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Abstract

A uniform compressible plasma with a uniform flow along the magnetic field in the presence
of a resistive wall is shown to be subject to two instabilities. For the first instability, the flow
velocity is required to exceed the Alfvén speed whereas for the second it need only exceed
the sound speed. For a sufficiently high ion temperature, ion Landau damping is shown to
stabilize the second instability associated with the sound speed.



1 Introduction

The subject of resistive wall modes has become of increasing interest in view of its relevanc
to the prospects of advanced tokamaks. Since the observation of greater stability to thi
mode on DIII-D in the presence of toroidal flow!, various attempts =7 have been made t
find a stabilizing mechanism due to rotation.

In order to clarify the effect of flow, Wesson® has recently analyzed a simple model consistin
of the uniform flow of an incompressible fluid along a uniform magnetic field in slab geometry
The fluid was assumed to be separated from a thin, resistive wall by a vacuum region, wit.
a further vacuum region beyond the resistive wall. In this model the only source of fre
energy is the plasma flow. It was shown that a resistive wall instability occurred when th
flow velocity, vy, exceeded a critical velocity, ie vy > V/2¢4, where ¢4 is the Alfvén velocity
The existence of a critical velocity, vg ~ cy4, in the above model is due to the fact that, apar
from the wall mode, only compressional Alfvén waves are involved. The shear Alfvén wav
decouples from the compressional wave in this model. However, a compressible model allow
the propagation of the slow magnetosonic wave whose phase velocity, ¢, is much lower tha:
the Alfvén velocity under low beta conditions. In view of this, the analysis given in ref 8 ha
been extended to the case of a compressible plasma.

The compressible model, with the plasma flowing along the equilibrium magnetic field in
cludes the resistive wall instability discussed in ref 8, for which the critical flow speed is c
the order v/2c,. However, an additional resistive wall instability is found which occurs at th
much lower critical flow speed, ¢;. Toroidal flow speeds of the order of the Alfvén velocit
are not relevant to present tokamak conditions. On the other hand, toroidal flows of th
order of the sound speed are much closer to observed values.

The ideal MHD model including plasma compressibility contains only undamped fast an
slow magnetosonic waves. The condition for sound waves to be weakly damped is tha
T. > T;. However, under normal tokamak conditions, T, ~ T}, and sound waves are heavil
damped by ion Landau damping. In the final part of the paper kinetic effects are incorporate:
into the compressible model in order to study the effect of Landau damping on the resistiv
wall instability arising from the slow magnetosonic wave. It is found that the instabilit;
persists for T, > T; but as T,/T; is reduced, the ion Landau damping becomes stron,
enough to stabilize the instability.

2 The Compressible Model

A plane slab model will again be employed but instead of the semi-infinite plasma used in re
8 a finite slab will be analyzed. The slab is taken to be symmetric as illustrated in Fig 1. Th
compressible plasma is described by the equations of ideal MHD. Remembering that we hav



assumed a uniform flow and equilibrium magnetic field where By = (0,0, Bg), vo = (0,0, ),
the linearized equations of ideal MHD can be written,

dvq g By
Py TPt UL = Vp +(V x By) x o (1)
% — Vx{vyx Bo)+ V X (vo x By) )
d 0
'—'a%l-'-l-’l)o% ~+ pg(V.'vl) =0 (3)

where equilibrium quantities have a subscript ‘0’ and perturbed quantities a subscript ‘1.
The perturbed quantities will be assumed to have a variation f(z)expi(kz —wt). With this
assumption and also assuming an isothermal equation of state,

p1=clp (4)

where ¢, is the sound speed, all variables can be expressed in terms of B, which satisfies
the equation

D?k2c? By, .
T T | g + (@~ KRB = 0 ()
5

where @ = w — kvg. We note, in passing, that the fields vy, and B, decouple from the
present problem. These variables are associated with the shear Alfvén wave, whereas Eq (5)
describes the fast and slow magnetosonic waves. The incompressible result is obtained from
Eq (5) by taking the limit ¢, — oo, when the equation reduces to Eq (2) of ref 8. However,
for a low-beta plasma, ¢; < ¢4, which is very different from the incompressible limit.

It is convenient to write Eq (5) in the alternative form

d’B1,  k*(@? - k%) (@ - k3cD)
dz?  {@%k%c? + k2 (@2 — k2c?)}

3 The Boundary Conditions

The solution for the perturbed magnetic field, By, given by Eq (6) must be matched to the
corresponding solutions in the vacuum regions and the resistive wall. The plasma exists in
the region —g < z < g where the solution is

B, =A PPy A = (7)
where

(@% — k2c%)(@? — K%c?)

@2c? + ¢ (w? — k2c?)

g =



In vacuum, B, satisfies
d%Bi,

e k*Bi, =0 (9
Hence, in the region g < z < d,
v =Cet + De7** (10
Similarly, in the region, —d < z < —g,
'i:m = Eef® 4+ Fe ke (11
For £ > d + 4, where § is the thickness of the, thin, resistive wall,
v =Ge™* (12
and for z < —d — 6,
By, = He*® (13

The above fields and their derivatives must be joined across the plasma vacuum interface:
at £ = dg and the resistive walls at £ = +d. The boundary conditions at a thin resistive
wall are”:

B;; continuous, and

dBlz — —_“"EBII (14
dz |, Cw
where
Cw = (/J,go'(s)_l (15

Turning to the plasma-vacuum interface, By, is again required to be continuous. The fina
condition can be obtained by integrating the z-component of Eq (1) across the interface
glving,
v
= '_OBlz
=49~ Ho

Bj :
P+ _OBlz (16

Ho

z=4gt
where the quantities on the left-hand-side of the equation refer to the plasma and those or
the right-hand-side to the vacuum.

We note that since there is an equilibrium pressure discontinuity there will therefore be ¢
jump in By at the plasma vacuum interface. This can be obtained from the equation for the

equilibrium pressure balance,
d( B\ _ (17
dr & ) o

Integrating Eq (17) across the plasma-vacuum interface gives,

BP2 Buz
L BB
20 210




V.B; = 0 gives the relation
idBy,

By, =z (19)
for the vacuum and a similar result for the plasma,
i dBE,

Bl. =+ d; : (20)

With the aid of Eqs (1) - (3), p1 can also be expressed in terms of B,

_ 2-.00‘3263 dBf::
L= 0B (02 — k2?) dz

(21)

Substituting Eqs (19) - (21) into Eq (16) gives,

pO‘:’zcg dBf:c Bg dBf:: == ﬁ dBi,z (22)
kBj(@® — k2c}) dz pok dz |, Copb dz R
For low beta, with 2ugpy < (BE)?, Eq (18) can be written
U o~ HoPo
B} 280 [1 + W] : (23)

Substituting Eq (23) into Eq (22), the final form of the second plasma-vacuum interface
boundary condition is
[ w2c? 5| dBY, dB},
(

Ta (24)

= (ca +¢)

+c
) .2 A2 A
w? — k2c2) dr | _,,- st

4 The Dispersion Relation

Applying the boundary conditions given in the previous section, the dispersion relation can
be written as

X2e%Pa _ y2¢~2Ps — (25)
where Fig
X = Tz — (4 +A)G. (26)
4
¥= Tz[)’ + (& + )G, (27)
w*c 2
F = (92 — ,1;2(;3) + CA (28)



and

e—2k(d—g) + (14 2ikew
{e—2k(d-—g) _ (1 + 21%&)}
Clearly, Eq (25) can be factorized into two independent dispersion relations
Xe® —Ye 9 = (30
and _ .
XeP9 4 Ye P =0 (31

A physical distinction between the two dispersion relations given by Eqs (30) and (31) ca
be obtained as follows. The solution for the perturbed magnetic field component, BY,, i
the plasma is given by Eq (7). The value of this quantity at the origin is

BE(0)= Ay + A_ (32
and its derivative is dBP.(0
—Cli;‘(—) = iB(Ay — A_) (33

By imposing the boundary conditions, en route to obtaining the dispersion relation, Eq (25)
the following relation between A, and A_ can be found

YA 3
A_= T+e—2t,ﬁg (34

With the aid of this relation, Egs (32) and (33) can be written

Bl = %e-*ﬂg(xefﬁg +Ye ) (35
dB1,(0) _ 1BA4 g 189 =
T s -1 By _y iBg
o ¥ € (Xe e ") (36

Hence, the dispersion relation given by Eq (30) describes modes for which the perturbe:
magnetic field By, is symmetric (dB,(0)/dz = 0) about the origin whilst Eq (31) describe
modes for which BY, is anti-symmetric (B1.(0) = 0).

With the aid of Eqs (8) and (26)-(28), and noting that F' = (&% — k*c%)/B% Eqs (30) an
(31) can be written

___ Bk __tafg eyMMETRIC) (37

(@ — k%) Ge(ch +cf)




and
(@ - k)

o = Ge(c} +c?)tanBg  (ANTI— SYMMETRIC) (38)
The physical content of the dispersion relations given by Eqs (37) and (38) can be best
understood by considering various approximate solutions.

a) Alfvén wave case

Assuming that @ ~ kca, vo ~ c4 and using the low-beta condition cs < ¢4, Eq (8) is
approximated by
-2 2.2
2 (@ — k%c%)
e ma

Ca

(39)

Substituting Eq (39) into Eq (37) and neglecting ¢ in comparison to ¢4, the symmetric

dispersion relation is approximated by

kg _ tanfBg
By~ G (40)

Substituting Eq (29) for G. into Eq (40), the dispersion relation can be expressed in the
form

{[1 4 2] g—z — [1 - e72=9)] tan 69} w = —2ikey (g—i — tan ﬂg) (41)

In general, the w-solution to Eq (41) is w = w, + éy. Since all the parameters in Eq (41)
are real, except for the wall term ikc,, it is clear that the marginal condition, ¥ = 0, can
only be satisfied when w, = 0. For values of w close to the marginal solution, Eq (41) can
be solved approximately as

—2tkew (% — tan 69) )

I k [1- e—2k(d—g)]
[1+ e~2k(d-9)] {B-‘gl - T e—2k(d—g)] tan Bg

W=

The stability threshold condition, w = 0, is given from Eq (42)

%—tanﬁgzo (43)

Similarly, the solution to the anti-symmetric dispersion relation for values of w close to the



marginal value is

2tkew (% + tan ﬁg)

[1 + e 2Hd-9)]
1- e—2k(d—g)] tan g

W, 22 =

[1 — e=2k-9) {%g +

Hence, the threshold condition for the anti-symmetric modes is

-ﬁ—g-—i-tanﬁg=0 (48
kg

The solutions to Eqs (43) and (45) are shown graphically in Fig 1 for the condition kg =]
For the symmetric mode the solution is given, approximately as B¢ ~ 0.86. Using Eq (39
this yields

Vg = 1.3¢ A (4E

which is near to the marginal condition v = v/2c,4 given in ref 8. The solution of Eq (45
for the anti-symmetric modes is B¢ ~ 2 which yields

v = Vbea (47

Returning to Eqgs (42) and (44), we consider values of B¢ close to the marginal values give
by Eqs (43) and (45). It can be seen from Eq (42) that for Bg slightly above the threshol
value, I'mw > 0, ie the symmetric mode becomes unstable with a growth rate proportione
to kcy. Similarly, the anti-symmetric mode is unstable for values of Gg slightly above th
threshold value given by Eq (45) and again the growth rate is proportional to kcy. Note als
that as B¢ continues to increase, the growth rate of both the symmetric and anti-symmetri
modes formally tends to infinity as the denominators in Eqs (42) and (44) tend to zerc
Clearly the approximations break down before this condition is reached.

The significance of this behaviour is examined by treating the dispersion relations perturba
tively. Consider the symmetric dispersion relation given by Eq (40). Expanding Eq (29) fo
kew /w < 1 we obtain

4ikcy e~ 2kd-9)
G.~ -F, {1 ~ =) (48
where | - )]
1"
Fe= o) 40
Substituting Eq (48) into Eq (40), the symmetric dispersion relation becomes
kg dikewe2kd=9) LgF,
F,—t ot 50
ﬁg c anﬁg UJ[]. _e-—~4k(d-'g)] ﬁg (



For kcw /w = 0, the unperturbed roots of Eq (50) are denoted by
Bg = an (51)

Hence, from Eq (39), the unperturbed frequencies of the symmetric Alfvén modes are given

by 2 2.2
(@* — k3c4)g?
———-—Ci 24 =afL (52)

Thus, the solutions are

az 1/2
w = k'vo + kCA (1 + kz";z) (53)

where the + signs correspond to the fast and slow compressional Alfvén waves of the bounded
system. For small values of the parameter kcy /w, a perturbation solution of Eq (50) is
sought. Assuming

(12 1/2
w = kvy — kcy (1 + k2;2) + w (54)
the perturbed value of (g is first obtained, giving
k2g? az \'? 6w
o~ 41— 1 = — 5
Bg~a {1 a2 ( +k292 ke (55)
and substituting Eqs (54) and (55) into Eq (50), the perturbed frequency dw is obtained
dw dikeywe *@-9)(kg/a,)F.
kCA = a2 1/2 k2 2 a2 1/2 k
e s _ p—4k(d— rg
[Avg keca (I—I—p-;-g) [1 e—4k( 9)}—02—(14—?37) [anFc—i—ansec?an]
(56)

Hence, the slow compressional Alfvén wave is unstable when

2\ 1/2
an
Vg > Ca (1 + k29‘2)

The growth rate is again proportional to the wall resistivity but the mode now oscillates at
the frequency of the slow Alfvén wave. This instability is analogous to the resistive wall,
amplifier of Birdsall et al®. The interpretation of this instability is that the slow Alfvén
wave is a negative energy mode when vo > ca(1+ a2/k%9?)'/2. Hence, due to the dissipation
provided by the resistive wall, the wave is caused to grow.

With the aid of this interpretation, Eq (42) for the symmetric mode can be analyzed in the
vicinity of a zero of the denominator. For this purpose, Eq (42) is written in the form

. k
kg tanfg)\ 2ikew (E% — tan ﬁg) -
“\Be " F )T T i+ e 4




It has just been noted that the zeros of the bracket on the left-hand-side of Eq (57)

kg tanfg
Bg K

describe the fast and slow compressional Alfvén waves. The critical condition for the slo
wave occurs when the frequency of this mode passes through zero, corresponding to a chang
in sign of the energy. Hence, a perturbation solution of Eq (57) is sought in which th
equation is expanded about the value f = f, for which the slow wave has zero frequency
Thus, substituting § = f; in the right-hand-side of Eq (57), the equation describes th
coupling of the zero frequency wall mode with the zero frequency slow Alfvén wave. Fo
kg = 1, kd = 1.5493 a graphical solution of Eq (58) gives the value §; = 1.06. The flox
corresponding to a zero frequency slow Alfvén wave is vg = 1.46¢c4. Hence, again makin
use of Eqs (54) and (55) and expanding Eq (57) about 8g = g, the equation becomes

0 (58

(bw)? =~ éy? (59

where
e 2kewkealtan Bog — (kg/Bog)] (60

ke oG Bg? e
[1 4 e—2k(d 9)]5537 (1 + I%g_f) (H}% + %E—’fzsecz ﬁog)

and Eq (58) has again been used to obtain Eq (59). Hence, the solution of Eqs (42) or (57
in the vicinity of G = [, is given approximately by

Sw =~ £ (1 +1) (61

V2

A numerical solution of Eq (37) is given in Figs 3a and 3b. The growth rate and frequenc:
normalized to kc, are plotted as a function of the normalized flow velocity vo/c;. It ca
be seen that close to the threshold, the real part of the frequency is very small, which i
characteristic of the wall mode. For velocities a little beyond that corresponding to maximun
growth the frequency corresponds to the slow Alfvén wave value given by the negative sig
in Eq (53). The growth rate as a function of the flow velocity rises to a maximum just abowv
the threshold and then falls off as v;! in agreement with the perturbation result given by
Eq (56). Substituting the values of the parameters used to compute Figs 3a and 3b into Ex
(61) yields the value w/ke; = 0.12(1+1) which is in very good agreement with the computec
values corresponding to maximum growth, given in Figs 3a and 3b. Similarly, Eq (56) yield:
w/ke; = 5.4 4+ 0.0064i for vy/cs = 2 which is again seen to be in excellent agreement witl
the numerical values.

This behaviour suggests the possibility of a corresponding instability associated with th
slow magnetosonic wave of a compressible plasma, except that the critical velocity would bs

associated with the much smaller sound speed rather than the Alfvén speed.

b) Sound wave case

10



Returning to the form of the dispersion relation given by Eq (37) (the symmetric modes)
and assuming @ < kc,, the equation becomes

Bg _ tanpfg
kg~ G (62)

Substituting Eq (29) for G, into Eq (62) and proceeding as for section IVa, we obtain a
solution of w which is valid in the vicinity of the marginal condition, w = 0. Thus,

2tkew (gg + tan ﬁg)
Y —e~ t(d—
1+ 6—2L(d—9)] {% + Eﬁﬁ::%} tan ﬁg}

where ¢? has again been neglected in comparison with c¢%. The marginal condition is again
given by the zeros of the numerator

(63)

w=—

Bg
ko +tanBg =0 (64)

Choosing kg = 1, the marginal condition is given approximately by vy = ¢,. For values of
Bg just below the threshold value given by Eq (64) we again have instability with a growth
rate proportional to kcw. As for the previous case the growth rate becomes infinitely large
when the denominator for Eq (63) becomes zero.

For the anti-symmetric modes, Eq (38), the low frequency assumption, @ < kc4 reduces the
dispersion relation to
kg
—— =G, tanfg 65
ﬁg C ( )

Substituting for G, from Eq (29), the solution for w which is valid in the vicinity of the
marginal condition, w = 0, is given by

2ikew (%-g — tanﬁg) (66)
66
[1 — e~2k(d—9)] {kg — ;7—1[11“::::(:::;] tan ﬁg}

w=—

The threshold condition is therefore

kg

—~ —tanfg =10 (67)
Bg

which, for kg = 1, also yields the marginal condition vy = ¢,. The anti-symmetric mode is

unstable for values of B¢ just above the threshold value given by Eq (64) with a growth rate

proportional to kcy .

11



We note that the approximate analysis of the sound instability neglects terms 0(c%/c?)
Hence, the threshold velocities for the symmetric and anti-symmetric modes are the same.

Now consider the significance of the infinite growth rates arising from the zeros of the de
nominators in Eqs (63) and (66). It is convenient to analyze the anti-symmetric mode i1
this case. Thus, the approximate form of G, for kew /w < 1 given by Eq (48) is substitutec
into Eq (65), yielding

kg —4ikcy e~ 2k(d-9)

E — F.tan (g = W[l — e~ 4k(d=9)]

F.tan fBg (68

A perturbation solution of Eq (68) is now sought. For kcw /w = 0, the unperturbed solutior
of Eq (68) is denoted by

ﬁg = by, (69
and the unperturbed frequencies are
w = kvg £ ke, (70
where
2 (1+b%/k%9%)

© = AT RRg + (R @A) (1

The + solutions, Eq (70), are referred to as the fast and slow sound waves. Looking for :

perturbation solution of Eq (68), we take

w =~ kvg — kego + dw (72

Substituting Eq (72) into Eq (8) and using the condition @* <« k2c%, the perturbed form o
By is
(73

2c% (k%g? +b2)? bw
~b,41 at n/ “*
By { + g k29202 ke,

Substituting Eqs (72) and (73) into Eq (68), the resulting correction to the slow sound wave
frequency is obtained
dw dikewe 2RI F.(c2/2c% )k?g%b2 tan b,

—_— 74
kes — k(vp — acg)[1 — e~4k(@=9)](k2g2 + b2)2[(kg/bn) + Feby, sec? by] (74,

Hence, the slow sound wave is unstable when vy > ac, where a is approximately unity. The
behaviour of the sound-type resistive wall instability is similar to the Alfvén case. Thus, very
close to the threshold velocity, vy = cs, the instability has a very low frequency characteristic
of the wall mode, with a growth rate proportional to the wall resistivity. The maximun
growth occurs when the zero frequency wall mode couples to the zero frequency slow sounc

12



wave. For velocities just above the velocity at which maximum growth occurs, the instability
is associated with the slow sound wave, oscillating with the frequency of this mode. For the
sound wave case, the coupling of the slow sound wave with the wall mode occurs much closer
to the threshold than for the Alfvén case. In order to carry out an analytic calculation of
the behaviour of the instability at maximum growth, the analysis would need to include the
previously neglected terms, 0(c?/c}). For this case we give just the numerical solution of
the anti-symmetric dispersion relation . The results are shown in Fig 4a (real part of w/kc,)
and Fig 4b (imaginary part of w/kc;) as a function of the normalised flow velocity vg/cs.

5 The Effect of Landau Damping

The resistive wall instability discussed in Section IVDb is associated with the slow magne-
tosonic wave and occurs when the flow speed exceeds the sound speed. Such flows are
relevant to the present generation of tokamaks. However, the ideal MHD model used in the
previous section does not include dissipation. The condition for weakly damped sound waves
is T, > T;, whereas under normal tokamak conditions, 7, ~ T;, when the slow magnetosonic
mode undergoes strong ion Landau damping.

In view of this we introduce Landau damping into our model. Since the dominant kinetic
effects for the slow magnetosonic mode are due to the thermal motion parallel to the equilib-
rium magnetic field, we take advantage of our uniform slab model to incorporate the parallel
kinetic effects in an approximate manner. We ignore the effect of the boundaries on the elec-
tron and ion distribution functions. Instead, we use the dielectric tensor for a hot, uniform
plasma to obtain a generalization of Eq (6) for the perturbed magnetic field. We also need
to include kinetic effects in the perturbed pressure, given by Eq (21).

The equation describing the perturbed magnetic field component B, can be obtained from
Maxwell’s equations and the hot plasma dielectric tensor for a uniform plasma. Following
Shafranov'® we obtain, for low frequencies (w < ),

i — €0 0 0 Bz
0 n?—ey  —€ys By | =0 (75)
0 Eyz n_zL = Ezz Elz

where n? = ni +nf, n} = ®k?}/w? and njj = c®k*/w?. As before, the shear Alfvén wave,
nt — €55)E1z = 0, decouples from the fast and slow magnetosonic waves, described by
Il g

(n* — eyy) By — €:B1, = 0 (76)
ey By + (0% —€..)B1, =0 (77)

For low frequencies, n] < ¢,,, when Eq (77) yields
By, ~ —E”;Ely (78)

13



Hence, from Egs (76) and (78),

22
(ni +nf — £y — EL) Ey, =0 (79)

The dielectric tensor elements for the low frequency case can be approximated by (see, for
example Stix!!, Swanson'?)

wzi [
gy ™ ij? = z (80)
iwz- k'_]_ iwz kJ_
L Wi Ky (] _ Wpe KL
cor e Smhiy 1 () - a4 (o) )
2w, 2w2,
€z 1+ ﬁ[]‘ + CiZ(Ci)] e kz;; []- T CeZ(Ce)] (82)
Ti Te

where (; = w/kvr;, “j” denotes either ions or electrons, vr; = (2T;/m;)'/?, and Z((;) is the
plasma dispersion function.

For sound wave frequencies, ( < 1 and (; > 1if T, > T;. When T; ~ T, (; ~ 1. Hence we
retain the full plasma dispersion function for the ions in €,,,€;, but neglect the very weak
electron Landau damping since (. < 1. Under these conditions, Egs (81) and (82) can be
further approximated to

LWpiky L
ez = D0 GiZ(G) (83)
2w, J&
€2z = L2 J;f [1 i CIZ(Ci) g E:I (84)
Substituting Eqs (83) and (84) into Eq (79), we obtain
w?— k%) 1+ G2(¢) + &
BBy, — ( W1+ (Cz) 7] By, =0 (85)
{a[1+a2) + B + Sz}
Taking the inverse Fourier transform and using the Maxwell equation, By, = —(k/w)Eyy,
we obtain the generalization of Eq (6),
2p W —K2c) [1+GZ(G) + &
#8, , WP-FHI+eZ@+F] o )

dz? & [1 +GZ(¢G) + %] =+ %‘G"Z(C?)

In the limit T, > T; where {; > 1, 1+ (Z(¢) ~ —k*v% /(2w?), (i Z(¢:) ~ —1, and Eq (86)
reduces to Eq (6). Thus, Eq (86) extends the previous model to include the effect of ion
- Landau damping.

14



To complete this extension of the MHD model we must also obtain the kinetic generahzatlon
of Eq (21) for the perturbed pressure. The pressure tensor is given by

p=m; [(foj + fi5)(v — w)(w ~ u)do (87)
where u = f(fuj —+ fl_,-)vd'v.

We will simplify this calculation by assuming that the plasma is stationary with a Maxwellian
distribution. In this case, [ fo;vdv = 0, so that w is a first order quantity in the perturbed
amplitude and does not contribute to the perturbed pressure within a linear analysis. We

must therefore evaluate _
p{m:c = mj/flj’”id’v (88)

We use the perturbed distribution function fi; given by Swanson!?

flj(kxvaw) = zq, Z Z

J M=—00 N=—00

X {n.]z( ) [fu + _('U.Lfﬂz = sztu_)} By
w

l(m-n)qﬁ

- snwcj —kv,)

+ 1J.(b) {fm_ + lli(mfoz = 'szcu)] By, (89)

+  Ja(b) [fﬂz ean (.fOz — —foJ_)] Elz}

_ Ofy; _ Ofoj

oL=E 7 0z =
v, T Qv

vy =vycos¢ and v, = v, sing

b=€k£UJ_/wcj ) 5=Qj/’qjl ) k:(k_L,O,k),

The dominant contribution comes from the n = 0 terms and is

Dl 2 gy f f 2 (——J’ )Jg(b) %d@u (90)

where the integration over ¢ has been carried out. Assuming | b |< 1, and carrying out the
remaining velocity-space integrations

. —ig;no; By, .
Plaw = — 20— [1+ G Z(G)] (91)
Using Eq (78) and the relation between Ej, and By,
Eyz W
= _w¥p
Elz €., I 1z (92)

15



Substituting Eq (92) into Eq (91)

; 1q;M0; Eyz W

Assuming cold ions for the moment and again using (. < 1 to neglect the weak electro
Landau damping contribution,

e —~{€Nge Eyz
pl:z::t: = k

w
T i

where e is the proton charge. For the conditions just stated, Eqs (81) and (82) give

€z 1L k) kvi,w (95
€2z 2 (w? — k2c2)Q,

Substituting Eq (95) into Eq (94) and using k; By, = —t(dB,/dz), we obtain

; 2.2 dB
pizz ~ pzpﬂw Cs 1z (96
kBE(u? — k22) dz

which is in agreement with Eq (21), obtained from the MHD model.

Returning to the kinetic expression, Eq (93), and now including the effect of hot ions, w

write o B onn
tengEL,  tengFi;
Pizz = Z‘. . - Z: - [1 + CtZ(Ct)] (97

where we have again neglected the weak electron Landau damping. For this case

?:Ldzi k
Eur _ Wl G2 (G)

S T (98
S 2 [14G2(G) + ]
k vy, 8
Proceeding as before, we obtain
. 272(
Dlos = t PoUp; Ci Z (Cl dBlE (99

; )
2 kBP [1 +GZ(G) + %] ”

In the limit, ¢; > 1, Eq (99) reduces to Eq (21) obtained from the MHD model. We are nov
in a position to derive the generalization of the dispersion relation obtained in Section IV ti
include the effect of ion Landau damping. The procedure is identical to that used in Sectio:
IV except Eqs (86) and (99) are used instead of Egs (6) and (21). The resulting dispersio:
relation is formally the same as before, Eq (25), which factors into the symmetric, Eq (30)
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and anti-symmetric, Eq (31), dispersion relations. The only difference is that the quantity
F is no longer given by Eq (28), but instead by

$G2E) L, 1106

F=2[1+GZ(@)+%]

and (2 is now,
(@ — k2c%) |1+ C2(8) + &
;62 — = [ TE:I (101)

{Ci [1 +GZ(6) + %] + E;‘C-izzz(fi)}

instead of Eq (8). We note that the generalized equations for By,, Eq (86), and the pressure
Pizz, BEq (99), have been derived for a stationary plasma. In order to relate to Section IV
where the plasma is flowing, we have Doppler shifted the frequencies occurring in Eqgs (100)
and (101). Thus, §; = (w — kv)/kvr, and @ has already been defined after Eq (5).

Let us now obtain solutions of the anti-symmetric dispersion relation which is still given
by Eq (38), except that 4% is now given by Eq (101). For the slow magnetosonic (sound)
wave case the dispersion relation again reduces to Eq (65). We now consider this case under
conditions where T, > T; so that the ion Landau damping is weak and we can obtain a
perturbation solution. First, we expand Eq (101) asymptotically assuming ; > 1,

—k*ch [@? — k2c? + in20?G(T./ T)e ¥

2 [2 2,2 4 grl/2527 -(? =9 22 1/27F ,—(212 (102)
{cA[w — k2c2 +iml 202G (T, /T;) e ) + @2c2[—1 + int/2(se =]}

i

£* is now in a very similar form to the expression given in Eq (8) except that Eq (102)
contains the effect of weak ion Landau damping. In order to obtain a perturbation solution
to Eq (65) including the effect of ion Landau damping, we again assume that ke, < 1 and
use the approximation to G, given in Eq (48). Thus, treating both k¢, and the ion Landau
damping as small perturbations to the anti-symmetric dispersion relation, the unperturbed
equation is given by the left-hand-side of Eq (68) and the unperturbed frequencies of the fast
and slow sound waves are as shown in Eq (70). Substituting the perturbed slow sound wave
solution, Eq (72), into Eq (102), we obtain the perturbed value of g due to the presence of
the resistive wall perturbation and weak damping.

Bg ~ b, (1 + A:T“ + z'a) (103)

where b, are the roots of the unperturbed equation

c2
N a(1+2§)
A:(l—a2)+ 2
gER
Ca

(104)
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and

2 T (12 T C2 - T2
o gt} & __ e o (_e_ _ _s) =G 105
O (o 1) 4 ¢ (
-
Ca

Substituting Eqs (48) and (103) into Eq (65), we obtain the perturbed dispersion relation

Sw . dikcy e 2kd—9)
—F.t n|(1+ A ~ — Y i
¢ tan [b ( g o 4 zé)] (oo — Rt @)1 — e_“_(d_g)]F tanb

kg
_(_M .
b, (1 rafe 15)

(106
where only the unperturbed values of w and g have been substituted into the term propor
tional to kcyw, since this is a perturbation. Expanding the terms on the left-hand-side of E«
(107) for small dw/kc, and small §, we obtain

dikcywe 2F@-9)F tanb,
kv — kega)[1 — e—4k(d—9)]
(107

kg dw dw . 9
1— A— _ — = Bl | A L= —
bn ( Akcs z&) F.tanb b (Akcs + 26) sec” b (

Making use of the unperturbed equation, (kg/b,)— F. tanb, = 0, Eq (107) yields the solutior
for dw,

dw dikewe -9 F tanb,

20
ke, (kvo — kesa)[1 — e—4k(d—g)]A (%3 + b, F, sec? bn) A

(108

Substituting Eqs (104) and (105) into Eq (108) and the result {; ~ —(T,/2T;), we obtain the
final form for dw

Sw - dikewe *d-9)F (¢, /2c% ) k2 g2b? tan by, inl/? (_Ti) o &
kes — E(vo — ac)[1 — e~4k(d=9)](k2g2 + b2)2((kg/by) + b F sec? by) 2 \2T;

(109

Hence, as T,/T; decreases, the ion Landau damping term becomes stronger and for some
critical value the growth rate will be zero. For still smaller values of T, /T; the resistive wal
instability associated with the slow sound wave becomes stable.

This behaviour is illustrated in Figs 5-7 in which numerical solutions of the exact dispersion
relation, Eq (38) with 2 given by Eq (101), are displayed. In Fig 5, the normalized growth
rate is plotted as a function of vr;/c, for vy/c; = 1.5. As vp;/c, increases (or equivalently, as
TeiT: decreases) the growth rate also decreases and passes through zero when vp; /¢, ~ 0.275.
This gives the critical value (referred to above) T,/T; ~ 26 for the parameters used. This
is in reasonable agreement with Eq (109) which yields a critical value T./T; ~ 30 for the
same parameters. As vr;/c, increases further, the mode becomes more and more strongly
damped, as shown in Fig 6.
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In the absence of damping (cf Fig 4), the growth rate of the slow sound wave takes on its
maximum value when v is close to c,. Since Figs 5-6 were obtained for vy = 1.5¢,, well away
from the region of maximum growth, we have also solved the dispersion relation for the real
and imaginary parts of the normalized frequency of the slow sound wave for vy fey = U5
(T./T: = 8) as a function of vy/c,. The results are shown in Fig 7 and it can be seen that
the damping rate is now almost constant over the range of vy/c, from 1 to 1.5, apart from
a very small variation around vy ~ 1.2¢,.

6 Summary and Conclusions

A sharp boundary, uniform plasma with a uniform flow along the magnetic field, separated
from a resistive wall by a vacuum region, has been shown to be subject to two instabilities
both of which depend on the wall resistance and the flow. The first instability has a threshold
velocity, vp 2 ca, a case which has recently been analyzed by Wesson®. This instability is
associated with the slow, compressional Alfvén wave and a resistive wall mode.

The second instability has a threshold, vy ~ ¢, and is associated with the slow sound wave
and a resistive wall mode and clearly requires the effect of plasma compressibility. In both
cases, the unstable mode changes its character from a zero frequency resistive wall mode close
to the threshold to an oscillatory mode when the flow speed is somewhat above the threshold
value. The maximum growth rates occur when the zero frequency wall mode couples to the
zero frequency slow wave (Alfvén or sound). Under these circumstances the behaviour is
more characteristic of a reactive or ideal instability than of a dissipative or resistive one.
The oscillatory instabilities, slow Alfvén or slow sound, are analogous to the resistive wall
amplifier proposed by Birdsall et al®.

In the final part of the above analysis the slow sound instability has been generalized to
include the effect of ion Landau damping. This was because the slow magnetosonic wave
is normally strongly damped by ion Landau damping when T; ~ 7.. It was found that
since the growth rate of the resistive wall/slow magnetoacoustic instability is rather small
it is stabilized by weak ion Landau damping. For strong ion Landau damping, the damping
rate of the slow sound wave is almost independent of the flow speed, above or below the
sound speed. The inclusion of kinetic ion damping suggests a possible interpretation of the
stabilizing effect of plasma flow.

In the absence of flow, the resistive wall instability occurs at zero frequency and hence
would be insensitive to ion Landau damping. It is now clear that the presence of flow could
introduce a damping mechanism to the wall mode by Doppler shifting ions into wave-particle
resonance with the mode. In order to produce a noticeable effect, the flow speed should be
a significant fraction of the ion thermal speed.

For the idealized model considered in this paper, the only source of free energy is the flow
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itself. It would therefore be of interest to extend the treatment presented to a more realisti
model in which free magnetic energy is present.
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Figure 1 Symmetric, finite slab configuration in which the plasma, vacuum and resistive
wall regions extend to infinity in the y— and z— directions.






Figure 2 Graphical solutions of the symmetric, Eq (43), and anti-symmetric, Eq (45),

marginal stability conditions. (8g)s is the root of the symmetric equation and (8g)as

the anti-symmetric root.
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Figure 3 Alfvén wave instability for the parameters kg = 1, kd = 1.5493, cw/cs = 0.01 and
cafcs = 10, (a) Rew/ke,; versus vy/cs, (b) Imw/kc, versus vo/cs.
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Figure 4(a) Sound wave instability for the same parameters as Fig 3, Rew[kc, versus vy/c;.
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Figure 4(b) Sound wave instability for the same parameters as Fig 3, I'mw/kc, versus vy/c;.
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Figure 5 Sound wave instability with ion Landau damping for same parameters as Fig 3,
(a) Rew/ke, versus vri/cs, (b) Imw/kc, versus vr;/c, near to the stability boundary.
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Figure 6 Sound wave with ion Landau damping for same parameters as Fig 3, (a) Rew /kc,

versus vr;/cs, (b) Imw/kec, versus vp;/c;.
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Figure 7 Sound wave with ion Landau damping for same parameters as Fig 3, (a) Rew/kc;
versus vg/cs, (b) Imw/ke, versus vg/cs.






