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Abstract

A computational approach to the dynamics of internal transport barriers
in tokamaks based on the evolution of global, two-fluid, nonlinear, electro-
magnetic plasma equations of motion is presented. The simulations capture
features associated with formation of internal transport barriers in several
tokamaks, and in particular reproduce many of the striking observations made
on the Rijnhuizen Tokamak Project (RTP). The picture of tokamak turbu-
lence suggested involves ‘mesoscale’ variations of temperature and density
induced by the electromagnetic fluctuations and the back-reaction of such
profile ‘corrugations’ on the development and saturation of the turbulence

itself.
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Recent experimental researches on anomalous transport in tokamaks [1-3] have revealed a
wealth of fascinating phenomena associated with the spontaneous formation of the so-called
internal transport barriers (ITBs). For instance, in the RTP tokamak [1], keeping the total
current, field, line-averaged density and heating power fixed, when the electron cyclotron
heating (ECH) power deposition radius, r4ep, was varied across the minor cross section, the
steady state central electron temperature exhibited discrete ‘jumps’ (Fig. 2 in [1]), which
were correlated with the passage of the narrow power deposition profile across surfaces where
the safety factor ¢ had low order rational values. Moreover, the electron temperature profiles
measured using high precision Thomson scattering diagnostics showed considerable ‘fine
structure’ and other features (Fig. 3, loc.cit.). These results were phenomenologically [1]
explained by assuming that the effective electron perpendicular thermal diffusivity, ., has
strong, narrow minima at rational values of g. In addition, an outward ‘thermal advection’
was invoked to account for the apparent lowering of central electron temperature below the
Ohmic value during off-axis heating. These results present a challenge to any first principles
theory of plasma transport.

A complete theoretical understanding of ITBs in general, and these RTP observations
in particular, does not exist, although several suggestions [4-6] have been put forward as
to the probable causes. In this Letter, results obtained using a computational approach to
the study of ITBs based on the CUTIE code (7] are reported. This code was written to
investigate the solutions to the initial-boundary value problem for a system of two-fluid,
electromagnetic, nonlinear plasma evolution equations in global tokamak geometry, subject
to suitable sources and boundary conditions. A brief account of the hypotheses and principles
underlying CUTIE will now be given.

A tokamak has a macroscale of length, determined by its minor radius, a. A macro-
timescale is provided by the energy confinement time, 7. A typical microscale length is
the ion Larmor radius, p; = Vis/we, where, V2 = (T, + T;)/m;, and wy = eB/m;c. The
temporal microscale is provided by the Alfvén time, 74 = a/V, where, VZ = B2 /4rm;n.(0).

Experimental evidence [1-3] strongly suggests that the most important dynamical structures
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occur on the mesoscale (eg. the ‘poloidal gyro radius’, ppo1 = €Bpor/m;c and the inverse drift
period, 27 /w,., where, p; € ppo K a; wse =~ Vinkgps/a). One of the hypotheses underlying
CUTIE is that the mesoscale plasma dynamics is describable by the two-fluid, quasi neutral,
electromagnetic, plasma equations of motion. Turbulent fluxes are generally quadratic in
the amplitudes which have rapidly varying components. Since divergences of these fluxes
appear in the transport equations for the ‘mean’ profiles such as n, T, ;, turbulent advection
across surfaces turns out to be crucial. Such turbulent fluxes are not always expressible as
local, diffusive fluxes. Thus, strong mesoscale variation of the amplitudes and the nontrivial,
nonlinear/dissipative cross-phase relations between them imply fluxes, and a fortior: profiles,
which are not necessarily smooth or slowly varying in time. For example, ne(r,t) = Tle(r) +
An,(r,t), where i (r) is a relatively smooth time-average, and the ‘corrugated’ component,
An,, varies on the mesoscale, implying corresponding variations in quantities such as the
radial electric field, E,(r,t), and the bootstrap current density, jss(r, ), which feed-back on
the turbulence. Thus, there exist in general, fwo feed-back loops associated with the radial
electric field [6] and the plasma current density, respectively.

CUTIE simulations suggest that in global, electromagnetic calculations with prescribed
sources (or fluxes [9]) the low mode number part of the spectrum is excited through an
inverse cascade, even if one starts with high mode numbers. These relatively long wave-
length modes are associated with low order rational values of . They imply, due to their
radial variations and cross-phase relations, the genesis of corrugations near rational surfaces.
These modes interact with the profiles via the two-feed back loops mentioned. Thus, the
long wavelength, electromagnetic spectrum plays a vital part in the ability of the tokamak
plasma to ‘self-organize’. The resulting dynamics of the CUTIE system involves a host
of spatio-temporal phenomena such as complex mode/plasma rotation and oscillation pat-
terns, current filaments, internal mode-locking, periodic and chaotic relaxations, analogous
to those obtained in simpler models [10]. Thus, intermittent bursts of high frequency /high
wave number turbulence ‘punctuate’ the evolution, and result in spectral features like P

behaviour, coherent modes and avalanche-like propagating pulses (as in [9]).
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This picture of plasma turbulence is far more dynamic and decidedly different from the
traditional one based on ‘quasi-linear’ theory, where a smooth ‘equilibrium’ profile is tested
for linear stability, and the growth-rates used to estimate transport via mixing length hy-
potheses. The existence of corrugations suggest that the actual ‘instantaneous’ linear mode
spectrum is similar in character to the linear properties of a random medium exhibiting
parametric instability, for instance. The growth and decay rates of modes in such a sys-
tem are comparable with the rate of evolution of the corrugations. Indeed, the turbulence
itself determines the local gradients of both magnetic and electric field shear. Whilst the
significance for transport of the latter is widely appreciated [6], the importance of the local
bootstrap current in determining the evolution of the magnetic shear near rational surfaces
has only recently been noted [5]. In fact, the corrugations in the total current density af-
fect both the radial variation of the parallel wave number, k; o« m — ng, and the ‘kink
term’, jl’l, responsible for currént-driven instabilities. Similarly, corrugations in the pres-
sure/temperature profiles affect the driving terms for other gradient-driven instabilities. In
this view, tokamak plasma turbulence is essentially nonlinear, nonlocal and intermaittent.

A brief description of CUTIE is now given (for details and earlier results, see [7]). The
code is based on the standard [8], two-fluid, drift-approximated, nonlinear, global, electro-
magnetic equations of motion. These partial differential equations govern the time evolution
of the two potentials ¢,1, and the five plasma fields, n., T¢, T;, v, ©, where the ‘potential
vorticity’ © along the magnetic field is given by, © = V.(n.V 1 ¢). Fast magnetosonic waves
are eliminated and the tokamak ordering is used. The model is ‘minimalist’: the equilibrium
flux surfaces are taken to be concentric periodic cylinders (thus neglecting Shafranov shifts
and effects of variable metric coefficients), but crucial dynamical effects of geometry such
as line bending and field curvature [8] are included. Explicit effects of trapped particles
on turbulence are neglected, although neoclassical coefficients are used to provide a ‘floor’
for the transport. The equations are solved numerically in the whole tokamak volume,
subject to specified particle, current and energy sources and boundary/initial conditions,

co-evolving the equilibrium and fluctuations. The radial profiles and fluxes are outcomes of
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the calculation rather than imposed a priori. The model is simplified further by assuming
that there are no strong toroidal or poloidal momentum sources in the system. Although
[6], surface-averaged, ‘zonal’ fluid flows can be driven by the turbulence itself, such fluid
flows are neglected in CUTIE, and the equilibrium radial electric field is obtained from the
relation, E. T dr Effects of turbulent Reynolds stresses are left for future work. The
model is a large eddy simulation in which only the macro/mesoscales are explicitly modelled.
As in meteorology, a turbulent viscosity is used to provide a high k/sub-grid cutoff. It is
assumed to be of the form, Dg = Vi, R(§5% + 60?), where §3,60© are suitably normalized.

This has the correct ‘laminar’ limit(Dg = 0) when turbulent fluctuations vanish. To get an

idea of the complexity of this system, the equation for the potential vorticity is presented:
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The other evolution equations take a similar form. Carets on quantities imply Fourier
coefficients with respect to the two angular coordinates. Starred lower case quantities are
nondimensional, position-space forms of the dependent variables. Starred upper case ones
refer to the central, dimensional values(eg. n* = n./N*; N* = n,(0,t)). The potentials are
nondimensionalized as follows: cd/By = Vyp,8Y/2¢* ¥/By = p,f%*. The m = n = 0
Fourier components (m,n are the poloidal and toroidal wave numbers, respectively) are
treated nonlinearly, in position space.

The CUTIE simulations of the RTP experiments are ‘thought experiments’ which provide

qualitative insights on the dynamics of the system. They apply to times of order 0.5ms
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from power switch-on and correspond to the same, initial g profile, in contrast to quasi-
equilibrium observations [1]. A radial mesh of 100 points, together with 32 poloidal and 16
toroidal harmonics, were used. The time-step used was 5 ns, giving a reasonable accuracy
in resolving the shear Alfvén waves(Vs ~ 5 x 10°m.s™"). Typically 15 secs of CPU per time-
step were needed with 64Mbyte memory requirement on a 450MHz Dell PC(Linux). The
machine conditions used: a = 0.165m, R = 0.72m, By = 2.15T, I, = 66kA, Pgcu = 350kW.
In the plasma core, this implies that 2Ar ~ p,. An initial, smooth ¢ profile with go = 0.85
to g, = 6 was used, leading to r4=; =~ 0.18a. The ECH power was distributed radially using
the function, exp —(r — rdep)g/w2, where w = a/7. Three cases are presented: Tgep = 0.35a
(Run#1, ‘Case B’ in Ref.l), rgep = 0.1a (Run#2, ‘Case A’ in Ref.1) and reep = 0.55a
(Run#3, ‘Case E’ in Ref.1). It should be noted that w was nearly twice as large as in the
experiment, since it was thought important to separate genuine effects of steep transport
barrier formation from those due to narrow heating profiles. Gaussian initial temperature
and density profiles were used, together with randomized, small amplitude ‘noise’ in the
fluctuations. The particle source was not known experimentally. In the simulations, the
radial source profile, Sp(z) = z(1 — 1.1z%) was used (where, z = r/a) together with feed-
back to crudely simulate recycling and maintain the line-averaged density 7i. at nearly the
experimental value of 2.7 x 10'®m~3. The density profile is an outcome of the calculation.
Movies of simulations for ‘RTP#1(Case B)’ show that about 50 us from the start, a
strong (3,2) resonant mode forms and rapidly steepens the gradient near this rational sur-
face. After this rapid initial phase involving an inverse wave number cascade, the profiles
and the turbulence evolve corrugations more slowly over a longer period. In general, the
typical radial wave number, k., is somewhat larger than ks =~ m/a. As mentioned earlier,
intermittent bursts of high mode number activity and internal mode-locking/relaxation os-
cillations punctuate the evolution. In Figures 1,2 the development of the corrugations in
T,, E, is shown for the final stretch of the simulation (continued for about 0.5 ms from the
start). The main transport barrier is located close to the ¢ = 3/2 resonance, although cor-

rugations at other resonances can be discerned on close examination. The barrier occurs in
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both temperatures and density, and once formed, evolves on the slower, resistive time-scale.
The central electron temperature is 800eV (close to the ‘steady-state’ experimental value).
Clearly, the code predicts that off-axis heating is associated with a centrally hollow tem-
perature profile [1]. Changing r4e, to 0.1a (experimental Case ‘A’, labelled RTP#2 here),
holding other parameters and conditions fixed, the profiles and the barrier change, as shown
by Figures 3,4 illustra;ing, this time, Tp, jps. In this case, the central temperature is 1.1keV
and rising (Tg =~ 1.5keV is the quasi-equilibrium value [1]), and the barrier forms close to
the ¢ = 1 surface. Generally the turbulence saturates on a time-scale longer than the drift
period but shorter than typical energy confinement times. For these cases, the code predicts
a global 7 of around 5-6 ms, close to the steady experimental value [1].

The existence of a strong inverse cascade is shown by Figures 5,6 (r4ep = 0.55a, experi-
mental Case ‘E’, ‘RTP#3’) in which the contours of the potential vorticity §© are plotted
on a poloidal plane at an early time (200 us from the start) during the ‘linear growth phase’
and 175 ps later, in a run with 64 poloidal harmonics, 100 radial mesh points and 16 toroidal
harmonics. Within the heating zone, there is a substantial dominance of the longer wave-
lengths at the later time. The outward spread of turbulence, the central (1,1) mode and the
presence of fine-scale fluctuations near the edge are noteworthy. Often, the core mode rota-
tion is counter to the edge mode rotation with intermittent locking and bursts (only visible
in movies). Generally, the current density fluctuations (not shown) are more core-localized
and tend to be lower m compared to potential vorticity fluctuations.

In summary, the first, global, two-fluid, electromagnetic, large eddy simulations of ITB
formation and dynamics have been presented. They suggest that CUTIE captures some
basic features of internal transport barrier formation. In particular the importance of low
order rational surfaces implied by the RTP data is shown to be related to electromagnetic
instabilities. These initially result in fluxes which corrugate pressure and other profiles,
leading to self-sustained barriers, which then evolve on longer time-scales. Many other
runs, some pertaining to JET-like [2] cases, yield similar results. This highlights the need

for global, nonlinear, electromagnetic computations with experimentally relevant sources
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in elucidating the complex physics of the spontaneous generation of corrugated profiles and
their self-consistent interactions with turbulence. Such simulations constitute powerful tools,
in combination with experiment and theoretical analyses, for the understanding and eventual
control of ITB phenomena.
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