L to H transition, Sugama and Horton'® set up a model consisting of three coupled
ordinary differential equations. The model is obtained for the resistive pressure-gradient
driven turbulence and describes the evolution of three characteristic variables, namely, the
potential energy contained in the pressure gradient, the turbulent kinetic energy and the
shear flow energy. The energy input to the plasma edge is included as a control parameter.
Thus the provenance of their model is different from ours but the spirit of their approach is
similar to ours. They find their equations to have steady solutions (identified as ‘L’ and ‘H’
confinement modes), and by varying the energy input, transitions between these states are
obtained. The shear flow, which we do not include, is responsible for the transition being
similar to a first or second order phase transition. With sufficient energy, the H mode becomes
unstable and bifurcates to a limit-cycle which shows periodic oscillations characteristic of
ELMs. Of the differences between their work and ours, there is one which seems to merit
comment. Their study makes no use of the inductive electric field. In our case, such a field
is eliminated by the use of Faraday’s equation, thus leading to magnetic turbulence as one of
our variables. It is instructive to note that recently'® it has been found experimentally that
even in regions where flow shear stabilization reduces ion energy and particle transport to
near-neoclassical values, the electron thermal diffusivity can be high. This is suggestive that
magnetic turbulence-dependent losses are probably important in determining the course of
electron pressure evolution and micro-instabilities driven by it.

A general point worthy of some discussion is the fact that in the limit when the ‘neoclassi-
cal losses’, the coupling between the coherent mode and the turbulence, and the losses due to
the pressure fluctuations from the time-averaged pressure are all neglected (ie weakly driven,
but still a nonlinear, collisionless system), we obtain an exact conservation law?® which leads
to periodic solutions expressible in terms of elliptic functions, with the amplitude arbitrary.
It is a function of the constant of the motion, which itself is not determined within the ap-
proximated model, but must be specified as an initial condition. This is due to a symmetry
property of the dynamical equations in the above mentioned limit which actually corresponds
to the fact that the Z and W equations are then transformable into a Hamiltonian system in
a two-dimensional phase space. This ‘hidden symmetry’ is spontaneously broken by both the
neglected nonlinear terms (ie those in the energy equation and the coupling terms relating
to the coherent mode), and, more obviously, by the x terms. We speculate that the fact
that one observes, in certain conditions, rather regular, periodic relaxation phenomena in
a highly turbulent, driven-dissipative system such as a tokamak may be a reflection of this
spontaneously broken hidden symmetry of the equations of plasma physics. It is of interest
to note in this context that in the paper of Sugama and Horton'® the authors find that their
conservation law leads only to growth.
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Turning to the work of Diamond et al, they too have set up a self-consistent model of
the L-H transition. Their model consists of three coupled equations for the characteristic
variables, density fluctuation level, average poloidal shear flow and the pressure gradient.
The equations again exhibit stationary solutions corresponding to the L and H modes. The
transition occurs when the turbulence drive is large enough to overcome the damping of the
E x B flow; this leads to a power threshold for the transition. Unlike our model, perhaps sur-
prisingly for a three degree-of-freedom system, neither of the above two models reveal chaotic
(intermittent or otherwise) solutions, ‘compound’ sawteeth/ELMs and solutions which seem
to resemble ‘monsters’. Current thinking on the E x B stabilization'® tends to favour tur-
bulently generated localized ‘zonal flows’ which serve to control the very turbulence that
generates them. In simple low dimensional models, this idea would translate itself into the
inclusion of terms like ¢(W) which effectively turn a linear drive into a nonlinear instability
with weaker growth. As has been mentioned earlier, the nonlinear damping term on the
coherent mode can indeed be thought of as an embodiment of this idea. Indeed, it is clear
that some such mechanism is needed to explain why a linear mode with a relatively fast
growth rate like the m = n = 1 resistive internal kink is not unstable during the ramp.

6. Conclusions

In this paper, our purpose has been to extend a previously developed nonlinear dynamical
model of sawteeth in tokamaks to include the possible effects of a single coherent mode. The
physical principles which lie at the foundations of the model are rather general and would be
expected to apply to a variety of relaxation oscillations found experimentally in a tokamak.
Taking a particular spatial region, the pressure (Z) (or a measure of presure or temperature
gradient) is evolved by balancing the applied source (assumed fixed) against both turbulent
and non-turbulent losses. The turbulence intensity (W, analogous to Kolmogorov’s & in
his & — € model) is driven in the first instance by the pressure and interacts in a model-
dependent manner with the heat-flux as well as the coherent mode amplitude (X). The
latter is also driven by pressure but damped by both turbulent and neoclassical effects in
a nonlinear sense (as in Landau-Stuart theory). We then show that these ingredients are
sufficient to allow a rich variety of dynamical behaviour, including steady (ie sawtooth or
ELM-free states), periodic, quasi-periodic, compound periodic, chaotic, ‘bursty’ chaotic and
‘monster-like’ solutions.

We have concentrated on the qualitative dynamical aspects and refrained from detailed
model comparisons with experiment, since inevitably this leads to choosing parameters
semi-empirically® '°. The model shows that the most basic tokamak concepts (pressure
or temperature-gradient drive, anomalous losses, nonlinear saturation by microinstability
generation) are sufficient to qualitatively reproduce the dynamical characteristics of a range
of plasma phenomena. This suggests that it should be possible to abstract from more
detailed dynamical descriptions of tokamak plasmas the essential ingredients of relaxation
oscillations, which appear to be fundamentally nonlinear in character.

Finally, we observe that there appear to be some deep-seated analogies between saw-
teeth and ELMing behaviour in tokamaks (and possibly also with fishbones and similar
fast-particle-driven oscillations involving velocity space effects). This may have to do with
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the fact that the linear drive of the equlibrium free energy (manifested either through pres-
sure, current or temperature gradients) is nonlinearly coupled to turbulent transport, and
both are in turn linked to some specific, macroscopic coherent mode (ie the m = 1 in the case
of sawteeth and edge ballooning/peeling modes for ELMs). The present model (along with
its predecessors) sets out to abstract the essential features of this fundamentally nonlinear
coupling with a view to isolating the crucial features. It is of interest that, although other
models® '* 9 differ from the present one in physical basis and specific features and achieve
different aims, there is a certain invariant structure to all of them which points towards a
model-independent description of relaxation phenomena mediated by turbulence in tokamak
plasmas. In view of the fact that even such grossly oversimplified dynamical systems can
exhibit a remarkably rich array of states and bifurcations, the complexity and range of re-
laxation oscillations and bifurcation behaviour observed in tokamak experiments should not

be too surprising.
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Fig. 2a: Phase Portrait of System for
Zy = 1.05, Wy = 0.9, Xy = 0.6.
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Zy=5.0,Wy=0.1, Xy = 0.6.
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Fig. 4a: X vs. t for o = 0.5,y = 1.0 showing ‘quasi periodicity’
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0.5 showing ‘chaotic’ sawteeth
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Fig. 5b: X vs. t for a = 0.25,



Fig. 5c: Three dimensional phase portrait ( @ = 0.25,y = 0.5 )

showing ‘strange attractor’
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Fig. 5d: Frequency power spectrum of X in the chaotic case (
a =0.25,7 =0.5) . Note broad ‘incoherent’ component at high
frequencies in addition to a few sharp ‘line’ spectra indicating
coherent components.
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Fig. 5e: Frequency power spectrum of X in a periodic case (

a =0.8,7=0.5) . Note the sharp coherent lines (essentially
harmonics of the fundamental sawtooth frequency) and exponential
decay of power at high frequency, in contrast to the power law

decay of the chaotic spectrum in Fig.5d.
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