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Abstract

A wide variety of magnetically confined plasmas, including many tokamaks such as
JET, TFTR, JT-60U, DIII-D, RTP show clear evidence for the existence of the so-called
‘internal transport barriers’ (ITBs) which are regions of relatively good confinement,
associated with substantial gradients in temperature and/or density. A computational
approach to investigating the properties of tokamak plasma turbulence and transport
is developed. This approach is based on the evolution of global, two-fluid, nonlinear,
electromagnetic plasma equations of motion with specified sources. In this paper, the
computational model is applied to the problem of determining the nature and physi-
cal characteristics of barrier phenomena, with particular reference to RTP (electron-
cyclotron resonance heated) and JET (neutral beam heated) observations of ITBs. The
simulations capture features associated with the formation of these internal transport
barriers, and qualitatively reproduce some of the observations made on RTP and JET.
The picture of plasma turbulence suggested involves variations of temperature and
density profiles induced by the electromagnetic fluctuations, on length scales interme-
diate between the system size and the ion Larmor radius, and time scales intermediate
between the confinement time and the Alfvén time (collectively termed, ‘mesoscales’).
The back-reaction of such profile ‘corrugations’ (features exhibiting relatively high lo-
cal spatial gradients and rapid time variations) on the development and saturation of
the turbulence itself plays a key role in the nonlinear dynamics of the system. The
corrugations are found to modify the dynamical evolution of radial electric field shear
and the bootstrap current density, which in turn influence the turbulence. The inter-
action is mediated by relatively long wavelength, electromagnetic modes excited by an
inverse cascade and involving nonlinear instabilities and relaxation phenomena such as
intermittency and internal mode locking.



I. Introduction

Recent experimental researches on anomalous transport in tokamaks [1, 2, 3, 4, 5]
have revealed a wealth of fascinating phenomena associated with the spontaneous for-
mation of the so-called internal transport barriers (ITBs). For instance, in the RTP
tokamak[1], keeping the total current, line-averaged density and heating power fixed,
when the electron cyclotron heating (ECH) power deposition radius, raep, Was varied
across the minor cross section, the steady state central electron temperature exhibited
discrete ‘jumps’ (Fig.2 in [1]), which were correlated with the passage of the narrow
power deposition profile across surfaces where the safety factor ¢ had low order ratio-
nal values. Moreover, the electron temperature profiles measured using high precision
Thomson scattering diagnostics showed considerable ‘fine structure’ and other features, -
reproduced in Fig.1(Fig.3a, loc.cit. and also Fig.4 of this paper). These observations
were phenomenologically[1] explained by assuming that the effective electron perpen-
dicular thermal diffusivity, X., has strong, narrow minima at rational values of ¢. In
addition, an outward ‘thermal advection’ was invoked to account for the apparent low-
ering of central electron temperature below the Ohmic value during off-axis heating.
These results present a challenge to any first principles theory of plasma transport. It
should be stressed that in larger tokamaks, with ion heating (for an excellent recent
discussion with comprehensive references, see [4]), the conditions are somewhat differ-
ent, and other mechanisms may be operative. A complete theoretical understanding of
ITBs in general, and RTP observations in particular, does not exist, although several
suggestions [6, 7, 8] have been put forward as to the possible causes.

Anomalous transport in tokamaks is believed to be due to plasma turbulence. The most
important physical manifestations of this turbulence occur at frequencies of the order of
the ‘drift frequency’, w, ~ (Cs/Ln)(kLps) (w. € we = €By/mic), although larger than
the inverse energy confinement time, 1/7p (where, ps = Cs/wei; C? = (T;+T.)/mi, and
L., is a typical density scale length of the equilibrium density profile). Furthermore, the
wavelengths of typical tokamak turbulent fluctuations are characteristic of drift modes,
and are somewhat longer than the ion gyroradius (thus one finds experimentally that
kips ~ 0.1). This intermediate regime is conveniently termed[10] the ‘mesoscale’. A
possible approach to tokamak turbulence and transport involves the global (ie, ‘whole
tokamak’) solution of the two-fluid plasma and Maxwell’s equations in this regime of
interest. The tool employed to implement this approach is a global, electromagnetic,
quasi-neutral, two-fluid code CUTIE[9, 10]. The simulations described in this paper
present a picture of mesoscale dynamics which involves nonlinear interactions between
the plasma profiles (eg. those of n,, T, ; etc) and the electromagnetic turbulence. These
interactions are critically influenced by turbulent advection of the density, temperature
and current, and its ability to ‘corrugate’ their profiles. Such relatively rapid spatio-
temporal variations have dual effects on the turbulence involving the sheared radial
electric fields (an example from JT-60U given by Gormezano (1999)[2], is shown in
Fig.3) and bootstrap currents generated by the corrugated profiles. On the one hand,



gradients in pressure, density and current density can destabilize various linear and
nonlinear instabilities. Interestingly, they also have strongly stabilizing effects due to
sheared radial electric fields[8] (associated with p’,n’; here and elsewhere, primes on
equilibrium quantities indicate radial derivatives), and magnetic fields[7] (associated
with ¢’,5'). This complex interplay between profiles and turbulent fluctuations in
electromagnetic fields involves both ‘inverse cascades’ (energy transfer from short to
long wavelengths) [11], and ‘direct cascades’ due to secondary, short wavelength/high
frequency instabilities driven by long wavelength modes leading to intermittency and
current filamentation (observed for example, in the RTP experiments[12]; see Fig.4).
It is of interest to note that in a recent paper, Zeiler et al[13] identify the crucial
role of nonlinearity, electromagnetic effects, nonadiabaticity and the resultant profile-
turbulence interactions in 7; turbulence at the tokamak edge.

In this paper, CUTIE simulations of the RTP experiments[1](an electron-heated toka-
mak), and recent computations of ITB formation for typical JET-like conditions (2]
(involving NBI and strong plasma toroidal rotation induced by the beams) are pre-
sented. Results obtained thus far are encouraging and suggest that essential qualita-
tive features of the observations made in real experiments are indeed captured by the
model. The paper is organized as follows: in Section II, the physical basis of CUTIE,
the governing equations of motion used, and the computational method are described.
Readers interested in results can skim this section for an overview and notation and
proceed to the next one directly. Section III presents the results obtained in both RTP
and JET simulations and a comparison with experiment. Section IV provides a brief
discussion and conclusions.

II. Physics basis of CUTIE and computational approach

CUTIE is based on a periodic cylinder model (7,8, = z/R) of the tokamak, with
equilibrium flux surfaces assumed to be concentric circles[9, 10]. The Shafranov shift
and metric variations neglected at present are relatively unimportant for RTP, which
has nearly circular flux surfaces, although not in JET, which has significant ‘shaping’
of the flux surfaces. These effects will be investigated in future work. However, field-
line curvature and line-bending are crucial[14, 15] for the dynamics, and are taken into
account in the equations of motion for the turbulent fluctuations. All plasma properties
(e.g the electron density, n,) are written as a sum of a flux-surface averaged ‘mean’,
no(r,t), and a ‘fluctuation’, én.(r,8,¢,t). Thus we write, ne(r,0,(,t) = ng(r,t) + on,,
where, ng(r,t) =< n, >= f02” o ne(r,ﬁ,c,t)%q, and dn./N* = n*(r,0,(,t), where
N* = ng(0,¢). Note that N* is a ‘representative’ density (taken to be ng(0,t)). This
decomposition is not a ‘linearization’, although in practice, the relative fluctuations
are small. Nondimensional fluctuations such as n* are represented by the Fourier
expansion:
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By definition, the ‘mean’ ng(r,t) represents the m = n = 0 Fourier component of the
density, and consequently, 7igp = 0. Since all plasma fields considered are real, the
Fourier coefficients satisfy the reality condition, fimn = ﬁ_m,_n, where the over-bar
denotes complex conjugation.

The essential physics approximations used are: quasi-neutrality, V.j = 0; reduced
tokamak ordering (ie, fast magnetosonic waves are eliminated and ¢B) fluctuations
are neglected); neglect of electron inertia and trapped particle dynamics, apart from
the use of neoclassical transport coefficients[14], including the bootstrap current. The
electromagnetic fields are described in terms of two potentials, ¢ and 4. These are
fluctuating parts(thus, 6E = —V¢ — %‘—?ﬁec). The corresponding ‘mean’ quantities are
denoted by, ®(r,t), To(r,t). This two-fluid system is described by the four variables,
Ne, Te, Ti, and vy, which satisfy the four conservation equations representing electron
continuity, electron and ion energy balance and the ion parallel momentum balance,
respectively. The two potentials are evolved using the quasi-neutrality condition and
the generalized Ohm'’s law. In practice the electron temperature fluctuations are small
compared to the density fluctuations, due to the large parallel thermal diffusivity (of
order qRuy,).

The following dimensional parameters are used: V§ = B /4rm:n(0,1); Vi3 = (T.(0,t)+
T:(0,t))/mi; we = eBo/mic; ps = Vinfwei; 8 = (Vin/V4)?. In addition, we introduce

the ‘potential vorticity’ ( with dimensions, [1/T]), © = V.(%Vl%). We define

the nondimensional fluctuating quantities, ¢*,v¥*,©%,n" ", A], : %‘% = Vinpsd*; Bio =
p:B2yr © = 100 = p2V.(MEAV.¢7); vt = /N AL, = 0T /THE =
ng(r, t)dv“/f—, where, N* = n.(0,t),T* = T.(0,t) + T3(0, t), and £ = N*Vj. The system
is thus described by these variables and the corresponding ‘mean’ quantities, which are
conveniently chosen to be, ng(r,t), Tuo(r, t), Tio(r, t), veo(r, 1), veo(r, 1), E.o(r,t), Boo(r,1).

The derivations of the evolution equations from first principles is well-known[14],[15]).
Several different advection velocities[14, 17] occur in the theory. By definition, Ero =
-—%""}. The velocity, uy = —%ﬂeg + boujp represents the equilibrium ‘MHD’ flow
of the plasma (ions), whilst u. represents the corresponding electron flow, ue =
—%’-Qeg + bg(vjjo — jjjo/€no). The ion fluid flow (ie, MHD flow + diamagnetic flow) is

. . ; t
given by, vo = ug + —<;%%, We also have the relation, g = }%(%ﬁg%).

engB ar
Finally, v = — [9%‘1 + ﬁjgg;—“] ep is the total electron poloidal flow composed of the
electron E x B equilibrium flow and the electron diamagnetic flow. In the following,
Vi=be.V= QLR(% - qa%), (ie, the gradient in the direction of the unperturbed field).
The nonlinear terms account for the exact field direction. The equations of motion for

the fluctuations, including the definition of ©*, are the following:
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These equations include, within the two-fluid model, physical effects such as visco-
resistive tearing, ballooning, drift-Alfvén and n; modes. A closely related subset is
used in[13].



Assuming time-independent external sources, the ¥* quantities (ie, sources for the fluc-
tuations) include the following type of terms: a) neoclassical perpendicular transport[14]
terms; b) fluctuating divergences of parallel heat fluxes, quie = —neXieV|ZLie, In
Eqs.(7,8) ; a simple correction [16] (see Eq.(31), loc. cit) is applied to the paral-
lel diffusivities for long mean-free-path: x|:. = gRv;; c) optional terms to repre-
sent, approximately [17], the effect of ion Landau damping, in the form of an ‘effec-
tive’ damping rate, ~ v{,kj; d) turbulent diffusion terms used to prevent unphysi-
cal aliasing of long wavelengths by providing a smooth, high-k cut-off. For example,
the turbulent viscosity term applying to ©* is of the form, V.(DywV10%), where,
Diurt, =~ Csps F(0%, p2V31*), and F is a dimensionless, quadratic function. In regions
where the turbulence is small, this nonlinear turbulent diffusivity is negligible com-
pared to the neoclassical ‘background’ diffusivity. In practice, calculated values satisfy,
Dturb < DBohm = Csps-

The model is completed by the transport equations satisfied by ng, T¢,i0, Boos veo and
vco- These are obtained by averaging the exact equations with respect to the an-
gles and including any external sources and neoclassical transport coefficients. Thus,
ng, _T;?eg, ng, Ugo, E,—O satisfy:

Bng _ 10 E
% = —omF [Cact < 8nedvf >]) + S,(r, ) (9)
3 aﬂ,eﬁ _ 10 ie o E i,e
1 [ i+ < Opidef > +Qm]) ) (10)
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5 Vnc(vgg 'Ugnc) - o (T < v o, >)+ < pe— > (12)
E, = .l_p;(] + (vcoBoo — UaoBgo) (13)
eny c

In Eq.(9), Ty is obtained from neoclassical theory[14] and < 6ndvE > (= Tiumw) is
c 1860

the (ambipolar) turbulent particle flux, where, dv¥ = —£25%, and the average is with
respect to angles, 8, ¢, for given r,¢. Since the particle source, Sp(r, t) is not well-known
experimentally, a simple feed-back term is used to keep the line average of no(r, t) fixed
at a specified (ie, experimental) value throughout the simulation. The energy equations
for T, ; involve neoclassical radial heat fluxes and turbulent heat fluxes, with additional
terms including electron-ion equilibration (neoclassical), ohmic and auxiliary heating
sources. For simplicity, the latter are assumed to be specified functions of . Whilst the
turbulent ion heat flux, 5/2 < 8pidv, > (= Qi,), is entirely advective (ie, Qf, = 0),
the electron turbulent radial heat flux has a term of this type and an additional ‘mag-
netic fluctuation’ term, Q%, =< q.b.e, > of the Rechester-Rosenbluth form[16]. The
energy source terms P, include Ohmic and auxiliary heating (with specified profile

and strength), and classical electron ion equilibration and radiation/charge-exchange



losses (if any). At present, By is evolved in CUTIE according to Eq.(11) using the neo-
classical induction equation[14], neglecting ‘turbulent dynamo’ effects (left for future
investigations), where 7, is the neoclassical resistivity, and Jbs(T, t) is the bootstrap
current source[14]. In the experiments simulated, there were no current drive sources,
which could be included in Eq.(11), if desired. It is assumed that there are no external
poloidal momentum sources. Averaging the poloidal component of the total momen-
tum balance equatlon with respect to angles 6, ¢, Eq.(12) is obtained, where, € = r /R,

= 0.67¢7!77!, and wvppe = —1.17(1 — 1.46¢ 1/2)(CT ) [18]. It expresses the bal-
ance between turbulence-driven poloidal accelerations (due to radial £ x B advection
and Lorentz forces) and neoclassical poloidal flow damping[14]. Since the momentum
source in the toroidal direction is not well-known, the present model makes the simple
assumption that veg = v; M, where the ion Mach number (A1,) is taken to be a fixed
parameter. The equilibrium radial electric field, E,, is then determined by the radial
component of the mean momentum balance equation for ions, Eq.(13).

The mean equations (9,10) are solved with suitable edge pedestal conditions and zero
gradients at r = 0, starting from simple (arbitrary) Gaussian or parabolic profiles. The
induction equation (Eq.(11)) is solved with the boundary conditions, Bgo(a) = 2L, [ac;
Beo(0) = 0, with I, being the specified plasma current (in cgsu). The boundary data
for the fluctuating quantities at 7 = 0 follow from regularity requirements on the fields
and velocities; all fluctuations vanish at r = 0 except for the m = 1 components of
velocity and magnetic field. Zero values are imposed at 7 = a, but the actual plasma
edge corresponds to r/a = 0.95.

Equations (2-6) for the fluctuations are solved by Fourier-transforming and radial finite-
differencing, treating the mode coupling terms iteratively. These terms are first eval-
uated in position-space using a centred-differenced, conservative Jacobian scheme and
then Fourier-transformed to get the (explicit) sources for the block-tridiagonal system
coupling ©,, ¢, and € for each pair of (m,n). Denoting by X;(m,n,t + At), the
column vector formed by these five Fourier components at the radial mesh point (7),
the resultant system of (nonlinear) algebraic equations takes the form,

A?Xi(m, n,t+ At) = A:-qu.l(m, n,t + At) + A;X,-_l(m, n,t+ At) + Si (14)

where A?, A} A7 are (5 x 5) complex matrices (functions of m,n,i,t) and S; is a
‘source’ column vector including nonlinear and toroidal coupling effects as well as terms
involving A;,. The semi-implicit differencing scheme (centred-space, backwards time for
implicit terms and centred time for the explicit ones) ensures that this block-tridiagonal
system is always invertible (ie non-singular) for X; at ¢ 4 At, given the values at ¢ and
the boundary conditions. This linear system is inverted by complex block-tridiagonal,
Gauss-Jordan pivoting for —mpy,y < m < Mpax and 0 < n < Ny Reality conditions
are used to determine the values for the remaining n harmonics. Having obtained X;,
the semi-implicitly differenced, Fourier-transformed versions of Eqs.(7,8), are solved
by a radial tridiagonal matrix solver for ;\i,e(ri, m,n,t + At). The complete solution
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involves two predictor-corrector iterations at each time-step. Extensive experience
with both linear and nonlinear simulations[9, 10] has shown that the scheme described
is stable and convergent. The prescription of the time-step is limited by accuracy
considerations, with V4At/a ~ 0.25, being a typical choice. Spatial resolutions are
chosen to obtain, Ar < ps, at least, away from the cool edge.

II1I. Simulation results

RTP simulations: These runs, preliminary results of which were reported briefly in
a UKAEA report[9], apply to the following plasma conditions[1]: a = 0.165m, R =
0.72m, By = 2.15T, I, = 66kA, Pgcu = 350kW. Three cases of ECH deposition are con-
sidered (Cases A,B and E, respectively, in Fig.1a) with pgep = Taep/a = 0.1,0.35,0.55.
In all three simulation cases presented, the g profile is monotonic from gy = 0.85 to
¢. = 6. This corresponds fairly closely to the estimated[1] profile for Case A, but is
significantly different from those estimated in the other two experimental cases(op.cit,
Fig.4). CUTIE results pertain only to the first millisecond (about 10° time-steps) after
‘switch-on’, and the ¢ profile does not have enough time to evolve significantly away
from its initial value. The experimental profiles were estimated[l] in ‘steady-state’,
nearly 250 ms after switch-on, and are different for the three cases. For this reason,
among others, the comparison between the experimental T, profiles shown in Fig.la
(obtained in steady state) and the theoretically calculated ones (Fig.1b) is strictly qual-
itative. The simulations vary only pqep, keeping everything else fixed, including initial
profiles of g, n,, T, ;, whereas, in the experiments, both p4ep, and go vary at constant
total power, current, etc. The assumed power deposition profile in the simulations is of
the form, Pecy ~ exp [—(r — Taep)?/w?], where, w = a/7 =~ 2.3cm. The chosen width is
nearly twice as large as in the experiment, since it was thought important to separate
genuine effects of steep transport barrier formation from those due to narrow heating
profiles. Subsequent calculations with the experimental width yield similar results.
Gaussian initial temperature (T, ;(0) ~ 0.8keV) and density (n.(0) ~ 5.0 x 10"m~*)
profiles were used, consistent with the Ohmic state, prior to switch-on of ECH, to-
gether with randomized, small amplitude ‘noise’ in the initial fluctuations. A particle
source profile of S,(z) = z(1 — 1.1z%);z = r/a was used, with feed-back line-averaged
density 7, ~ 2.7 x 10'°m~3, close to experiment. Calculations used a resolution of
100 radial mesh points, 32 poloidal and 16 toroidal harmonics(Ar ~ p,/2, At >~ 5
ns, V4 ~ 5 x 10°m.s7!). Higher resolution (100x64x32, 100x64x64) calculations have
also been carried out for shorter total time lengths, and show no significant differences
apart from better definition of the fine-scales.

In Fig.1b, the calculated T, profiles in the three cases are shown, together with the
g profile. Comparison with experiment (Fig.1a) shows that the calculated T, profiles
exhibit features similar to the experimentally measured ones, particularly in Cases A
and B, where the difference between model and experimental ¢ profiles is not large.
Even in case E, where the difference is greatest, the basic features of the profiles are



reproduced. In particular, the location of the transport barriers, the off-axis maxima
and the corrugations (ie, relatively high local gradient features) are captured qualita-
tively. The experimental profiles show stronger corrugations, possibly indicating in-
adequate resolution at the higher wave numbers in the simulations. The corrugations
in vf = —cE, /B, jss are more prominent, as shown in F ig.5, for Case B. The plasma
current density, j, is less corrugated, as expected, from the properties of Eq.(11). Al-
though these quantities are strictly not measured on RTP, it is known from many other
experiments[2, 4, 5] that the radial electric field has the predicted type of ‘corrugated’
structure implying poloidal ‘jets’ in the electric drift (see, for example, Fig.3, given
in Gormezano’s paper[2]). For RTP conditions, the radial electric field is primarily
determined by the ion pressure gradient and little influenced by the ‘zonal flow’, vy,
driven by Reynolds stresses. CUTIE is provided with a diagnostic post-processor ca-
pable of making movies of all relevant turbulence and profile properties. In Case B,
for example, these movies show that about 50 us from the start, a (3,2) resonant
mode spontaneously grows (saturating later) and rapidly steepens the gradient near
this rational surface, inboard of it. A similar, though weaker effect, is seen at the (2,1)
resonance, in broad agreement with the phenomenological model of [1]. After this rapid
initial phase involving an inverse cascade, the profiles and the turbulence evolve corru-
gations more slowly over a longer period[9]. In general, the typical radial wavenumber,
kr > kg ~ m/a. Core mode rotation is often counter to the edge mode rotation, with
intermittent locking and ‘bursting’ reversals. All three cases exhibit similar features
(though different modes are involved in each case). The low mode number part of the
fluctuation spectrum is excited by an inverse cascade [11] and noulinear instability[13]
even when the runs are started with high mode numbers. In general, the initial data on
the turbulence play no role in the final saturated spectra, as one expects in a strongly
driven, dissipative system. In all three cases, the central temperature dip is associated
with a strong outward advective turbulent flux inboard of the barriers. Such a dip
is inconsistent with a purely local diffusive transport, although not with any funda-
mental principle such as the second law of thermodynamics (the system considered is
everywhere driven hard, and is far from equilibrium).

JET-like simulations: Realistic, global, JET simulations pose several problems at
present, since the periodic cylinder model is inadequate for JET conditions, due to
shaping. Furthermore, p;/a = p, ~ 4 x 1073, and this makes adequate radial resolu-
tion impractical. The JET time-scale is long (several hundred milliseconds), whereas,
computationally it is not feasible to make runs for much longer than 2ms. For these
reasons, the calculations presented should be viewed as first attempts to model qualita-
tively, the initial transient physics of ITBs in JET. The results discussed below are from
a sequence of four runs continued for a total time of 1.5 ms (45000 time-steps). These
high resolution (100 x 64 x 32; At ~ 30ns) runs were made with parameters suggested
by JET shot #49006: R = 3m,a = 1.25m,By = 2.6T, P, ~ 15MW, I, = 2.3MA,
f = 1.5 x 10¥m™3, ¢y ~ 2.2 (somewhat lower field and current as compared with
#46727, shown in Fig. 2), M, = 0.3. The power deposition profiles were assumed



parabolic and equal amounts of power were applied to the two species. The particle
source profile was chosen as for RTP.

The experimental (from charge exchange diagnostics) 7; profile close to the time of
barrier formation is shown in Fig.6a, and the calculated profile in Fig.6b. The main
transport barrier at the end of the simulation (starting with initial Gaussian profiles
and random fluctuations) forms near r/a =~ 0.8 in T; and weaker, inner barriers are also
plainly visible (Fig. 6b). The simulated profile is qualitatively similar to the experi-
mental profile. Figures 7a,b, compare the observed {from the LIDAR diagnostic) and
the calculated T, profiles, again demonstrating qualitative agreement. In view of many
uncertainties relating to sources and diagnostics, this agreement is encouraging. The
experimental (also from LIDAR) and the computed n. profiles are shown in Figs.8a,b.
Once formed, the barriers evolve slowly in time and have a tendency to reduce ¢' locally.
The secondary, weaker barriers, form at other low order rational surfaces.

The computed E x B poloidal flow (Fig. 9) reveals highly sheared, ‘jet-like’ mesoscale
structures in the barrier zone (compare with Fig.3). The JET simulations are influenced
both by the toroidal flow due to the beams and the turbulence—driven, ‘zonal’ (poloidal)
flows[8]. Thus all the terms in Eq.(13) seem to be important under these conditions.
Figuresl0a,b shows an instantaneous snap-shot of the computed radial and poloidal
E x B velocity fluctuations, revealing ‘streamers’ (m = 7 and higher harmonics) and
ballooning micro-turbulence associated with an m = 8,n = 3 resonance, close to the
barrier. The radial wavelengths are noticeably shorter than poloidal ones, as noted
earlier. Movies also show that current filamentation occurs, suggesting that magnetic
fluctuations play a key dynamical role. Current effort is directed towards increasing
processing power using parallel processing variants of CUTIE to carry out more realistic
simulations over longer time-scales with better resolution.

IV. Summary and conclusions

Global, nonlinear, electromagnetic simulations of tokamak turbulence with special ref-
erence to internal transport barriers in RTP[1] and JET[2] have been presented. The
model, although considerably simplified, seems to be able to capture the main quali-
tative characteristics of transport barriers in both experiments, although the heating
schemes and conditions are very different. The turbulence exhibits ‘self-organizational’
tendencies noted by earlier workers[11, 13] typical of driven, dissipative nonlinear sys-
tems. The low (m, n) spectrum observed in the simulations is associated with rational
g surfaces and relatively long wave-length electromagnetic modes. It plays a key role
in the dynamics. These modes are qualitatively similar to ‘snakes’[2] and filaments[12]
observed in experiment. Filaments are nonlinearly saturated helical disturbances, as
opposed to ‘corrugations’, which are essentially m = n = 0, time-dependent, high
local radial gradient features. Both types of structures exist and interact in complex
ways throughout the evolution. It is apparent that fine-scale, intermittent turbulence
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is generated through nonlinear and toroidal mode couplings and secondary instabilities
(direct cascade). Furthermore, turbulent fluxes (eg, < én.6vf >) varying rapidly in
space and time (as in [13, 19]) can ‘corrugate’ profiles influencing the local gradients
of both magnetic (¢',5) and electric fields (E!). These in turn, drive and damp the
turbulence in a relaxation process. Thus, there clearly exist two separate feed-back
loops governing the co-evolution and interaction of electromagnetic plasma turbulence
and profiles, associated with E,[8] and ji[7], respectively. The resulting nonlinear
dynamics[11, 13] involves complex mode rotation, current filaments(‘snakes’), internal
mode-locking, relaxation oscillations, avalanches[19], and intermittent bursts of high
&,w turbulence.

The above features are readily visualized in movies made from the simulations, and
are broadly reproducible, irrespective of the initial conditions. They appear to be
general, model-independent features of low-frequency, nonlinear, electromagnetic, two-
fluid plasma turbulence in tokamaks. The transport barriers themselves are regions of
high profile gradients which appear to form spontaneously in association with ratio-
nal g surfaces in a self-organized process in which corrugations of both radial electric
field shear and bootstrap currents are involved. The results presented in this paper
suggest that ITBs can be modelled from first principles with a two-fluid direct nu-
merical simulation code, provided due account is taken of the global, nonlinear, and
electromagnetic aspects of the problem. Future work will be aimed at establishing the
essential qualitative and quantitative behaviour of ITBs, including their scaling prop-
erties, using improved versions of CUTIE to interpret the data available from a variety
of steady-state and transient experiments.
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Abstract

A cylindrical model with an equilibrium surface current and a uniform equilibrium plasma
flow velocity parallel to the axis of the cylinder is used to investigate resistive wall instability.
This system can be unstable to the ideal, external kink mode, which can be stabilised by the
presence of a perfectly conducting wall. This is the classic condition for the resistive wall
instability and the effect of a plasma flow velocity on this mode is explored. It is noted that
a stable kink mode, Doppler shifted by the flow velocity, can pass through zero frequency
for a velocity which depends on the marginal condition for the external kink instability. The
passage through zero frequency is the condition for the kink mode to carry negative energy.
It is shown how this mode implies a critical flow speed at which the resistive wall mode
is further destabilized, with a growth rate inversely proportional to the square root of the
wall time. Under these circumstances, the resistive wall mode behaves more like an ideal
instability. All flow velocities are shown to be potentially destabilizing and the flow velocity
can produce a resistive wall instability even when the plasma is stable to the external kink
mode in the absence of a wall. At velocities well above the critical flow speed, the resistive
wall growth rate is much reduced (inversely proportional to the wall time and to the flow

speed).






I INTRODUCTION

With the advent of advanced tokamaks with improved confinement there has been renewed
interest in resistive wall instability' since this would be a threat to the success of these
devices. The recent observation® of an extension of the wall stabilised lifetime of DIII-D3
to more than 30 times the resistive wall time in the presence of toroidal rotation has also
focussed attention on the effect of rotation on resistive wall instability. An early treatment
of the effect of rotation on resistive wall modes was given by Gimblett* who later considered
the effect of a secondary wall® rotating relative to the first wall. Since this early work several
authors®~!? have analyzed the effect of rotation with the aim of identifying a stabilizing effect

due to rotation.

Recently, Wesson'® discussed a very simple model in order to clarify the role of a flow velocity
on the resistive wall instability. For a uniform incompressible slab of fluid in the presence of
a uniform flow velocity along a uniform magnetic field it was shown that the flow velocity
resulted in a resistive wall instability if vy > /2c4 where v is the flow speed and c4 the
Alfvén speed. An extension of this model to a compressible plasmal®!5 showed that, in
addition to this instability, a second resistive wall instability occurred when vy > cg where
cs is the sound speed, and for low beta conditions, cg < c,. However, these very simple
models are not relevant to a tokamak. The most important feature missing from these
models is free magnetic energy. The purpose of this paper is to analyse the effect of a flow
velocity along the equilibrium magnetic field on resistive wall instability for a model which
contains free magnetic energy. The characteristic feature of the resistive wall instability of
a magnetically confined plasma is that in the absence of a wall the plasma is unstable to an
ideal kink mode which is stabilized by the presence of a perfectly conducting wall close to
the plasma-vacuum boundary. When the perfectly conducting wall is replaced by one with
finite resistivity the plasma becomes unstable to the resistive wall mode.

In order to keep the analysis as simple as possible a cylindrical model with a surface current
at the plasma-vacuum boundary is used. A uniform plasma flow velocity along the axis of
the cylinder is assumed which is parallel to the equilibrium magnetic field in the plasma.
The motivation for this study is to elucidate the effect of a flow velocity on the resistive wall
instability of the type defined at the end of the previous paragraph. It is also of interest
to discover whether there are any critical values of the flow velocity for the instability. The
outline of the paper is the following. In Section II the cylindrical model is defined and the
equations of ideal magnetohydrodynamics (MHD) are used to obtain a second order equation
for perturbations to the equilibrium state. The boundary conditions at the plasma-vacuum
interface at 7 = a and at the wall at » = b are given in Section III and used to obtain
the dispersion relation. Solutions of the dispersion relation are given in Section IV and a
summary and conclusions are given in Section V.

II THE CYLINDRICAL MODEL

The starting point for the analysis in this paper is Ref 16 in which an infinitely long cylinder
of plasma, of radius a, with uniform density, pressure, and magnetic field is considered. The
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confining magnetic field is produced by a surface current Jy flowing parallel to the axis of
the cylinder at the plasma-vacuum boundary. Thus

Jo = 2Jyd(r —a) (1)
where 6(z) is the Dirac §-function. The magnetic field resulting from this current is

Bilr) = 0 , DErxa

By(r) = B=5 , axr

There is also a constant axial magnetic field in both plasma, Bf,, and vacuum B§,. Since
there is no poloidal surface current it is assumed that By, = B§,. The equilibrium pressure
balance at 7 = a gives

(Bje(a)”

Do = Q—NO_ (2)

In Ref 16 the plasma is assumed to be stationary in the equilibrium state and to be sur-
rounded by a vacuum which extends to infinity. In this paper, the plasma is assumed to have
a uniform flow velocity vy parallel to the axis. In addition, there is a thin wall, of thickness
A, having finite resistivity and positioned at 7 = b, concentric with the plasma cylinder. In
the regions between the plasma and the wall and beyond the wall (r > b) there is a vacuum.

Perturbations about this equilibrium are described by the linearized equations of ideal MHD.
In the presence of a uniform axial flow of the plasma, the linearized equations are

Bvl (.Bg B]_) 1

—L 4 po(vg- Vv =-Vp, =V +—(By-V)B 3
pOBt po(vo Jv1 M 1 #0( 0 )B1 ()
oB
3t1=Vx(v1xBo)+Vx(vaB1) (4)
8
£+pgv-'v1+(’vg-V)p1=D (5)

Assuming an isothermal equation of state, p; = cZp;, where cs is the sound speed (po/p0)"/?,
and that all perturbations vary as f(r)expi(kz + m# — wt), the perturbed variables can be
expressed in terms of v;z. Carrying out this elimination, the following second order equation
for v,z is obtained

dzvlz 1 dvlz m2
a2 Tra e e =0 (6)
where
= =3
-5)-9)

012 — A - S (7)

p2_ @ _ &

<



and @ = w — kvp. The solution of Eq (6) which is finite at r = 0 is
viz = Cly(ar) (8)

where I, is a modified Bessel function of the first kind. In addition, p;, v;, and B,z are also
required. These variables can be expressed in terms of v;, and are

P = s 9)
—5
. kz _ W )
Vi = — ( <) duz (10)
I ka2 dr
kBOZ (D_Jz = kZCQ)
Biz = = ) 221z (11)

III THE BOUNDARY CONDITIONS

The perturbations in the plasma must be matched to the corresponding perturbations in
the vacuum region. The perturbed magnetic field in vacuum is given by B} = V. In the
region a < r < b, ¢ is given by

Y(r) = DKn(kr) + FI,(kr) (12)

where I, (kr), K (kr) are modified Bessel functions of the first and second kinds respectively.

For r > b,
Y(r) = EX,,(kr) (13)

which satisfies the condition that 1 — 0 as 7 — co. The boundary conditions at the thin
resistive wall® at r = b are:

By, is continuous, and

dBr " 4
T Bv 14
dr g c 1r (b) ( )

where ey = (uooA)™!, with A the thickness of the resistive wall and o its conductivity.
Substituting Eqs (12) and (13) into these two boundary conditions, and eliminating the
constants £ and F' in favour of D, 9, given in Eq (12), can be written as
" iw (K}, (kb)) DI, (kr)

Thcw [T (RE) K (D) — K (Kb Ty (kb)) — o K (RE) I (D)}

where a single prime denotes the first radial derivative of the corresponding Bessel function
and a double prime the second radial derivative.

(15)

Y(r) = DK, (kr)

In order to eliminate the two remaining constants, two further boundary conditions are
required. These are both obtained at the plasma vacuum interface at r = a. The first
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condition is obtained from the continuity of the total pressure which can be obtained by
integrating the radial component of Eq (3) across the plasma vacuum boundary, giving

1Bgy dBgg vir
Lo dr @ a

BB
4 20271z
Ho

v v
— BOZBIZ

- Ho

B},Bj}
L+ Doolie
a Ho

pi(a) (16)

a

where the third term on the right-hand-side of Eq (16) results from evaluating the equilibrium
magnetic pressure at the perturbed surface (see, for example Ref 18). The second boundary
condition at the plasma vacuum boundary can be written'®

Z.'U]_,-

(o) =i (S Bis(a) + kBis) 7)

Substituting Egs (8) - (11) and Eq (15) into Eqs (16) and (17) the dispersion relation for
the modes of oscillation of a cylindrical plasma with uniform flow, a surface current and a
thin resistive shell at r = b is

w’c 2 IL(aa) [ (Bgs(a) m o, \?
— m L DU g~ 1 1
(0? — k2c%) T 5 popoan(aa) a * (ABOZ 2 BOB) 8 =

{[I{m(ka)f,’n(kb) — I (ka)KL (kb)] K (kb) + SECH. (17 (kb) KL, (kb) — It (kb) I (kb)] Ko (ka)

%

§ {[K;n(ka)f;n(kb) I (ka) K (kb)] kIt (kb) + S (1 (kb) K, (kb) — K2, (kb) Ity (kb)] kK, (ke

Within the limitations of the present sharp boundary, surface current model, Eq (18) is the
most general dispersion relation. It describes all the modes of the system, namely, shear
Alfvén waves, fast and slow magnetosonic waves and kink modes. Solutions of Eq (18) will
now be obtained for various limiting cases.

IV SOLUTIONS OF THE DISPERSION RELATION

In order to make contact with earlier work consider the case when the wall at 7 = b is a
perfect conductor, ie ¢y —+ 0. In the limit b — oo, Eq (18) is then identical to Eq (11) of
Shafranov!® for the equilibrium assumed here and taking vy = 0.

Since the main aim of the present paper is to analyse the effect of a flow velocity on resistive
wall modes attention will be concentrated on the kink modes. For this purpose it is sufficient
to consider the incompressible approximation to Eq (18), obtained by letting cs — o0, giving

 Lplka) k()
K (ka)I (kb)
! (I I, (ka)K, (kb

kK' (ka) [1 - T?’,,E(A—c)a)ﬁ“{l?ﬂ

m

, Kn(ka) [1

kln(ka) | (Bia))® ,

—2 2.2
- = ke =
A popolm(ka) a

(ke + )



where, for the moment, it is still assumed that ¢y = 0 and o — &k when ¢g — o0. In the
long wavelength limit, ka < 1, kb < 1, Eq (19) reduces to

2m
2 = K2 + (kBgz £ 3 %Bgz)z [1 + (%) ] 3 (ng(a))2ﬁ (20)
Pare [1 = (%)2"‘] poto @2

Again, in the limit & — oo, and taking vy = 0, Eq (20) gives the well known dispersion
relation for external kink modes (see for example, Ref 18). The kink mode is unstable for
m = 1 when —mBg,/(aBjz) < k < 0. For m = 0,2 the external kink is marginally stable
and for all higher m it is stable.

For the later discussion of resistive wall modes it is helpful to review the corresponding
properties of kink modes when the perfectly conducting wall is at a finite distance from the
plasma. The m = 1 mode is still unstable but the band of unstable wave numbers is reduced
to —Bgy/aByz < k < —Bgy(G—1)/(aBgz(G+1)) where G = [1+(a/b)*™]/[1 - (a/b)*™]. For
this case the m = 2 mode is stable and does not reach the marginal condition. However, it
1s instructive to obtain the frequency of the m = 2 mode. This is done for the wave number
k which minimises the first two terms on the right-hand-side of Eq (20). The resulting value
of k is —2Bg,G/aBjz(1 + G). Using this value (for k) in Eq (20) the solution for @ is given
by
v \2
@2 — i(BOB) (G 1) (21)
a®> popo 2(G +1)

For vy = 0, the frequency is progressively down-shifted as the conducting wall is moved
further from the plasma. As the distance to the wall tends to infinity, G — 1 and w — 0,
the marginal condition. For intermediate positions of the conducting wall, the kink mode
will have a phase velocity along the magnetic field which is significantly smaller than the
Alfvén speed. For example, when a/b = 0.25, and using Eq (21), the phase velocity is
w/ | k |~ 0.09cq. Clearly, the phase velocity can be reduced to zero at the marginal
condition. This property has already been noted in another context!9.

Returning to Eq (21) with the plasma flow velocity v, included, the kink mode solutions can
be written

(22)

2 B [(G—l)]l/z

= kvo & =
w Vo a(po,uo)lfz 2(G+ 1)

where the solutions of Eq (23) describe stable kink modes propagating parallel or anti-
parallel to the magnetic field. However, when the flow speed exceeds the phase velocity of
the kink mode one of the kink modes becomes a negative energy wave, namely the one whose
frequency passes through zero. It will be found that this will have important consequences
for resistive wall modes, especially as rather low velocities can cause the change in sign of
the wave energy when the kink mode is close to the marginal condition.



The effect of a plasma flow velocity on resistive wall modes can now be discussed by returning
to the general dispersion relation given in Eq (18). The same approximations are made as
in the previous case, namely, the incompressible limit, cs — oo, and the long wavelength
conditions, ka < 1, kb <« 1. However, a resistive wall is now assumed instead of a perfect
conductor. Hence, finite values of ¢y are now included. Under these conditions, Eq (18) can
be reduced to

(kByz + GBt)” G (1 + 2imkew [ (wkb(1 + (a/b)*™))) _ (Bgy(a)*m

Potio (1 + 2imkew /(wkb(1 — (a/b)?™))) T (23)

@ = k% +

The dispersion relation given in Eq (23) is identical to the one obtained recently by Veeresha
et al’® although these authors wrote the equation in a different form. It is helpful to re-write
Eq (23) as follows

.U m v = v
wi@? — K3 — (I"BUZ_'_ aBUB) G + (Bua(a))zﬂ

Pofbo poto @2
2
; . m puv
__omew [, (KBt @Bh)  (Bu@ym| .,
== am] | ¥ €a + 2 (24)
b [1 _ (%) ] Poto Potoa

Introducing the notation

2
22 (kBgZ+%Bg9) G ( gs(a))gm

2
wy = k¢ + - ) 25
‘ s Poto Pofioa’ (25)
2
kB:, + I*B? BY.(a))?
Poko Potod

the dispersion relation given in Eq (24) can now be written in the compact form

2 2):

2
w(@? — w? : m““’zm] @ -w?) . (27)

o[1-(9)

The meaning of the quantities wy and w; is that ©@® = w? is the dispersion relation for kink
modes with a perfectly conducting wall at » = b and @? = w? is the corresponding dispersion
relation in the absence of a wall. The dispersion relation, Eq (27), is in exactly the same
form as the one given by Eq (3a) of Finn and Gerwin!? for a different equilibrium. It is
also worth noting that Eq (27) has the same structure as the dispersion relation derived by
Wesson!3.

The dispersion relation given in Eq (27) is the basis of the discussion which follows on
resistive wall instabilities and their dependence on a plasma flow velocity. Since the kink
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mode dispersion relation with a perfectly conducting wall at r = b contains the three cases of
interest, unstable, marginally stable and stable, Eq (27) is used to consider the various cases
which might arise. Before continuing with the discussion of resistive wall modes, it should
be emphasised that this discussion is of a heuristic nature. Although the dispersion relation
given in Eq (27) is treated as being representative of the resistive wall instability, there is
always a band of k-values for which the m = 1 ideal kink is unstable. The justification
for the model is that it allows a comprehensive treatment of the problem to be given and
enables further understanding of the underlying mechanisms to be gained. It is hoped that
the information obtained from this simple model will serve as a guide for the analysis of
more realistic situations and be of some qualitative help to experiment.

It is useful to begin with the case without a flow velocity. The classical resistive wall mode
is readily obtained from Eq (27). For this case the plasma is unstable to the ideal kink mode
in the absence of a wall, ie w? < 0 or w? = —2. In the presence of a perfectly conducting
wall at 7 = b, the ideal kink mode is stable, so that w§ > 0. The dispersion relation, Eq (27)
is now written as ) B

___ i2mew (W' +7}) (28)

b [1 = (%)2’"} (w? = w)

Treating cy as a perturbation, Eq (28) is solved for the wall mode which is approximated
as a zero frequency mode. The correction, dw, to the wall mode frequency, due to a weakly
resistive wall, can be obtained perturbatively from Eq (28) by substituting w = 0 on the
right hand side, giving

£ 2
b~ 0 (29)
Wy
where 5
= oW (30)

b1 ()]

Hence, the stabilised ideal kink mode is destabilized due to the inclusion of finite resistivity
of the wall. The growth rate is inversely proportional to the wall time. This is the definition
of the MHD resistive wall instability. If w? < 0 then the plasma is unstable to an ideal kink
with a perfectly conducting wall and the addition of a resistive wall is not significant. It will
therefore be assumed that wg > 0. Note, also, that if the kink mode is stable without a wall,
so that wi > 0, then the wall mode solution is

—iTw?
bw ~ 2&)1 (31)
wo

In this case, the wall mode is damped.

Next, the effect of a plasma flow velocity is considered. Again choosing the condition that
wi = —v} it cannot be assumed that the wall mode will still be a zero frequency mode.

&z



Therefore, substituting w = w, + 7y into Eq (27) and assuming small w,
_ 27kuo(y +T)
" - )
., D(k*v + 1)
* E - )

(32)
(33)

Assuming that T is small, w, < . As before, the wall mode is unstable due to a weakly
resistive wall. Since w, < 7, the growth rate can be obtained by perturbing the wall mode
about zero frequency as in the case without a flow velocity. Thus, in the presence of a flow
velocity, Eq (28) becomes .
w:_zf‘gw + %) (34)
(@* — wj)

Perturbing about zero frequency, the correction, dw, to the wall mode frequency is
b iC'(K*vg +73)

" Wi )
which is in agreement with Eq (33).
It will be noticed that Eqgs (33) and (35) have a pole wy = kvp. The meaning of this is as
follows. When kvg = wp one of the kink modes passes through zero frequency and its energy
changes sign. When the wall mode and kink mode both have frequencies close to zero they

are able to couple. This effect has also been discussed in Refs 10 and 14. The dispersion
relation can still be solved perturbatively, as follows.

Assuming the condition
k'Uo = Wy (36)

the dispersion relation can be written

w(w — kvp — wy)(w — kg + wp) = —il(@* + 73) (37)

Perturbing about zero frequency, Eq (37) becomes

6w - (—2wp) * 0w ~ —iT (k2 + %) (38)
Hence (k22 2)
~ KUy + v
% gy g0t 1) 39
(8u)? ¢ T2 (39)
The perturbed frequency is given by
2,2 1 A2\] %
Barma 4 {M] (1+1) (40)
40)0

8



The growth rate of the resistive wall mode is therefore enhanced by the coupling to the
negative energy kink mode. The growth rate now varies inversely as the square root of
the wall time, ie (e /b)2. It is also worth noting that the frequency of the wall mode is
comparable to the growth rate under these conditions.

For still higher flow velocities, kvg > wy, it is the slow kink mode (negative energy) which
is destabilized by the resistive wall in a manner analogous to the resistive wall amplifier of
Birdsall et al®”. In this case, the perturbation solution of Eq (37) is obtained by assuming

w = kvg — wy + dw (41)

Substituting Eq (41) into Eq (37) gives

0w +1%)

- 2w0(kfug — wo) (42)

dw

In this case the frequency of the resistive wall instability is kvy — wy and the growth rate is
again inversely proportional to the resistive wall time.

The final case to consider is when the plasma is stable to the ideal kink mode in the absence
of a wall, ie w? > 0. Without a plasma flow velocity, the wall mode is damped by a resistive
wall. Now consider the effect of a plasma flow velocity. It can again be shown that w, < ¥
for the wall mode so that wall mode stability can still be analysed by perturbing about zero
frequency. In this case, the correction to the wall mode frequency can be obtained from Eq
(27) and is given by

iF(k’Uo — wl)(kvo + Lr.Jl)
dw ~

(wf — k%)

(43)

It can be seen, that even for this case, the wall mode can become unstable when vy > (w1 /k).
At the threshold vy = (w;/k), the real part of the frequency is zero.

As the velocity increases, the growth rate increases. As vy approaches (wo/k) the wall mode
will couple to the negative energy kink mode, again producing a strong enhancement of the
growth rate. The resistive wall mode behaves rather like an ideal mode in this case since the
higher growth rate ~ (cy /b)% results from a coupling of two modes. A similar interpretation
has been given by Finn and Gerwin®, although these authors refer to the coupling between
the wall mode and a backward MHD mode. In fact, as demonstrated above, the coupling
occurs when the backward kink mode changes to a forward wave as the frequency passes
through zero and the wave energy changes sign. A similar quadratic perturbation analysis
for dw of the dispersion relation, Eq (27), yields

[(k?v2 — w?

Sw =~ + [ 7 )} % (1+1) (44)



For still higher flow speeds, vy > (wo/k), the growth rate falls with increasing vy and the
corresponding result to Eqs (41) and (42) is

., il(wg — wi)

o 2&)0(!17'00 == Ldg)

dw (45)

The instability again corresponds to the slow kink mode with a frequency w = kvp — wy.
V SUMMARY AND CONCLUSIONS

Experimental results® from the DIII-D tokamak have suggested that, in the presence of
toroidal rotation the lifetime of the discharge can be significantly extended. This has provided
the motivation for the present attempt to gain some insight into the role of a plasma flow
velocity on the resistive wall instability and whether there are any critical flow velocities.
For this purpose a simple, sharp boundary cylindrical model with a skin current, axial flow
and a thin resistive wall has been studied.

The classic resistive wall instability results from an external kink mode which is unstable
without a wall but is stabilized by the presence of a perfectly conducting wall. When the
finite resistivity of the conducting wall is included the system is unstable to the resistive wall
mode, growing on the slower time scale of the resistive wall. These are the essential features
of the resistive wall instability and are all contained in the present model. However, it should
be remembered that the results obtained from this model can only be used as a qualitative
guide to the behaviour of resistive wall modes. This is because the sharp boundary, surface
current model is always unstable to an m = 1, ideal kink mode.

Although this model is oversimplified, it allows the physical mechanisms to be more easily
identified. These mechanisms would be expected to play a role in more realistic models.
This expectation is supported by the work of Finn and Gerwin!® who have also examined a
cylindrical model but one in which an equilibrium current flows in the plasma. The dispersion
relation obtained in Ref 10 has the same form as the one derived in this paper. The analytic
results given in the present paper are complementary to the numerical results obtained in
Ref 10.

The effect of a flow velocity was first considered for the ideal kink mode with a perfectly con-
ducting wall. In particular, the properties of wall stabilized kink modes have been discussed.
Far from marginal stability the phase velocity of kink modes along the magnetic field is of
the order of the Alfvén speed. However, these modes are down-shifted in frequency as the
condition of marginal stability for the ideal kink mode is approached with the result that
the parallel phase speed can become much smaller than the Alfvén speed, tending to zero at
the marginal condition.

In the presence of a parallel flow velocity, the kink modes are Doppler shifted in frequency so

that the waves propagating parallel and anti-parallel to the magnetic field have frequencies
w = kvg £ wp, where wyq is the frequency of the mode without flow. It is noted that the mode
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w = kv — wy passes through zero frequency when vy = wy /k and that the change in sign of
the frequency corresponds to a change in sign of the wave energy. This is an MHD example
of a wave carrying negative energy when the flow speed exceeds the phase speed of the wave
in the medium®. Under these conditions the two waves, w = kvy & wy are often referred to
as fast and slow waves.

Resistive wall modes are discussed making use of this point of view. These modes are
only of significance when the ideal kink modes can be stabilised by a perfectly conducting
wall. It is clear that any rotation can destabilize a resistive wall mode depending on the
proximity of the marginal condition for a perfectly conducting wall. If a plasma without a
parallel flow velocity is stable in the absence of a wall then it remains so if a resistive wall is
introduced. However, in the presence of a flow velocity, a resistive wall instability can occur
when vo > w; /k where w; is the kink mode frequency without a wall. When the plasma is
unstable without a wall, w? < 0, but stabilized by a perfectly conducting wall, the resistive
wall instability is further destabilized at a critical flow speed, vo = wp/k, when the zero
frequency, negative energy kink mode couples to the zero frequency wall mode. Under these
conditions the resistive wall instability behaves more like an ideal instability and the growth
rate is proportional to (cy /b)2, ie to the inverse of the square root of the wall time.

For still larger values of vy > (wy/k) it is the negative energy kink mode, rather than the
wall mode, with a frequency kvy — wp, which is unstable in the presence of a resistive wall, in
a manner reminiscent of the resistive wall amplifer?®. In this case, the growth rate is again
inversely proportional to the wall time (cw /b) and varies inversely with the flow speed vg.
Hence, although all flow speeds are evidently destabilizing, a system driven at a higher flow
velocity, ie vg > (wp/k), will be subject to a weaker instability than for the smaller fow
speed, vg = (wp/k).

The final conclusion is that there are two critical velocities. The first, vy = (wo/k), is the
more threatening since at this velocity, the resistive wall instability would have a growth rate
closer to an ideal instability. The other critical velocity is vy = (w1/k), corresponding to the
case when the plasma is stable in the absence of a wall. When this velocity is exceeded, the
plasma is again unstable to a resistive wall instability. Since w; < wp, this instability is also
enhanced when vy = (wp/k) and becomes weaker as vy increases further as discussed for the
case where wi < 0. If (wp/k) is low, ie the plasma is close to marginal stability, a velocity
vp > (wo/k) would be preferred whereas if the plasma is not near the marginal condition,
vo < (wo/k) might be preferable. In either case, the plasma would only be subjected to
a weak instability rather than the strong instability associated with the critical velocity,

Vg = (Ldu/k)
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