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Abstract

It has been suggested (Kleva and Guzdar, Phys. Plasmas 6, 116 (1999)), that reconnecting bal-
looning modes in which electron inertia replaces resistivity in a non-ideal magnetohydrodynamic
Ohm’s law can have substantial growth rates in the low collisionality regime. Numerical cal-
culation, albeit necessarily at unrealistically large values of the collisionless skin depth, showed
that strongly growing ballooning modes exist at beta values which are below the ideal beta
limit. In order to investigate stability at more realistic values of the skin depth we exploit
an analytic approach. As in the case of resistive ballooning modes, we find that inertial bal-
looning modes are stabilised by favourable average curvature effects at moderate values of Ay,
the stability index for resistive ballooning. Instability only becomes possible close to the ideal
stability boundary (Ay — o0) or at unrealistically large values of the toroidal mode number
n (eg nZ, 10%). Another ballooning mode, the collisionless analogue of the Carreras-Diamond
mode (Carreras, Diamond, Murakami, Dunlap et al., Phys Rev Lett 50, 503 (1983)) can also
be excited at larger values of the collisionless skin depth, but this mode is not valid for realistic
parameters in a hot plasma.

PACS: 52.30.Jb, 52.35.Py, 52.55.Fa






I. Introduction

Major disruptions of tokamak plasmas are regularly observed as 8 = 2uop/B?, the ratio of
plasma pressure to magnetic field pressure, is increased above a critical value, 8,,;. Theoretical
stability analyses of ideal magnetohydrodynamic (MHD) modes predict linear instability at
values in excess of Bi4eqi. However, it appears that, in practice, the critical value for experimental
disruptions is considerably less than that predicted for ideal MHD instability. Typically, Beriz ~

ﬂideal / 2.

In a recent paper, Kleva and Guzdar® seek to explain the very fast (~ 100usec), thermal col-
lapse of high-3 disruptions occurring in large tokamaks in terms of instability of collisionless
ballooning modes below the ideal MHD g limit. These modes are analogous to resistive bal-
looning modes,*® but with electron inertia replacing the collisional resistivity 5 in a non-ideal
Ohm’s law. They fall into two separate classes:

(i) those driven by Aj, the ballooning space analogue of the tearing mode instability index
A, representing the source of instability from the ideal region. These modes are stabilised by
favourable average curvature, D, in much the same way as low-n tearing modes are in toroidal
equilibria.” In the case of resistive ballooning modes, Connor et al.> and Drake and Antonsen*
found that instability was only possible in one of two limits:

(a) very close to the ideal MHD stability ballooning boundary, 8 ~ Bigear, where Ay — o0,

or
(b) at very short wavelength: n>100, where n is the toroidal mode number.

(ii) an analogue of the Carreras-Diamond resistive ballooning mode.>® The Carreras-Diamond
mode is a purely growing, pressure driven, instability, localised within the non-ideal layer where
resistivity enters the Ohm’s law. However, a necessary condition for its validity® is that its
growth rate must exceed the sound frequency, ie that v > C;/Rgq, with Cs; = I'p/(n;m;) being
the sound speed, R the major radius, ¢ the safety factor, n; and m; the ion density and mass
respectively and I' is the adiabatic index.

In reference 1 instability of collisionless ballooning modes was demonstrated numerically, using
an initial value stability code, for a range of values of the ‘effective Lundquist number’, a*/d?,
where d, = ¢/wy. is the collisionless skin depth, with w,. the plasma frequency and a a typical
equilibrium scale length. However, the values considered were still two orders of magnitude
smaller than the values typical of the present generation of tokamaks.

In this note we consider more realistic values of d. by obtaining and solving the analytic
dispersion relations for both resistive and collisionless ballooning modes and then compare
with the results of reference.!

Considering the class (i) ballooning modes,? the twisting parity dispersion relation takes the
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and A’y is the stability index obtained by solving the ideal-MHD high-n ballooning equation,
T, = por?/n is the resistive diffusion time, and 74 = Rg\/(1 + 2¢°)/(sC4) is the Alfvén tir
with s = (r/q)(dgq/dr) the magnetic shear and C4 the Alfvén speed B/ /(m;n;). The quantiti
G and D are the expressions defined by Glasser, Greene and Johnson” for general toroid
equilibria. In the large aspect ratio, low f3, circular cross-section limit they take the form:

G = B/ [Tp(1 +2¢%)]

[1 —q¢* —s¢? g:ﬁg]

with p the plasma pressure and A, the Shafranov shift of equilibrium magnetic surfaces.
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Figure 1: Path of the resistive ballooning eigenvalue in complex frequency space as Zp/2
(circled values) varies. (a) G =20, D = —0.1; (b) G = 5,D = 40.1. From reference 3.

In reference 3 this dispersion relation was derived and solved for a variety of values of G a1



D. Tt was shown that when GD > 1, a purely growing resistive instability is always present,
but that when GD < 1, only damped oscillatory modes exist in the limit of large Z, — oo
(ie gn® — 0). These modes become unstable, as shown in Figure 1, for values of Z, below a
critical value. In fact, by considering values of GD close to unity

GD=1-6§ . §<1 (2)
it is possible to derive (Appendix A) the analytic stability criterion
5/6
> 1.3A%) [— = D] (3)

Although this inequality is only asymptotically correct in the limit § = (1 — GD) < 1, compar-
ison with numerical solutions of dispersion relation (1) shows that it is accurate to within 10%
for all values of § < 3. Figure 2 shows the numerically computed stability boundary in terms of
Z = Zo[(AG5/®) (solid curve) as a function of §, compared to the approximate values (broken
curve) obtained from inequality (3). .

Figure 2: Comparison of the approximate analytic (broken curve) and the exact numerical
(solid curve) resistive stability boundaries for Zy/(A%5G®/®) as a function of § = (1 — GD).

We turn now to the class (ii) resistive ballooning modes.>® The Carreras-Diamond ballooning
mode is a purely growing instability with growth rate given by

yra = A)Z (4)

where, in the large aspect ratio, low § tokamak approximation,

(].’2

A~ o~ (eByfs), (5)
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with @ = —(2Rq*dp/dr/B?*). It was originally proposed theoretically as an explanation for hj,
values of transport in the edge region of the ISX-B tokamak®: at the relatively low temperatur
and high ¢ values of the edge plasma in ISX-B the validity condition, v > C,/Rgq, could
satisfied at moderate values of wavenumber, n. Expressed as a condition on n this validi
condition takes the form:

; x 1/¢** (

n

o7, Ca(1 +2¢%)] " (T B/2)*/4
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so that excessively large values of n would be required for validity of this mode in the h
core plasma of present generation tokamaks. For example, with ¢ = 2, T = 5KeV, R = 31
r=0.5m, n; =3 x 10®m=3, r/L, = (r/p)(dp/dr) = 2, B = 4Tesla and Deuterium, inequali
(6) requires that n > 2300. However the ¢~3/? scaling of n at large ¢ in inequality (6) mea
that this resistive ballooning mode could be a valid, vigorously unstable, mode in the H-mo
pedestal of a separatrix plasma boundary. Thus, taking ¢ = 7, T = 1KeV and r/Lp = 1
modes with n > 15 should be unstable.

The relationship between these two classes of ballooning mode is best understood by consi
ering the stability of a given equilibrium as nn? is increased from zero, (or, alternatively .
is decreased from c0). At very small values of nn? there are two damped, oscillatory class |
modes: w = fw, — iy. When nn? is increased beyond the critical value given by (3), the
oscillatory modes become unstable. At a yet larger value these unstable modes coalesce as
purely growing instability. At still larger values of nn?, the growth rate of one of these mod
increases with nn?, while the growth rate of the other decreases: the faster mode growth ra
scales as ¥ o (qn?)%/®. These class (i) modes remain valid solutions of the eigenvalue equatio
provided that their frequencies and growth rates are smaller than the sound frequency C;/R
This is normally very easily satisfied for the parameters of real tokamak plasmas. Howeve
at large enough values of nn? the more rapidly growing of the class (i) modes becomes cor
parable to the class (ii), or Carreras-Diamond, mode: the growth rate of this mode scales .
7 o (),

In Section 2 we obtain the dispersion relations for collisionless ballooning modes of both class
and in Section 3 we discuss the stability of such modes. Section 4 is devoted to a brief discu
sion of diamagnetic effects and the validity of single fluid MHD equations for the analysis

collisionless ballooning modes, and in Section 5 we summarize the main results of the paper.

II. Inertial Ballooning

The equations for inertially driven ballooning modes are obtained from the resistive ones k
the replacement:
N — mey[nee’

where m, and e are the electron mass and charge respectively and n. is the electron densit
Thus, to derive the dispersion relation for collisionless ballooning modes, we make the followir



substitutions in equation (1);
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where d, = c¢/w, is the collisionless skin depth,
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Thus for the class (i) mode, defining Zy; = (r/ngd.) > 1 as the new expansion parameter, the
twisting parity dispersion relation becomes:

B % :Q,?/Z[ L(o-)  T(oy)
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with
r=(Q+4GD)”*  and  op=(2+Qi£7)/8

Figure 3: Comparison of the approximate analytic (broken curve) and the exact numerical
(solid curve) stability boundaries for the inertial ballooning mode for Z = Z;/(ARGY?) as a
function of 6 = (1 — GD).

As for the resistive ballooning case, a purely growing instability always exists where GD > 1



and favourable average curvature stabilises the inertial ballooning mode when Z; is larg
By again considering the limit § < 1, a useful stability criterion can be derived analytica.
(Appendix A). The stability criterion is:

, g\
Zoi > AB (m) (

This expression turns out to be accurate to ~ 7% throughout the range -1 < GD < 1. T
numerical (solid curve) and analytic (broken curve) stability boundaries are shown in Figure
in this figure Z = Zo;/(VGAR).

For completeness, an analogous expression for tearing parity modes is given in Appendix B.

III. Discussion

The resistive stability criterion (3), and the inertial stability criterion (7) for class (i) mode
may both be expressed in the form:
n < Ny, (

predicting that, for a given equilibrium, only modes of sufficiently short wavelength (high-:
can be unstable. The relevant expressions for n.; in the two cases are:

(To/Ta)Y? [1 — GD75/4

ncl(n) = 0'? q(AfB)3/2 [ G ] 3

o r 1 [x (1—=GD\]Y?
neq(inertial) = 7d. AL [5( G )] )

It is of interest to compare these values for typical, high temperature, tokamak plasma p
rameters. Taking, Ay ~ 1, s ~ 1 and the same plasma parameters as in section (1), so th
B~0.75x 1072, G ~ 18 and D ~ —0.06, we find:

na(n) ~ 210

ne (inertial) ~ 100

These results show that the favourable average curvature stabilization is almost as strong ¢
effect for collisionless ballooning modes as it is for resistive ballooning modes. It stabilises suc
modes for values of n in the range n < 100, unless Ay is large: ie unless § is close to the ide
MHD stability Iimit, ﬁidea}.

For the class (ii) ballooning mode, employing the same transformation from @ and Z; to (
and Zy; as before, the collisionless version of the dispersion relation is:

Y14 = Allz/Zoi. (lj



The condition for the validity of the resistive and inertial forms of this mode, vy > C,/Ryq, can
also be expressed in the form:

n>ng, (12)
where
27,Ca(1 + 247"/ (T8/2)/4
'”'52(7?) = [ : A(R ):| (aés/)z 1/q5/2, (13)
2y11/2
ne(inertial) = dL[Fﬂ(H?q )] «  1/g (14)
e aq

and the o 1/¢” entries on the right hand sides of equations (13) and (14) refer to the scaling
at large ¢. For the plasma parameters used above, these expressions yield:

nea(n) =~ 2300, (15)
ne(inertial) ~ 250 . (16)

As discussed in the next section, these values are far beyond the limit of validity of the fluid
equations.

Taking equilibrium data to resemble that used in [1] (T =1, r ~ a/2, ¢ ~ 2, f ~ 0.65 x
1072, r/d. ~ 15 and (from Fig.1 of [1]) r/L, ~ 2) the validity condition becomes n > 6.
Thus the instabilities found in reference' appear to be of the vigorously unstable class (ii), or
Carreras-Diamond, modes rather than the, more weakly growing, class (i) ballooning modes.
In addition the growth rates computed in reference [1] and shown in Figs. 3,4 and 6 all exceed
the sound frequency, which has a value ~ 0.9 x 10~2 at 8, = 1 in the normalised variables of [1].
Furthermore, the strong stabilisation apparent in Fig 8 of [1], as 3, is reduced, occurs just as
7 drops below the sound frequency C,/Rgq, suggesting that this may be the point of transition
from the strongly growing ( class (ii)) mode to the more weakly growing class (i) mode. As we
have seen, this latter mode does not merely have a reduced growth rate as (r/d,) increases, in
fact 1t becomes absolutely stable at realistic values of d,.

IV. Validity of the Single Fluid Equations

The theoretical model underlying the equations of reference 1 and the dispersion relations of
3,4 and the present paper, is that of single fluid MHD with an Ohm’s law containing electron
inertia or resistivity. Neglect of Hall terms and thermoelectric terms in Ohm’s law, the ion
gyro-viscous stress in the momentum equation, and diamagnetic heat flux terms in the energy
equations, are all equivalent to neglecting terms of order (w,/w) in the dispersion relation. Here

w, 22 (ng/r)(p:Vi/ Ln)

is the diamagnetic frequency, with p; the ion Larmor radius, V7. the ion thermal speed and L,
the characteristic scale length for density (or alternatively temperature) variation. At marginal



stability, the electron inertial class (i) ballooning modes have finite frequency with

(1-6GD) 1
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Evaluating the ratio w./w, we note that it is independent of the toroidal mode number n, a:

that
&N(&) (E)_l_ !
w  \de/ \L,/ s\/B (

which typically exceeds unity. It is also worth noting that for these plasma parameters the Fini
Larmor Radius parameter k, p; = ngp;/r ~ (n/80), so that fluid equations become invalid
smaller values of the toroidal mode number, n, than the predicted instability threshold.

For the class (ii) collisionless ballooning mode, neglect of diamagnetic effects is also inval

since,
4 i\ 1
P (p_) — . (1
7 de/ /B

V. Summary and Conclusions

Resistive ballooning modes, in which electron inertia replaces resistivity in Ohm’s law, ha
been investigated. Both class (i) modes,>™* driven by A%, the energy source from the ide
region, and class (ii), Carreras-Diamond-type, modes,®>3® driven from within the non-ide
region, have been investigated. With plasma parameters which are characteristic of prese
large tokamaks, such as JET, the class (i) modes are found to be stable for n < 100, exce
very close to the ideal ballooning stability boundary ( A% > 1), where lower n values can 1
unstable. Unstable Carreras-Diamond modes are predicted only for n > 250, far beyond t]
validity range of fluid equations. These results suggest that the numerical results of referenc
for modes with n = 10, 20 and 30 would have indicated stability had computation at mo
realistic values of (a/d.)* ~ 10° been possible.

It is also noted that, for realistic plasma parameters, the neglect of diamagnetic effects is nev
justified. Thus a two fluid treatment retaining Hall terms and the gyro-viscous stress, or a ful
kinetic treatment, is required for a consistent treatment of the layer physics.
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Appendix A

An analytic stability criterion for resistive ballooning modes can be derived for the case where
GD =1- 6 with § < 1. Writing GD =1 — § and @ = —iw, with w*? ~ O(§), one finds:

T2-6,  opmi, oo [6/8—2(1+i)(w/8)%7,

so that, at marginal stability, the dispersion relation takes the form:

Zo 9 W1/ 4e=iT/8 "
GAy ~ Jr =2+ )@/ (A1)

which has the solution

w¥? = §[tan(r/8)], (A2)
5/6

Zy = 2¢/2/rAf [1 —GGD} cos(w /8) [tan(r /8)]*/¢, (A3)
= 1.2734, [%5]5/6.



An analogous marginal stability treatment for the case with electron inertia instead of resistivi
yields, with @); = —iw;:

w; = 5, (A

2G )r”

- —_— ’ ———— e i
Zoi = Op L‘r(l —GD (A

In both cases instability occurs at smaller values of Zy, Zy;, ie at larger values of the toroid
mode number n.

Appendix B

The dispersion relation for tearing modes (equation (8) of reference [2]) can also be modified fi
the case where electron inertia dominates over resistivity in the reconnecting layer. Solution
the dispersion relation numerically shows that the favourable average curvature stabilisation
resistive tearing modes, discovered by Glasser et al,” persists in the inertial limit (m.y/n.e®
n). At marginal stability the tearing mode has a finite frequency (provided D < 0) and a usef
analytic stability criterion, and estimate of the frequency, can be derived by considering t}
limit

The mode frequency is found to be
T D (B
WTy = ——
4 4 Zo;
and the stability criterion is:
Zoi > A TiLe) = (B

TT(3/2) (—2n D)%

where A/ is the usual tearing stability index.
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