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Abstract

The theory of neoclassical transport near the magnetic axis in a tokamak is discussed.
It is shown that the ordinary treatment of transport in the plateau regime holds close
to the magnetic axis, and is not modified by “potato” orbits. It is also demonstrated
that transport at low collisionality cannot be described independently of the sources
of particles and heat in the region near the magnetic axis, in contradiction to sev-
eral recently published theories. A variational principle is formulated for the near-axis

transport problem.

PACS Numbers: 52.25.Fi, 52.25.Dg, 52.55.Fa, 52.20.Dq



1 Introduction

In the last few years there has been a revival of interest in the old problem of neoclassical
transport near the magnetic axis of a tokamak. Conventional neoclassical theory (1, 2, 3]
assumes that the ion orbit width is much smaller than the distance r from the magnetic
axis. Far from the axis, where this assumption is valid, the widest orbits are shaped

like bananas and have a width of the order
Ty = 261/2'0/90, (1)

where 0y = eBy/m is the poloidal gyrofrequency, v the velocity, and e = /R the
inverse aspect ratio. The banana width 7, increases towards the magnetic axis, and
when r Sry the shapes of trapped orbits change noticeably and resemble potatoes rather
than bananas. These orbits are the widest ones that exist in a tokamak; they have a
width that can be estimated by equating the banana width (1) to r. This gives the
“potato width” [4]

Py = (2q2p2R)1/3, (2)
where ¢ = 7B/RBy is the safety factor and p = mv/eB the gyroradius.

Recently there have been a number of attempts to improve on conventional neo-
classical theory, which is valid for r >> r;, so as to be able to treat the near-axis region
r = O(rp), see Refs [5] - [11]. There are two reasons for the interest in this topic. First,
the ion potato width can be a considerable fraction of the minor radius in a tokamak if
the current density in the center is small, which is common in discharges with negative
magnetic shear. In such plasmas the neoclassical ion confinement in the core should be
governed by “potato” transport rather than by the usual theory. Second, the bootstrap
current is proportional to the fraction of trapped particles, f; ~ €!/2, in the banana
regime and therefore vanishes on the magnetic axis [12]. It is impossible to find a
simultaneous solution to the Grad-Shafranov equation and the transport equation for
particles or energy if the current is exclusively given by the bootstrap current [12, 13].
Therefore it is difficult to attain a steady-state tokamak without driving a seed current
in the center. It has been suggested that it may be possible to create a plasma with
a current “hole”, so that the current density vanishes completely in a region near the
plasma center and there is no magnetic axis [14]. However, it is uncertain whether

such a configuration would be stable or attainable in practice. On the other hand, the



presence of (electron) potato orbits might give rise to a neoclassical bootstrap current
near the axis after all. Such a current was calculated in Ref [8], and, based on this, a
stable, completely bootstrapped equilibrium was found numerically in Ref [10].

It is the purpose of the present paper to comment on the recent literature and to
point out a number of mathematical shortcomings and physical misconceptions. In
fact, we have found that all of the recently published papers [5]-[11] contain errors,
some of which are of a fundamental nature. Our paper is organized as follows. In
Sec II, we analyze the guiding-center orbits, which play a basic role in the kinetic
transport theory developed in the next two sections. In Sec III, we treat the potato-
plateau regime introduced by Shaing and Hazeltine in Ref [9]. In contradiction to their
work, we find that in this collisionality regime the transport is similar to that found
in conventional neoclassical theory: potato orbits do not affect the plateau kinetics.
In the next section we discuss the collisionless, “potato regime”, which is analogous to
the usual banana regime. This has been the subject of some controversy recently as
Ref [5] and Refs [6]-[8] arrive at opposite results: the former finds that the ion heat
diffusivity vanishes at the magnetic axis, the latter that it becomes infinite. We show
that the transport is nonlocal in nature in the region r <r, and cannot be treated as in
Refs [5]-[8] and [11] without taking the source term or time evolution into account. We
formulate a variational principle for the resulting kinetic problem. In the final section

our conclusions are summarized.

2 Orbits

In this section we briefly review the theory of guiding center trajectories in a tokamak,
including the near-axis region. A general axisymmetric magnetic field can be written
as

B =I{))Vp + Vi x V),
where ¢ is the poloidal flux and ¢ the toroidal angle. For simplicity, we shall assume

that the flux surfaces are elliptical, so that
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is a flux function, that the toroidal field dominates over the poloidal field, By < By
where By = |V4|/R and B, = I /R, and that the tokamak safety factor

g %jﬁg_ Zf;da — krB/Y(r)
is approximately constant over the region we are considering. Here z and z are the
horizontal and vertical distances from the magnetic axis, and k is the flux-surface
elongation. These assumptions are usually well satisfied near the center of a tokamak.
In general, the shape of the orbits can be deduced from the three constants of
motion (B, i1, p,), where E = mv?/2 + e® is the energy, p = mv? /2B the magnetic
moment, and p, = e(Iv)/Q—1)) = —ewp. the toroidal canonical momentum. To simplify
the analysis we assume that there is no strong electric field, so that the electrostatic
potential ® varies by much less than does E/e over a guiding center orbit. We can
then use the particle speed v as a constant of motion rather than E, and we can use
A =v3By/v?B =~ (1 — €?)R/Ry instead of u, where By = I/Ry denotes the magnetic
field strength at the magnetic axis, R = Ry, and £ = v /v the cosine of the pitch angle.
By eliminating ¢ from these relations one obtains

(R)z_ﬁz [e(w—w*)]"‘,

R—o Ry mRyv

which determines the shape of the orbits in the coordinates (R,). It is now straight-
forward to calculate where the orbits intersect the midplane z = 0. Since 9 = kByr?/2q
the points of intersection € = /Ry are given by the quartic equation
A 2
(1+e)2—A(1+e)=[%(52_53)J , (3)
where pg = mv/eBy and €2 = 2¢%y,/kR2By. This equation has either two or four
real roots, corresponding to whether there are one or two orbits with a given set of
invariants (v, A, ). (Each orbit intersects the midplane twice.) Far from the magnetic
axis, these cases correspond to whether the orbits are trapped or circulating. For given
(v, A, 1b4) there is either one trapped orbit, or two circulating ones with different signs
of v
Let us first analyse the orbits that pass through the magnetic axis. For such orbits
the constant term in the quartic equation (3) must vanish, 1 — A — (kRpe2/2qpo)? = 0,

so that ¢ = 0 is a solution. By finding the other solutions we can determine the other



point where an orbit intersects the midplane and thus obtain the orbit width. If we
denote the value of £ at the magnetic axis by &o, then we have €2 = —2¢poép/kRy and

A =1-¢, and we can write Eq (3) as

4gpo 29’90)2
3, %P0,  [29p0 2_N=o
€t im0 (kRO (1+&~¢) =0

There are two types of solutions to this equation. For most orbits & = O(1) and the

term €2 is small, so that the solution becomes

. 1+ &8 gpo.
€ kRg

Thus, these orbits stay within about a gyroradius of the magnetic axis. If & is very

small, & ~ (2gpo/Ro)'/3, then the cubic term is no longer negligible and

. (29100) ca
kRgy ’

which corresponds to the potato width estimate (2).

More generally, it is instructive to write Eq (3) as

2
€ =€ (1 - ke2Rg (I+e)(l+e )\)) , (4)

Since po/Rp < 1 it is apparent that for most solutions we must have €? ~ €2, so that
the orbit stays close to a particular magnetic surface. The maximum excursion for
these orbits is Ar = O(gpge~1/2), which occurs for 1 — \ = O(e€). The only orbits which
have large excursions, Ar/r = O(1), are those for which € S(gp/kRp)*? and 1-) <« 1
simultaneously, i.e., the potato orbits analyzed above.

In summary, most orbits stay within a distance of the order of the Larmor radius
of a particular flux surface. This is true everywhere in the plasma, even in the potato
region r <rp. A small proportion, f; < 1, of the particles are trapped (or barely
untrapped) and have wider orbits. These particles are characterized by small parallel
velocity, [€| < f;. Far from the magnetic axis, the trapped fraction is f; ~ €!/2. In the
region close to the center, as defined by (2), the fraction is ft ~ (2gpo/kRy)'/3. Figure
1 shows a few particle trajectories close to the magnetic axis. Most orbits in this region

are of the type C, i.e., identical to passing orbits farther away from the magnetic axis.



3 Plateau regime

The plateau regime of collisionality is defined by
1< < fi3 (5)

where v, = v/ fw; is the collisionality, with v the collision frequency and w;, = vr/qR
the transit frequency of thermal, well circulating particles. In this regime, the effective
collision frequency for scattering across the trapped-passing boundary, veg = v/f?,
exceeds the poloidal (bounce) frequency wy ~ fuw; for trapped and barely circulating
particles. As a result, the orbits of these particles are interrupted by collisions, while
the well circulating ones are collisionless.

Because of the smallness of f; near the magnetic axis, the plateau regime is of fairly
wide applicability. Indeed, if the conventional expression, f; ~ €'/2, were valid all the
way to the magnetic axis, one would conclude that the near-axis region is always in
the plateau regime if v < w;. Because of the correction from potato orbits, f; does not
quite vanish at the axis. However, since f; ~ (2gpo/kRo)'/® = (r,/R)/? is usually a
very small number, even quite hot plasmas can be in the plateau regime near the axis.
Shaing and Hazeltine have therefore developed a theory for plateau transport in the
near-axis region [9]. Their theory takes potato orbits into account, and these orbits
play a central role in the transport.

Before discussing this theory, we review the physics of conventional plateau-regime
transport. The latter is dominated by a class of resonant particles for which the effective
collision frequency ver = v/£? is equal to the poloidal frequency wp = d@/dt = Euwy,
50 that &res ~ (v/wg)l/ 3. These particles are well circulating, £res > fi, and therefore
follow ordinary untrapped orbits. Their excursions from the flux surface on which they
are centered are small (of the order gp). In first order (in the smallness of the Larmor

radius) the drift kinetic equation is

.0f1 3f1
__._|_§ ag

where fo(r) is the zeroth-order, Maxwellian distribution function, v4 the drift velocity,

= C(f1) = —va- Vo, (6)

and C the linearized collision operator. It is convenient to split off a part of the

distribution function by writing

. Iy dlnp ed® dlnT)




where p = nT is the pressure and y is a constant, whose value is later chosen suitably
(see Ref [2]). The first two terms on the left of Eq (6) are small since r and £ are nearly
constant over the orbits of resonant particles. Moreover, because of the narrowness (in
§) of the resonant region, the collision operator can be approximated by its pitch-angle

scattering part, and the kinetic equation becomes

v€ 89 v %y rw
q—R% 25? = QsmB, (7)

where Q@ = (varB/kq)(E/T — 5/2 — y)(dT/dy) fo. (Although the resonant layer is
narrow in this sense, it is still wide enough that the mirror force may be ignored.) The

solution is easily found by elementary means [2], and becomes
g =7mQd(v€/qR)sind (8)

in the limit ¥ — 0. The collision operator is small in most of velocity space but is
important in the resonant region ¢ ~ (v/w,)'/3, where it resolves a singularity which
otherwise arises. As a result, the transport is insensitive to both the collision frequency
and the structure of the collision operator. The latter can, for instance, be replaced by
a simple Krook operator, C(g) — —vg, without affecting the result.

Note that the only properties about orbits which were used were that r and ¢ are
constant for resonant particles. Both these assertions hold also in most of the potato
region r < rp. Well circulating orbits (including the resonant ones) are no different in
this region than farther away from the magnetic axis. The trapped orbits are different,
but they play no role in plateau transport! In fact, they do not exist as they are
interrupted by collisions. Thus, the transport close to the magnetic axis is similar to
that found in the conventional theory. Of course, this theory breaks down at very
small distances (of the order of gp) from the magnetic axis, where the orbits do have
relatively large excursions. On the other hand, transport theory is not meaningful on
such short length scales, as will be discussed further in the Conclusions. In addition,
there is a further constraint associated with the disparity between kinetic and transport
time scales, which limits the applicability of the plateau regime close to the magnetic
axis, as will be discussed in the next section.

We now turn to the recently published theory of Ref [9]. This paper focuses on

particles whose orbits pass through the magnetic axis, and the drift kinetic equation is



written as

dg .
wp (%) . - C(g) = Q@sind.

The poloidal frequency wy = dfl/dt varies strongly along potato orbits. By changing the
independent variables from (E, u, %4, 80) to (E,ws, ¥4, 0), the equation is transformed
into

09 L Ows 89\ _ iy — s
(5 + Fr s ) = Clo) = Qsind, (9)

It is then argued that the second term on the left is small in the resonant region and
can be dropped. The problem is thus transformed into a form which is mathematically

equivalent to the usual plateau problem, and the solution becomes
g = mQJ (wp) sin@

by analogy with Eq (8). The transport can thus be calculated along familiar lines.
However, the neglect of the second term in Eq (9) does not appear to be justified.
The poloidal speed varies significantly along orbits passing through the magnetic axis,

0wy /08 ~ wy, and in the resonant region 8g/dwy = O(g/wy), so that

awg 39' _
30 5wy — O

for the relevant class of particles. The terms on the left of Eq (9) are thus comparable,
and the kinetic problem is two-dimensional in nature when written in the variables
(wa, ).

In summary, plateau transport is not affected by potato orbits since these orbits are
interrupted by collisions and the transport fluxes are carried by well circulating ones.
Thus, conventional transport laws [2] apply in the potato region gp < r < rp rather
than the (rather different) ones derived in Ref [9]. In particular, the bootstrap current

scales as j « r%/v, and is thus very weak near the axis.

4 Potato regime

We now turn to the regime of very low collisionality, v, < 1, where not only circulating
orbits, but also trapped ones, are collisionless. Transport in this regime has been
treated in several recent papers [5]-[8], [10], [11]. The starting point of these papers is

the drift kinetic equation
WV +va-V(fo+ f1) =C(f), (10)
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where the gradient is taken at fixed (E, u). The new feature as compared with con-
ventional neoclassical theory is the retention of the term v4 - Vf, which is as large
as the usual term vq - V fp since f; varies on the scale of the potato width while the
equilibrium scale length associated with fp is much longer.

In Ref [5] the kinetic equation (10) for ions was solved numerically, and the results

were compared with a random-walk estimate of the ion heat flux

(Ar)? 8fg ma? , dan dT; /"0 (Ar)? ( N
~— SOTHY = e
U a/ft Tef Or 2 v w27 dr Jo fi u 2) e du,

where the effective collision time was taken as Teg = 7u®/2 ftz, with 7 the ordinary

ion collision time and u = mv? /2T;. The constant o was chosen so as to match the
usual neoclassical result far from the magnetic axis, and only the temperature gradient
term was included in 8fy/8r. The trapped particle fraction f; and the step length Ar
were both regarded as functions of the velocity v and the radius r. For velocities so
small that the banana width is smaller than the radius, r, < r, the banana expressions
Ar =1y, f = €/? were used, while for v such that 7, > r the potato results Ar = rp,
ft = (r,/R)Y? were employed. At the magnetic axis the latter apply for all velocities,
and the heat flux vanishes
Gy 22 —%le—f%%fowrﬁﬁ (u - g) e “du =0,

since rp ©1/3, and in the potato region r/r, — 0 the heat diffusivity approaches zero
by a formula derived in Ref [5]. This result appears questionable as it results from the
accidental cancellation of two terms, which have only been estimated in an approximate
way. For instance, if the density gradient were included or if the collision time had a
different dependence on velocity than u=3/2 (for instance involving errror functions), a
rather different result (more like that of Shaing et al [6]-[8]) is obtained.

In Refs [6] - [8] a more ambitious solution of the kinetic equation (10) was attempted,
by making two approximations. Only orbits passing through the magnetic axis were
considered, and the collision operator was simplified by including only pitch-angle scat-
tering across the trapped-passing boundary, wy ~ 0. Both these approximations are
difficult to justify. When an orbit passing through the magnetic axis undergoes a colli-
sion, it is normally scattered onto an orbit which does not go through the axis. Recall
that although there are trapped, wide orbits in the potato region r < r,, most particle

trajectories in this region are circulating and approximately follow magnetic field lines.



In Fig 1, if a particle on potato orbit A undergoes a collision, it typically ends up
on a passing orbit of type C. The kinetics of these different types of orbits cannot be
considered independently of each other. This issue is also related to the replacement
of the collision operator by scattering across the boundary wg ~ 0, which is made in
Refs [6] - [8]. This approximation was inspired by earlier work by Hazeltine and Catto

on transport in a bumpy torus [15], but does not appear to be justified in the present

context. The pitch-angle derivatives in the scattering operator transform as

Ofi _ Owpdfi | 9. Ofy

06 O duwy = BE OV,

where both terms must be retained in general. Indeed, in the potato region, scattering

across the boundary wy ~ 0,
dwOfy _hi
9¢ dwyp ft’

is comparable to the radial derivative

. 0f _Ivfi
8 o, Qg

since the latter involves the short scale length ¢, = kBrg /2q, the scale length in

corresponding to the potato width (2). The point is that orbits change noticeably on
the scale length of the orbit width.

However, there is a more fundamental difficulty with the formulation of the trans-
port problem itself as in Eq (10). Normally the time derivative 8f /9t and any source
terms can be neglected in Eq (10), and Refs [5]-[8], [10], [11] follow this practice. The
usual reason for this neglect is that there is a separation of time scales between the
establishment of a local equilibrium within each flux surface (which is fast) and the
cross-field transport (which is slow). However, such a situation does not prevail in the
region r < 7, near the magnetic axis.

For instance, consider the ion energy transport equation

3/onT;\ 1 0 _,
: <W> = ~iag" (a- V) + 55, (11)

and suppose that the energy source Sg vanishes. Here (---) is the flux-surface average
and V() the volume enclosed by the flux surface 1. In the literature cited the heat
transport was found to be diffusive
dT;
. v = — —
(q-VY) = —nxy &b

10



where the heat diffusivity y, scales as
2
X'ﬁb S Vlep/fIQ

in the papers by Shaing et al [6, 7, 8]. This can be understood from a random-walk
argument. The transport is mainly due to the trapped and barely passing particles,
which constitute a fraction f; of the total population and have an effective collision
frequency veg = v/f2. The random-walk step size is of the order of the potato width
1y, and the heat diffusivity therefore scales as xy ~ fweffr,bg. The theory assumes that
dT;/dy is nearly constant on the scale length of the potato width. This is questionable
and will be discussed below, but suppose it holds at some initial instant, £ = 0. The

energy equation (11), which can now be written as

B[O 8

2\ ot /" oy oy

governs the subsequent evolution of the temperature gradient. Since there is no heat
source at the magnetic axis, dT;/dy is immediately flattened there, and after the time

B b
Xy v

T

dT;/di ~ 0 in the entire potato region r <r,,. However, this is shorter than the time v~}

required to establish an equilibrium for the distribution function in velocity space.! It
is thus clear that the time derivative df;/dt¢ cannot be neglected in the kinetic equation
(10).

Alternatively, the source term must be retained. The energy equation (11) then
implies

o " se)ay,

in steady state. Realistically, the source Sg must be taken to be constant over the near-
axis region, but then dT/dy is not constant as required by the theory. For instance, if

Xy is taken from Shaing et al [6] - [8], then dT/di vanishes on axis, while it becomes

infinite if the heat diffusivity of Lin, Tang and Lee [5] is used. (The latter actually

'It may perhaps be argued that it should be sufficient that the transport time scale  ~ f;/v exceeds
the time scale for establishing a collisional equilibrium within the trapped region, which is relatively
short, of the order O(f?/v). While this may be true for energy transport, it certainly cannot hold

when considering the bootstrap current, which is mostly carried by passing particles.
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predicts infinite temperature on axis!) At any rate, retaining the source term is likely
to influence the kinetics of the transport problem.

We are thus led to consider the full, steady-state drift kinetic equation
(vj+va) -V =C(f) +35, (12)

where S is a source term, upon which the transport will depend in general. The
density and temperature gradients must be determined from this equation; they cannot
be prescribed independently. This issue has recently been explained eloquently by
Hazeltine [16] in the context of transport along a magnetic field: spatial gradients are
usually considered to be the driving force for transport, but this point of view is only
fruitful on length scales much longer than the step length in the collisional random
walk. On shorter length scales, in the present case r <rp, the transport is non-local in
nature and cannot be related uniquely to local gradients. Instead, the source term acts
as the driving force for the transport, which determines the gradients.

In the potato regime, where the source term and the collision term are smaller than
the left-hand side, it is appropriate to expand the distribution function, f = fo+fi+...,
so that

(vj+va) Vo =0,

which implies that fy depends only on constants of motion, fo = fo(v, A, ., o), where
o = vy /|vj|. This function is determined by the constraint equation that is obtained

by taking the orbit average of Eq (12),

j{[C’(fo) + §]dt = 0. (13)

We shall make no attempt to solve Eq (13), which is a formidable problem, but we
would like to point out that it is not difficult to formulate a variational principle for

Eq (13). The variational form is the entropy functional
_ fo 3, 3
A=— [ =[C(fo) +25]d°rd’v,
Y

where the volume integral is taken over a radial region which is much larger than
the orbit width but much smaller than the length scale associated with the density
and temperature in fy. The function fj; is Maxwellian, with constant density and

temperature in this region. It is assumed that fp is nearly Maxwellian, which is the

12



case if the source term is weak enough, and that fj is close to fas. If A is varied subject
to the constraint fy = fo(v, A, %, o), then A = 0 is equivalent to Eq (13). To see this,

we recall that the phase-space volume element can be expressed as
d*rd®v = d®Jd39,

where (J, ) are action-angle variables [17, 18, 19]. The action variables J = (Jy, J2, J3)
are constants of motion and thus functions of (v, A, %, o), while the angle variables ¥
are phases which evolve linearly in time along an orbit, d;/dt = const., and run from
0 to 1. The first angle corresponds to the gyrophase, and the third one to the toroidal
angle . Thus, in drift kinetics of an axisymmetric plasma, only the second angle, 95,
is of importance; it measures the phase along the guiding-center trajectory. Varying
the functional A subject to the constraint that fy should depend only on the action

variables now gives

__ [%fo 3
SA = /fo dJ}f[C(fo)JrS]dﬁg,

and it follows that 6A = 0 is equivalent to Eq (13). Here we have used the self-
adjointness of the linearized collision operator and assumed that the source term is
known.

In principle, the transport problem (12) can thus be solved by using trial functions
to minimize the functional A. When minimized, A becomes equal to the total entropy

production in the region,

Alfl= [ ?%C’(fo)dsrdsv-

5 Conclusions

The topic of neoclassical transport in the region near the magnetic axis has been the
subject of several recent papers [5] - [11]. These works have convincingly shown that the
transport properties of a nearly collisionless plasma depend sensitively on the particle
orbits near the axis. However, the properties of the orbits themselves depend strongly
on the radius, so that the transport changes on a length scale that is comparable to
the step length in the collisional random-walk process. Under such circumstances the
conventional picture of diffusive transport is inappropriate, as it considers length scales

larger than the step length. It is no longer meaningful to write transport equations

13



such as Eq (11) since the heat flux is not determined by the local temperature gradient
alone. Moreover, the temperature gradient is neither known nor constant in the region
close to the magnetic axis; it must be determined as part of the transport problem.
To some extent, these issues are recognized in Refs [6] - [9], where a radial average is
taken in the calculation of the heat flux. However, unlike the situation in a bumpy
torus [15], there is no intermediate length scale to average over. (A potato orbit which
is displaced radially by as little as a potato width changes shape noticeably.)

Although we have argued that the literature cited contains several errors, both
mathematical and conceptual, we believe that the basic scalings derived in some of
these works are correct and valuable. It is certainly true that the fraction of trapped
particles does not vanish on the magnetic axis, but is f; ~ (2gpo/kRo)/3. This implies
that the particle and heat fluxes should scale approximately as derived in Refs [6] -
[8] (rather than as in Ref [5]), although the numerical coefficients (and indeed the
form of the diffusive transport laws) are incorrect. Furthermore, there should be a
non-vanishing bootstrap current and a trapped-particle correction to the resistivity on
the magnetic axis, as pointed out in Refs [10] and [11]. Unfortunately, the bootstrap
current tends to be very small — far lower than what is required for a conventional
current profile. It should be noted that the electron potato region (which is where
potato-orbit effects “fill in” the hole left by the conventional bootstrap current) is very
small. It can easily fall in the plateau regime, v, > 1, where the current is suppressed
by collisions and scales like j o< 72/v,. This is, for instance, the case for the plasma
parameters used in Ref [10].

Finally, we have shown that the plateau regime, as defined in Eq (5), is no different
in the potato region r < r, than farther away from the magnetic axis. The physical
reason for this is that the transport is dominated by well-passing particles, which ap-
proximately follow magnetic field lines. Only in a region very close to the magnetic

axis, r ~ gp, do well-passing orbits deviate significantly from flux surfaces. 2

*However, there is also the condition that the transport time scale 7 ~ r2/x, where x ~ v(gp)? in

the plateau regime, should be longer than the collision time v~!. This limits the applicability of the

plateau regime to r > gp\/w:/v.
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Figure 1. Orbits close to the magnetic axis.Trapped orbits that pass through the axis (A),
also known as potato orbits, have relatively large widths. Circulating orbits passing
through the axis (B) stay within a few Larmor radii of the axis. Most orbits in the
near-axis region are circulating (C) and stay close to a particular flux surface. At a
distance of only one potato width from the axis, the trapped orbits resemble bananas D).






