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Abstract

The presence of planar sinks for mobile point defects in irradiated materials
is shown to give rise to an unusual type of competition between the nucleation
and growth of defect clusters and mesoscopic cavities. Numerical solutions
of non-linear diffusion equations describing the binary field of mobile vacan-
cies and interstitial atoms show the formation of a characteristic profile of
inhomogeneous swelling that exhibits features similar to those observed ex-

‘perimentally.

PACS 61.80.Az, 64.60.Qb, 66.30.Lw

I. INTRODUCTION

The kinetics of phase transformations in materials driven far from equilibrium has re-
cently attracted considerable attention stimulated by the need to develop better understand-
ing of how materials behave in a hostile environment [1]. A typical example of an evolving
non-equilibrium system is given by a material irradiated by a flux of energetic particles [2],
and this is rapidly becoming one of the issues central to the design of a fusion power station
[3,4].

The evolution of the microstructure of an irradiated material is characterized by the
presence of dynamic quasi-equilibrium between the generation of mobile point defects by

the incident energetic particles and the absorption of these defects by dislocations, grain
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boundaries and cavities in the material. A chemical reaction type theory describing the
temporal evolution of spatially averaged concentrations of mobile vacancies and interstitial
atoms in the presence of randomly distributed mesoscopic lattice defects was formulated
thirty years ago by Brailsford and Bullough [5]. Recent theoretical advances have been
associated with the development of a more accurate treatment of effects of cascade damage
that are described by either the molecular dynamics [6,7], the kinetic Monte-Carlo [8] or
the continuum [9] models. One of the aspects that emerges from recent theoretical studies
concerns the importance of taking into account spatial fluctuations of concentrations of point
defects in the material, see e.g. [10,11].

Spatially inhomogeneous concentration profiles naturally appear in the treatment of ki-
netics of nucleation and growth where growing clusters act as sources or sinks for the diffu-
sion fields [12,13]). In a binary system described by the r- and ¢-dependent concentrations
¢y(r,t) and ¢;(r,t) of mobile vacancies and interstitial atoms an even more complex case is
encountered. Here the extended lattice defects act as sinks for the diffusion fields c,(r, )
and ¢;(r,t) reducing concentrations of mobile point defects in the immediate vicinity of
each sink. Furthermore, since the rate of absorption of mobile point defects by a sink de-
pends on the type of a point defect (typically, mobile interstitial atoms are absorbed at a
higher rate than vacancies [5]), the presence of sinks gives rise to vacancy supersaturation
S(r,t) = Dycy(r,t) — Dic;(r, t), which is the parameter that determines the rate of growth of
vacancy clusters and mesoscopic cavities [14]. Averaging of diffusion fields over the position
of randomly distributed sinks results in the positive mean value (S(r,t)) = V! f,, S(r,t)dr
of vacancy supersaturation [5]. Therefore, the function S(r,t), considered as a function of
coordinate r for a given spatial configuration of sinks, has a local maximum in the vicinity
of each sink. This gives rise to an unusual type of competition between the nucleation of
vacancy clusters and cavities which is suppressed in the vicinity of sinks, and the growth
of clusters and cavities which is favoured in the very same areas where their nucleation is
suppressed.

In this paper we investigate a model describing the evolution of a binary diffusion field
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{ci(r,t), cy(r,t)} in the vicinity of a planar lattice defect acting as a sink for mobile vacan-
cies and interstitial atoms. We consider the dynamics of nucleation and growth of vacancy
clusters assuming that the sink absorbs interstitial atoms at a higher rate than it absorbs
vacancies. We find that the competition between nucleation and growth leads to the forma-
tion of a zone of spatially inhomogeneous growth of cavities. The area where cavities grow at
the highest rate is separated from the plane of the sink by a certain characteristic distance,
which decreases monotonically as a function of time. The type of behaviour exhibited by
the model is similar to that observed experimentally for the case of nucleation and growth

of cavities in the vicinity of a grain boundary [11,15].

I1I. THE MODEL

The time-dependent distribution of concentrations of vacancies and interstitial atoms in
the vicinity of a sink is given by the solution of a system of two equations describing the

generation, diffusion, recombination and absorption of point defects

2
ggci(r, L= D,-g}—z-ci(r,t) + K — [p+ w(r,t)]|Dic;i(x, t) — aci(r, t)e,(r, t) — oi(r, 1),
2

acy(r, t)= Dv—a(?ﬁc,,(r, t) + K — [p+w(r, t)]Dyey(r, t) — aci(r, t)ey(r, t) — oy (r,t). (1)

In these equations K is the rate of generation of vacancies and interstitial atoms in the
material, D; and D, are the diffusion coefficients (D, < D;) and p is the density of ran-
domly distributed dislocations forming the homogeneous absorbing background. The term
w(r,t) describes the absorption of point defects by growing cavities and « is the recom-
bination constant. Here we are interested in tracing the evolution of the binary diffusion
field {c;i(r,t),c,(r,t)} in the vicinity of an extended lattice defect, and functions o,(r,t)
and o;(r,t) represent the rates of absorption of vacancies and interstitial atoms by this de-
fect. In solving equations (1) we are going to concentrate on the effects associated with the
difference between these absorption rates. We assume that the background absorption of

diffusion fields remains unbiased, i.e. that the effective value of p is the same both in the



first and in the second equation (1).

At large distances from the sink where w(r,t) < p the stationary concentrations of

interstitial atoms and vacancies are given by

cdlon) = P [—1 +/1+ (4Ka/p2DiDﬂ)] ,

2c
pD;
@ (OO) - 2a

[—1 4oifip (4Ka/p2DiDv)] . (2)

From (2) it follows that at large distances from the sink the vacancy supersaturation S(r,t)
vanishes S(00) = ¢,(00) D, — ¢i(c0)D; = 0.

Given that the characteristic scale of the spatial variation of concentrations equals
7 ~ p~1/? we obtain that the temporal variation of concentrations is characterized by the
timescale  ~ (Dp)~! ~ 107%s for D ~ 107° em/s? and p ~ 10® cm~2. Since the timescale
characterising the rate of growth of cavities is of the order of 10° s, the time derivatives of
concentrations entering the left-hand side of (1) may be neglected.

In what follows we consider the solution of (1) for the case of a one-dimensional sink
(e.g. a grain boundary). Grain boundaries, as well as dislocations, interact with mobile
point defects via long-range elastic forces [16] and this results in a rate of absorption for
defects of one type that is higher than the absorption rate for the other type of defects [5].
An additional mechanism responsible for the difference in the absorption rates is associated
with different probabilities of ‘evaporation’ of defects from the sinks. Experimental data
show that in most cases the visible rate of absorption of interstitial atoms is higher than
the rate of absorption of vacancies, and this gives rise to positive vacancy supersaturation.
Positive vacancy supersaturation may also result from the formation of stable clusters of

interstitial atoms in the cascades [11].

IIT. ANALYSIS OF THE MODEL

Consider a phenomenological model of a biased one-dimensional sink where the difference

in the absorption rates is associated with the differences in the local kinetics of attachment



and detachment of mobile point defects to its surface

D, (z,t) + K — [p+ w(z DDuca(z,) = aclz, Oea(z,8) = vDilen(z,1) = 5o (2)

D; ;2 (z,t) + K — [p+ w(z,t)|Dici(z,t) — aci(z,t)cy(z,t) = vDici(2,t)d(2). (3)

In this equation v is a numerical factor characterizing the rate of absorption of diffusion fields
by the sink and the term ¢, describing thermally emitted vacancies in the right-hand side
of the second equation accounts for the competition between absorption and evaporation of
vacancies by vacancy clusters and void nuclei at the grain boundary [17,5]. Terms in the
right-hand side of (3) are equivalent to a boundary condition on concentrations and fluxes
of point defects at z = 0. In the limiting case v — oo and ¢, — 0 this condition is equivalent
to that used in Ref. [14].

In the absence of cavities (i.e. in the case w(z,t) = 0) equations (3) may be solved
analytically by linearizing them in the vicinity of values given by (2)

(63)- (22 +5 2 () ot
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This solution shows two important features. First, it is characterized by two distinct scales,
2 = 1/\/pand 2, = 1/[p*+ (4K a/D;D,)]*/*, which determine how concentrations behave as
functions of distance z from the grain boundary. Second, equation (4) shows that the system
of equations (1) has two linearly independent solutions exhibiting two radically different
types of behaviour near the origin, z = 0. Figures 1 and 2 show that profiles of concentrations
of both vacancies and interstitial atoms have deep minima in the vicinity of the sink while
the supersaturation S(z) is maximum at z = 0. The latter fact can be easily verified by
subtracting the first of the two equations (3) from the second and by solving the resulting

closed equation on S(z)

D,c,

VW exp(—+/plz]). (5)

3(z) =



We now consider how the opposite trends exhibited by concentration and supersaturation
profiles in the vicinity of a grain boundary influence the rate of nucleation and growth of
mesoscopic cavities. A convenient measure of swelling of the material is given by the average

volume of cavities

4
W (1) = f du (gna3) F(z,0,1), (6)
where F'(2,a,t) is the distribution of cavities over their radius a. Taking into account that
[17]
da d /4
gt _ G (= B)
e = 2 (37ra, ) 4rag(a)S(z, b), (7)

we arrive at a simple relation between the local rate of swelling and the local rate of absorp-

tion of mobile point defects
W(z,t) = w(z,t)S(z, t). (8)

Using the expression for w(z,t) derived in Appendix A, we arrive at a self-consistent non-
linear equation for the vacancy supersaturation

dz

255(2,8) = pS(z,t) — dm [ [es(@F (0, t)da] S(2,1) = v8(2,1)8(2) — e D,8(2),  (9)

where the size distribution function F(z,a,t) depends on S(z,t) via the drift term in the

Fokker-Planck equation [18]

9 9 (g(a)

—F + 5 F t)] =0.

5 (za;t) aa( a (2,t)F(z,a, )) 0 (10)
Introducing a new function H(z,a,t) = [g(a)/a]F(z,a,t) and two new variables § =

t a
[S(z,t')dt" and £ = [da'a’/g(a’), we arrive at a general solution of (10)
0 0

F(z,a,t) = —H | [ dt'S(z,t) - aa'd‘f' , (11)
9@ \J ! 9(@)

where the form of function H is determined by the boundary conditions. To find H we

consider an auxiliary function



F(z,a,t) = (/dtSzt / ’(da))_ (12)

This function satisfies the normalization condition
/ daF(z,a,t) = N, (13)
0

which is independent of time ¢, and which describes the growth of a group of nuclei the
concentration of which at ¢ = 0 equals N. Using (13), we obtain the size distribution

function of cavities nucleating homogeneously in the interval 7 € [0, ]

F(z,a,t) = [a"r (/dtSzt) /g(‘i‘f)') (14)

According to the classical theory of nucleation [19-21], the rate N(z) of nucleation of cav-

ities of the critical size is proportional to the concentration of mobile vacancies ¢,(z), i.e
N(z) ~ c¢,(z). Substituting (14) into (25) we arrive at a closed non-linear integral-differential

equation for the supersaturation of vacancies

2

%S(z,t) — 5(z,1) [p + 47N (2) Of dTJ 2 f dt'S(z, t’)] = J[S(z,1) — Dy5)o(2).  (15)

The solution of (15) corresponding to ¢ = 0 is given by (5). To solve (15) for t > 0

we represent the integral term in the form of a sum over a finite number of points ¢, =

(AT ey
t t At t/At t/AL
/ 2 / dt'S(z,t') = — Z At ) S(z,n'At), (16)
0 T n'=n

and solve (15) iteratively taking S(z,nAt) = S(z,0) for n = 0,1,2,...,t/At as a starting
approximation.

The main difficulty associated with finding a numerically stable solution of equation
(15) consists in eliminating the terms that grow exponentially in the limit 2 — oco. For
example, the two linearly independent solutions of (15) corresponding to ¢t = 0 are S(z,0) ~

exp(—+/p|z|) and S(z,0) ~ exp(y/p|z|), and to eliminate the exponentially growing solution
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one needs to take into account the boundary condition lim, . S(z,0) = 0. Analysis of
numerical solutions of (15) shows that conventional linear numerical approaches [22] do not
make it possible to eliminate the exponentially growing terms and give rise to numerical
instabilities. To obtain a numerically stable solution of (15) satisfying boundary conditions
at z = 0 and z = co we use the R-matrix algorithm described in Appendix B.

Figure 2 shows the calculated profiles of vacancy supersaturation illustrating how this
function evolves as a function of time . The noticeable reduction in supersaturation seen
in the region z > 3 p for t > 2-10° s is due to the presence of the second term in square
brackets in the left-hand side of equation (15). This term describes the absorption of mobile
vacancies by growing cavities and it becomes significant only when the total surface area of
cavities reaches some appreciable value.

Figure 3 shows how the total volume of growing cavities W(z,t) (see equation (8))
varies as a function of ¢. Since the level of vacancy supersaturation decreases in the area
z > (p+ w)‘lf2 due to the absorption of vacancies by growing cavities, this suppresses
further growth of cavities in this area. However, since the supersaturation remains high in
the immediate vicinity of the plane of the sink, cavities continue to grow in this vicinity and
the maximum of function W (z,t) gradually drifts towards the grain boundary.

Experimental observations showing the presence of a time-dependent shift in the position
of the peak of swelling in the vicinity of a planar sink were first reported by Green et al [15].
These observations have been recently reviewed by Singh [11]. It was found experimentally
that the spatial distribution of growing cavities in the vicinity of a grain boundary is highly
inhomogeneous. The volume concentration of cavities is maximum at a certain distance from
the grain boundary, and the distance between the maximum and the boundary decreases
as a function of time. The appearance of a maximum in the distribution of a quantity
the evolution of which obeys the diffusion equation is anomalous, and early attempts to
explain the experimentally observed effects on the basis of conventional rate theory proved
to be unsuccessful [11]. Trinkaus et al [23] proposed a model explaining the nature of the

observed phenomena. The model proposed in [23] is based on the assumption that the
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motion of vacancy clusters near the grain boundary is one-dimensional and ballistic and
is similar to the motion of particles colliding with a wall in a rarified plasma. However,
more recent molecular dynamics studies [24] suggest that the motion of interstitial clusters,
while remaining essentially one-dimensional, is diffusional rather than ballistic. The presence
of random fluctuations of the direction of motion of clusters near grain boundaries alters
the solution of the model proposed in [23] and this warrants further investigation of the
role played by mobile interstitial clusters in the phenomenon of inhomogeneous swelling of
irradiated materials.

To what extent are the results obtained above for the one-dimensional case of a planar
one-dimensional sink applicable to the case of line (2D) and spherical (3D) sinks? Formally,
the description of sinks as objects representable by delta-function terms encounters difficul-
ties when applied to 2D and 3D cases, see e.g. a discussion of a similar issue in connection
with the use of short-range potentials in the quantum-mechanical theory of scattering [25].
However, these difficulties can usually be circumvented by employing a suitable regulariza-
tion procedure [25]. Following a line of argument similar to that given in [25] and taking into
account the analysis of the one-dimensional case given above, we conclude that the formation
of a pattern of spatially inhomogeneous swelling in an irradiated material containing biased
sinks represents a general phenomenon which may manifest itself not only in the 1D case
where it was already observed [15,11] but also in the 2D and 3D cases. This may also have

important implications for the analysis of stability of materials used in fusion applications.

IV. SUMMARY

In this paper we showed how the absorption of binary diffusion field of mobile point
defects by biased sinks in an irradiated material gives rise to an unusual type of competition
between the nucleation and growth of vacancy clusters and cavities. This competition leads
to the formation of a characteristic pattern of inhomogeneous swelling, and the temporal

evolution of concentration and supersaturation profiles predicted by the model considered



above in this paper explains the origin of the anomalous behaviour observed experimentally.
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APPENDIX A

To evaluate the rate of absorption of point defects by randomly distributed cavities we

consider an inhomogeneous diffusion equation

32
G(r r') =46(r — 1), (17)
the solution of which is
G(r,1r') = N S (18)
7 4@Dle -1

Now consider a spherical bubble of radius a growing by the attachment of diffusing particles

to its surface. The concentration of diffusing particles around the bubble is given by [17]

¢ (av/D)

¢(r) = oo — ;m[% ~ d*(a)], (19)

where v is the effective velocity, which is a parameter entering the boundary condition for
the rate of attachment of particles to the surface of the bubble

Dac

=] _ = v[eoo — 9 (a)]. (20)

r=a

Generalizing (19) to the case of a weakly inhomogeneous distribution of diffusing particles,
we arrive at

(av/D)

C(I') = Cg(r) + 4w Da ——'—W

/ dRAr'G(r — R)§(R — ')[co(R) — c9(@)],  (21)
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where r’ is the coordinate of the centre of the bubble and ¢q(r) is the diffusion field corre-
sponding to the case where the perturbation associated with the bubble may be neglected.
In what follows we assume that the average radius of the growing bubbles is greater than
several interatomic distances. In this case the evaporation term in the right-hand side of (21)

may be neglected and this equation becomes identical to the equation defining the T-matrix

in the theory of scattering [26,27]
$(x) = o(r) + [ dRAI'G(r — RYT(R, ¥)n(r). (22)

To average (21) over the positions of centres of bubbles we now follow the procedure devel-

oped for equation (22) by Lax [28,29] and obtain

¢(r) = ¢o(r) + 47 Da “"’/jp f dr'G(r — ') F(r')e(r), (23)

where F(r') is the volume density of cavities at point r’. Representing this function in the
form of the integral over the cavity size distribution function F(r', a) satsfying the condition

F(r') = [daF(r',a), we arrive at

c(r) = ¢o(r )+47erdaa GU/I;LJ fdr’G )EF(x', a)c(r'). (24)

Finally, acting on both sides of this equation by operator D(8%/0r?) and comparing the

result with (1), we obtain
w(r,t) = 41rfdaag(a)F(r,a, t), (25)

where g(a) = (av/D)/[1 + (av/D)].

V. APPENDIX B

The R-matrix method [30] is a convenient computational tool for eliminating the expo-
nentially growing terms from solutions of systems of second order linear differential equa-

tions. To find a regular solution of (9) we re-write this equation in the form of a system of

two linear equations
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.‘g = (p+w(2,1))S(2,t) + v[S(2,t) — 2,D,)6(2)

ds

=g 26
T (26)
Assuming that z > 0, we consider how the solution of (26) behaves on an (arbitrarily chosen)
interval [21, z5], which we assume to be sufficiently small so that inside this interval function

w(z,t) can be approximated by a constant w(z,t) =~ w(z*,t) = w*, where z* € [21, 22]. The

matrix relating the solutions of (26) at both ends of the interval has the form

P(z) _ Mp(zy — z1), Mr(z2 — 1) iil (27)

S(Zg) ﬂ{B(ZQ—Zl), .A’[D(Zg —21) S(Zl)

where

Mp(z) = cosh(v/p + w*z),

Mr(z) = /p + w*sinh(v/p + w*z),
Mp(z) = sm}\l/(p—,/i: ‘?b;*z)’ (28)

and det M = M2 — My Mg = 1. Introducing the R-matrix by the relation P(z) = R(z)S(z),

we obtain

_ ﬂ{[D(ZQ = Zl)R(Zg) = ﬂ/[T(Zg — Zl)
ﬂifD(Zg — Zl) - A/IB(ZQ = Z]_)R(ZQ) |

R(z) (29)

This equation defines the rule according to which the R-matrix propagates from a distant

point z — oo to the origin z = 0. The value of supersaturation at z = 0 is given by

vesl)y,

5(0) = 2R’ (30)

and the entire profile S(z) can now be restored recurrently by using a relation similar to

(29)

S(ZQ) = [ﬂ/.’er(Zg — Zl) — ﬂ{[B(ZQ — Zl)R(Zg)]_IS(ZI). (3].)
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FIGURES

FIG. 1. Distribution of concentrations of mobile interstitial atoms and vacancies plotted as a
function of distance z to the grain boundary. Profiles shown in this Figure were calculated using
equations (2) and (3) and assuming that p = 107 em™2, v = 108 cm™!, D, = 0.1 x exp(—0.8/kpT)
cm?/s, D; = 0.01 x exp(—0.15/kpT) cm?/s, T = 600 K, K = 10~7 s~! and a = a(D; + D,), where

a =10 cm—2.

FIG. 2. Profiles of the vacancy supersaturation S(z,t) calculated for the same set of parameters
as those used in Fig.1 assuming that the rate of formation of critical cavity nuclei N(z) is given

by N(z) = Bey(z), where 8 =75-10% p=3 571,

FIG. 3. Distributions of the relative volume of growing cavities W (z, t) calculated by integrating
equation (8) for the same set of parameters as those used in Figs.1 and 2. Arrows show the position
of maxima of the curves. Note the shift in the position of peaks resulting from the accelerated

growth of cavities in the vicinity of the sink.
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