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Abstract

The finite resistivity of the wall that surrounds any toroidal plasma confinement de-
vice can lead to a branch of instabilities known as the Resistive Wall Mode (RWM).
Theory indicates that the RWM is potentially activated whenever the plasma equilib-
rium is unstable with the wall placed at infinity. In particular, Advanced Tokamak power
plant designs require the plasma f to be above the critical value for this condition to be
satisfied. Accordingly, it is important to find a method of stabilising this mode. In this
work we describe a method of stabilising the Tokamak RWM that utilises a secondary
rotating conducting shell surrounding the plasma and first wall. This scheme was first
thought of for the Reversed Field Pinch, but must be re-examined for the Tokamak as
the mode involved has different characteristics. It is shown that provided the second wall

is suitably positioned, RWM stabilisation of a Tokamak is possible even in the absence

of plasma rotation.



I. Introduction

It has long been known that if an ideal plasma is unstable in the absence of a wall, then
surrounding the plasma with a finitely conducting wall does not alter the equilibrium
stability boundaries.! The instability that arises has become known as the resistive wall
mode (RWM), and is a generic threat to many toroidal plasma confinement devices.
Subsequently, much attention has been given to the effect of bulk plasma rotation on
the RWM.? Clearly, if the RWM perturbation travels with the plasma then classical skin
effect at the wall would inhibit flux penetration and the wall would appear as highly
conducting. On the other hand, if the mode ‘locks’ to the wall despite the plasma
rotation then flux penetration would occur and the RWM will continue to grow, albeit
initially with a small growth rate. Further, the mode exerts a retarding torque on the
plasma, which eventually undergoes a ‘catastrophic’ deceleration while the growth rate
suddenly increases.> This event, which is analogous to the phase changes that occur in
a Van der Waal’s gas,! has been tentatively observed experimentally.® So, generation of
bulk plasma rotation appears to be an unreliable way of stabilising the RWM although
it does have the effect of suppressing the growth rate.

In the context of the Reversed Field Pinch (RFP), where the RWM was first identi-
fied 67 it has been proposed that a secondary rotating conducting shell would stabilise
the RWM in that device.® (The suggestion was motivated by the TITAN power plant
design that proposed using flowing lithium for the blanket® - it was later shown that
a suitable configuration of external sensors and coils could ‘fake’ the existence of such
a shell.’®) The simple idea is that the RWM cannot simultaneously lock to both walls
and so its behaviour should be strongly affected. In fact it was shown that provided the
secondary wall was located inside the ideal marginal radius (r = ry, the radial position
at which a perfect wall has to be placed to give the ideal mode zero growth rate), the
RWM was stabilised for wall rotations of order the (longest) inverse wall time. Now, in
the RFP, the RWM is generally non-resonant (i.e. nowhere in the plasma does the pitch
of the perturbation equal that of the equilibrium field lines). In this paper we revisit this
calculation for the Tokamak, where the relevant RWM is a different mode - the pressure

driven toroidal external kink. An essential ingredient of this mode is the presence of



poloidal harmonics which are resonant in the plasma, so the calculation must take this
into account. A cylindrical analogue model of this mode was first formulated by Finn,!
and we will use this as a basis. Finn used a cylindrical plasma that was ideally unstable
(with no wall) but did possess a resonance. This requires somewhat artificial equilibria
but provides a useful qualitative model of the actual Tokamak external kink. Our task

1s to incorporate a secondary rotating wall into the Finn model.

II. Derivation of the dispersion relation.

The analysis we present relies on the judicious choice of basis functions that will
make up the actual mode eigenfunction. In fact we choose basis functions that have a
direct physical interpretation. We recall that the problem divides naturally into ideal
regions and ‘resistive’ layers (namely the resonance at r = r, and the static and rotating
walls at 7y and r;). A second order ODE for the perturbed radial magnetic fleld, the
Newcomb equation,'? connects the resistive layers and in these layers non-ideal effects
have to be taken into account. Figure 1 shows our choice of basis functions generated by
the Newcomb equation. The basis function ¥; represents the resistive plasma mode when
the stationary wall at r; is taken to be a perfect conductor (the boundary conditions are
then regularity at the origin r = 0 and W,(ry) = 0). U, is, similarly, the resistive plasma
mode when the secondary wall is ideal (and the first wall abseﬁt). U3 is the plasma
response when there is no wall present at all (so U3 is identical to ¥, for 0 < r < r, and
then has the boundary condition of vanishing as r — o).

Now, to ensure that the system displays the RWM we must have the ideal mode in
the absence of a wall unstable and in the Newcomb sense the independent subinterval
(rs,00) must be ideally unstable. Further, Newcomb showed that this implies that WUy
must exhibit a zero in this interval. Now we know that this cannot happen in the vacuum
region as solutions are ¥ oc r~™-like (with m the poloidal mode number and using the
Tokamak ordering'®). Therefore, U3 must exhibit a zero in (r,,71), as is shown in Fig. 1

The use of these ‘natural’ basis functions ensures not only that the subsequent algebra,
is minimised, but that we can later relate some of the free parameters that arise to those

that occurred in the single wall model.? To start, we write the eigenfunction as a sum



of the natural basis functions of Fig. 1.
U = ‘I'1+a\I’2+b\I’3, (1)

where we can choose the coefficient multiplying ¥; to be unity, and can without loss of

generality choose one convenient normalisation for each of the ¥y 5 3. In fact, we choose

m%(rl) = -1, (2)

nilm) = -1, ®)
and

Ty(r) = W(r). @
Because we require Eqn. (1) to apply everywhere we must define ¥y(r) = 0,r >

ri,Us(r) = 0,7 > 2, and we note that ¥y, ¥y have discontinuous derivatives at two
points (rs,r1) and (rs,72) respectively, while W3 has a discontinuous derivative only at
5.

Now at the second wall we assume a ‘thin shell’ response? so that A'(p), the well
known jump in the logarithmic derivative of the perturbed radial field'* across the wall,
is simply equal to pr, where we have assumed exp(pt) dependence and 7 is the ‘long’
time constant of the second wall. Accordingly, noting that 3 and d¥3/dr are continuous
through r, and using Eqn. (3) we have

a

_, 5
b1Ta] (5)

P2 =

where U3, = Us(ry). Note that when the second wall is rotating with frequency Q; we
simply replace p in Eqn. (5) by (p — i€22). Similarly, at r1, ¥z, ¥3 and their derivatives
are again continuous and using Eqn. (2) we find

1

— 6
a¥y — b|‘1’31| ( )

rm

The last of the jump conditions occurs at the plasma resistive layer at rs. For the
moment we will not specify the plasma response, but symbolise it as A (p). From first
definitions we have

: ro ([%] +a (] +5 (%))
Alp] = — \£1+a%2+b\113 L

T Wy (7)
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Now recall that we chose ¥ 5 5 to represent the plasma stability properties when respec-
tively, the first wall is perfect, the second wall is perfect (the first being absent), and

when there is no wall at all. So first we simply rewrite Eqn. (7) as

vy AL+ aU AL + T, A
AS(p) B ‘I‘ls +a¥,, + blI’Ss ’

(8)

where the A , 5 are the stability parameters for the three cases mentioned.

To proceed, we note that for r > r, we have vacuum fields and it is well known that
in the Tokamak ordering ¥ ~ r™,r~™ in such regions.”* As we require ¥y, = 0 and
r2¥,(r2) = —1 we easily find that

2m _ .2m
T2 ™1

Un (9)

QirrPry
For r > 1, ¥5 can only be r~™-like, and it follows that

1

|3z = (g)m|‘1’31|- (10)

Putting Eqns. (9,10) into Eqns. (5,6) we can solve for a and get b in terms of | W3 |

2mrltryi (11)
[(r3™ — r¥™) pry + 2mri™| 7’

a =

ary
& ——=2 12
prarT |Way| (4)

By design we have that 3, = ¥y, and so Eqn. (8) contains the unknown fluxes ¥,
and Uy, only in the combination Wy, /W¥;,. To solve for this combination we now use a
generic property of any second order ODE such as the Newcomb equation, namely that
it simply converts the values of ¥ and ¥ at one radial station to their values at another

station via a real linear transformation; in particular we can immediately write

\I’“ = C‘I’H +d‘I’;1 3 (13)
Uy = Uy +dVT,, , (14)
U3, = cly +dT,, (15)

for some real numbers ¢, d that are functionals of the mode numbers and the equilibrium

fields in between r, and r;. The right hand sides of Eqns. (13) and (15) are —d/r; and
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—c|Us1| + md|¥a| /11, respectively, while the RHS of Eqn. (14) is known because, as
remarked above, we can easily solve for ¥z in ry < r < 3. So, Equs. (13 - 15) constitute

the required linear algebra problem which will enable us to solve for Uy, /¥y,. We find

l:[]2.3 1 1
Ha o . 1
Uys \/}_’( Xl‘pall) (16)

where

2m ™ 2m
X = 2 . v-= (—) .
1-Y Y T2

Note that using Eqns. (11), (12) and (16), and the fact that ¥;, = ¥s,, the dispersion
relation Eqn. (8) now contains only one unknown flux, namely |W31|. This final unknown
can be solved for when we realise that ¥;, ¥, and W3 are not independent in the plasma
region (again because the governing Newcomb equation is of second order). Accordingly

we can write

U, = el;+ f¥3, (17)
for some real constants e and f. Applying this relationship at r = rs gives

Uy = (e+ Vs, (18)

while differentiating Eqn. (17) and evaluating at either side of r = r, gives

' 8A' + fA’
A, = —L- <38 19
* T et <
Applying Eqn. (17) directly at r = r; gives
Uy = —f|¥a . (20)

Now Eqns. (9), (18), (19), and (20) constitute another linear algebra problem from which

we can deduce |¥3|. In fact,

1 (8- 4%
XY (8- 0y)

So now, using Eqns. (11), (12), (16) and (21) together with ¥y, = W3, we find the

|Us| =

(21)

basic dispersion relation

Al(p) = (Ay = A)ASXRY + (A; — ADAXYpry + (A5 — Ag) Ay (X + p72)
’ (A5 — ADXZY + (A5 — ADXYpra + (85 ~ Ag)(X + pra)pmy

pT
(22)
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To ensure that we are investigating a RWM, we must have a plasma equilibrium that
is ideal-MHD unstable in the absence of walls."” This means that A} must display
an ideal, inertial response at the resonance r, i.e. A" = —1/(pr4) with 74 the Alfvén
time.'® So if we write Ay = —1/¢ then positive € gives the (74) normalised growth rate
of the ideal mode in the absence of a wall. (The parameter ¢ appeared, with the same
interpretation, in the earlier work on the single wall model.?) We also follow the notation
of Ref. 3 by writing A, = —#§, so for conventional tearing modes, say, positive § would

imply stability.'* Using this notation the dispersion relation (22) can be rewritten

X2Y (§+ A3) = 8 (14 eAy) (X + pra) pry + XY A4 (1 e6) pry

SO = oy e i)+ (o) o AT (O~ )
III. Analysis of the dispersion relation
We choose the actual layer response to be ‘visco-resistive’®
A; = PTVR, (24)

1/3_5/6,_1/6 ; - e
where Ty ~ TA/ TR/ /TV/ and 7g, Tv are, respectively, characteristic layer resistive and

viscous times. This response is appropriate to most tokamak plasmas.'® We recall that
this choice of layer response is ‘pessimistic’ in that in the case of the single wall problem,
a visco-resistive layer response eradicated all RWM stability windows.® With the choice
of Eqn. (24) as the layer response the dispersion relation Eqn. (23) is a complex cubic
(bearing in mind that we Doppler shift pryp — (p — Q) TvR and pry — (p— Q)7
to simulate plasma and second wall rotation). We shall mainly investigate Eqn. (23)
numerically, but before that there is one analytic observation we can make.

If the RWM is to be stabilised by some combination of {1 and (2, then its growth
rate must at some stage achieve marginality, i.e. p = iw for real w. Inserting this into

(23) and taking real and imaginary parts we can take the limit 0, — oo to find that at

marginality we must have

(25)

' . 2
o - (ﬁ) (8 — 1) vaXY? — (e +1) by |
? 6 (EA; - 1) TITVR
Equation (25) indicates immediately that the ‘topology’ of the marginal curve in (3, 0,

space will be strongly influenced by the relative signs of A, and §: if they are the same
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sign we have real solutions for Q and if they are not the same sign there are none. To
investigate this, the cubic (23) was solved, and contours of equal growth rate plotted in
22, Q1 space.

Now, A, and § are important parameters because, between them, they implicitly
determine where the two walls are positioned radially with respect to two naturally oc-
curring radii, r; and rg. These are the radii that a perfect wall has to be placed to
make the ideal and resistive modes marginally stable, respectively. We now construct

illustrative examples that enumerate the various possibilities.

(1) We start by considering the case where the second wall is outside r;. This means that
the ideal mode is unstable even if the second wall is perfect. This in turn means that A
will be large and negative (as the ideal marginal point rr goes from just inside r; to just
outside then A; goes from large positive to large negative). In Fig. 2 we plot contours
of equal growth rate for such a case (A; = —100, and ‘typical’ values for the rest of the
parameters € = 0.1,6 = 1,7y = 1, = 7vyp = 1,7 = 1.2,r; = 1.4;m = 2). In this and
the following figures the dashed contours represent positive (unstable) growth rates and
the solid countours negative (stable) growth rates. We see immediately that all growth
rates are positive, and that stabilisation of the RWM is impossible in this case for any
combination of O, and Q2 (notated OMEGA PL and OMEGA 2 in the figures). This
is not surprising as the ideal mode is not really a RWM, but an ideal mode ‘in its own

right’ as r, > r;. The symmetry evident in the figure is a straightforward consequence

of the model geometry.

(2) Now let us reverse this condition and move ry inside r;. A, will now be generically
large and positive. Figure 3 shows the results for this case (A, = 5, all other parameters
the same as Fig. 2). Note the appearance of stable regions. However, access to each of
the stable regions requires a sufficient amount of plasma rotation. As the second wall
is moved further towards the plasma then A, drops and so do the amounts of 2,y

required for stabilisation.

(3) As the wall is moved further in then the next radius of importance it encounters is
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TR, the marginal radius of the resistive mode. At this point, of course, A; = 0. Figure 4
shows the case where r; has just moved inside rg and A, = —0.3 (all other parameters
the same as in Figs. 2 and 3). We see there has been a topology change due to the

change of sign of A;, and now it is possible to access a stable region with 7o plasma

rotation present.

(4) As the second wall is now moved towards r;, although RWM stabilisation is still
possible with {,; = 0 it becomes increasingly more difficult in terms of the amplitude
of {2, required. In fact, in the limit of r, — r; inspection of Eqn. (23) shows that in
the limit the two walls merge electromagnetically and the combination is ‘seen’ by the
plasma as a single wall with time constant 7, + 7,. The system is then the single wall
problem of Ref. 3. Figure 5 shows the case with 6§ = 1,A; = —0.995,r, = 1.204 (to

accord with the limit r, — r;), all other parameters as above.

(5) Lastly we can imagine a case where rg < 7y, i.e. the resistive mode is unstable
even were the first wall perfect. Figure 6 shows the case § = —0.01,A; = 0.5, all other
parameters as in Fig. 2. Stable regions have practically disappeared. Again, this is not
surprising as, similar to the case of Fig. 2, the active mode is not truly a RWM, but a

resistive mode ‘in its own right’.

IV. Conclusions

It appears that relying on plasma rotation per. se. to stabilise the RWM is not
a realistic proposal. We have examined the scheme of utilising a secondary rotating
wall to stabilise the RWM in a Tokamak. A model that simulates the actual toroidal
nature of the Tokamak RWM (generated by the ideal pressure driven external kink
mode) has been used. Results depend strongly on the position of the second wall (r3)
with respect to the ideal and resistive marginal radii r; and rg (these are, respectively,
the radii at which a perfect wall must be placed to make the ideal and resistive modes

marginally stable). RWM stabilisation is impossible if 7; > r, but possible with finite



plasma rotation if 7 < r2 < rr. Further, the rotation rates required are ‘slow’ in
the sense that they are of order the inverse wall time of the least conducting wall. If
ry < rg then stabilisation is possible even in the absence of plasma rotation. (However,
as r, approaches r; stabilisation becomes increasingly more difficult, and there is an
optimisation problem.)

This scheme was first considered for the RFP, where the TITAN power plant design
used a flowing lithium blanket.®® However, it was later realised that a secondary rotating
wall could be “faked’ by a suitable array of external sensors and active coils.’® What is
more, such a wall is projectable and need not reside at the actual location of the coils,
a property which may be required in power plant designs.!” Reference 17 also stated
that the gain, bandwidth, current and total power requirements of the feedback system
could be estimated as less than a hundred, a few Hz, a few tens of kA and a few
MW respectively. These requirements are within the scope of present technology. This
scheme, together with that of the ‘intelligent’ shell'® (which seeks to directly simulate an
ideal wall with external sensors and coils), appear to form a useful basis for stabilising

the RWM in fusion Tokamak power plants.
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FIGURE CAPTIONS
Figure 1: Basis functions used in the RWM analysis.

Figure 2: The second rotating wall is outside the ideal marginal radius and stabilisation

of the ‘RWM’ is impossible.

Figure 3: The second rotating wall is inside the ideal marginal point and stabilisation

is possible providing there is sufficient plasma rotation.

Figure 4: The second rotating wall is inside the resistive marginal point and RWM

stabilisation is possible with no plasma rotation.

Figure 5: As the second rotating wall approaches the first, RWM stabilisation becomes

increasingly more difficult in terms of the amplitude of 2, required.

Figure 6: The marginal radius for the resistive mode is inside r; and stable regions

have practically disappeared.
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Figure 1: Basis functions used in the RWM analysis.
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Figure 2: The second rotating wall is outside the ideal marginal radius and stabilisation

of the ‘RWM’ is impossible.
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Figure 3: The second rotating wall is inside the ideal marginal point and stabilisation is

possible providing there is sufficient plasma rotation.
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Figure 6: The marginal radius for the resistive mode is inside r; and stable regions have

practically disappeared.
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