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Abstract. The stability of the ideal internal kink mode is calculated, taking into
account the kinetic response of thermal ions in the external region and the singular
layer. By extending the collisionless dispersion relation to include the equilibrium
radial electric field it is found that the stability of the internal kink mode depends
sensitively on sheared toroidal plasma rotation. The sheared toroidal plasma rotation
can increase the critical pressure for internal kink mode displacements by a factor

typically of two.
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1. Introduction

In this paper we consider the question of extended sawtooth quiescent periods in
present and future tokamak experiments, and the possible relationship to strong
kinetic stabilisation. A particularly relevant issue addressed here is the effect that the
equilibrium radial electric field and toroidal plasma rotation may have on sawteeth. This
appears to be a somewhat neglected area of research, even though in many experiments
the plasma rotation frequency is observed to be large.

In recent years, interest has focused on the kinetic effects arising from collisionless
energetic populations of ions (as distinct from thermal ions) on the internal kink mode.
The theoretical interpretations of kinetic effects on fishbones [1] and sawteeth [2] have
been particularly successful. For the case of fishbones, the instability has been identified
with a mode satisfying w ~ (Wman) [3], where w is the normal mode frequency and
(Wman) is the magnetic drift frequency of hot minority ions averaged over trapped
particle orbits (denoted by angular brackets ‘<>’). Kinetic effects enter the analysis
through an additional term which generalises the minimised MHD fluid potential energy
calculated for example by Bussac et al [4]; these are often found to be strongly
destabilising for regimes corresponding to neutral beam injection (NBI) heated plasmas.
Furthermore, the success of ion cyclotron resonance heating (ICRH) in controlling
sawtooth activity at JET [5] has also been interpreted using the generalised potential
energy. Comparisons between theory and experiment are fruitful, with particularly
strong correlations between JET DTEIL sawtoothing discharges and kinetic stabilisation
reported recently in Refs. [6, 7].

In sufficiently hot plasmas thermal ions also give rise to significant kinetic effects
[8, 9], and an unstable mode has been identified with w ~ (Wmdi), where (Wmgi) is the
bounce averaged magnetic drift frequency of trapped thermal ions. However, in many
experiments the toroidal plasma rotation Qg (r) caused by the equilibrium radial electric
field is at least as large as (wmg:), and to interpret the kinetic effects of such plasmas on
sawteeth the potential energy term should be generalised to include the effects of a finite
equilibrium electric field. Furthermore, by including these additional effects, it will be
shown that the internal kink mode is sensitive to the magnitude and profile of Qg (r).
For some regimes the kinetic effects of thermal ions can be stabilising, as is found for
ICRH minority ions. However, for a sufficient change in the amplitude, or indeed profile
of Qs(r), the kinetic effects can be destabilising. In addition it is shown that if the
plasma rotation profile is not sheared, the effects of finite ¢ on stability disappear. In
this paper g is limited to an ordering ¢ ~ Wapi, With w,p; the diamagnetic frequency of
thermal ions. This analysis therefore differs from previous work which has concentrated
on the effects of sheared toroidal plasma rotation in the sonic range on the ideal MHD
internal kink mode [10].

Many experimental observations suggest a link between sawtooth activity and
plasma rotation. For example, in locked mode experiments a change in the m = 2,
n = 1 resonant magnetic perturbation amplitude and a corresponding change in the
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amplitude and shear of {24 can remove sawteeth altogether [11]. Moreover, in NBI
experiments, a reversal in the direction of the minority ion injection, and corresponding
plasma rotation direction, can significantly modify the sawtooth period and amplitude.
In this paper, the impact of toroidal plasma rotation is analysed chiefly via
evaluation of the critical poloidal beta for instability, where the poloidal beta is defined
by
2 . ,dP
ﬁp = —ﬁ./o TZET-"CET. (1)
In Eq. (1), po is the relative permeability of free space, By the axial magnetic field
strength, r the minor radius and r; the radial location of the singular layer with
g(r1) = 1, g is the safety factor, £; = /Ry is the inverse aspect ratio with Ry the major
radius of the tokamak, and P the plasma pressure. The ideal internal kink mode is stable
when f3, < 7, a critical value, and this classical measure of the internal kink stability [4]
is chosen for two principal reasons. First, it provides useful information regarding the
ideal stability threshold. Indeed, the MHD critical value 8; provides a benchmark with
which to gauge modifications that correspond to the kinetic effects of the thermal ions.
Second, evaluating B; only requires solving the internal kink mode dispersion relation at
marginal stability: while retaining a finite mode oscillation frequency, the kinetic terms
are greatly simplified for cases where the growth rate is zero, and thus allow the kinetic
potential energy of the thermal ions and the dispersion relation to be solved exactly.
The paper is organised as follows. Section 2 describes the relative sizes of various
competing natural frequencies and provides an analysis that extends the kinetic internal
kink mode dispersion relation to include the equilibrium radial electric field and induced
plasma rotation. In Section 3 the typical characteristics (including the plasma rotation
magnitude and profile) of sawtoothing discharges are described, and represented in
a model that is subsequently used to assess the effect of plasma rotation on the
internal kink mode. Quantitative results based on the theoretical extensions and models
of Sections 2 and 3 are contained in Section 4. Finally, the results of this paper
are summarized, and the implications for fusion research are discussed in Section 5.
Technical details pertaining to the kinetic treatment of the singular layer are assigned

to the Appendix.

2. Internal Kink Mode Dispersion Relation for Toroidally Rotating Plasmas

In this section the ideal internal kink mode dispersion relation is extended to include the
effects of finite toroidal plasma rotation. Before this can be done, the magnitude of the
various frequencies that appear in the dispersion relation must be considered. Including
an equilibrium radial electrostatic field in the equation of motion and assuming that
poloidal flows are strongly damped [12], the toroidal rotation frequency is given by:

= Qs + Wap; (2)
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with
g®’ gF;
Qe = —= and W,y = —————.
® Bg?‘ 3 GZniBoT (3)
Here eZ, n;, P; are, respectively, the ion charge, ion density and ion pressure and @ is the
electrostatic potential, so that the radial equilibrium electric field is E, = —®’, where

" = §/dr. The frequencies Q¢ and w,,; have the same sign provided the equilibrium
electric field is positive; the electrostatic and diamagnetic contributions are in opposition
if the electric field is negative.

In most of the regimes examined in the following sections it is found that the
solution to the dispersion relation satisfies R{w} = w, ~ wyy, and, in addition, in
modern large hot tokamaks the thermal ion temperatures are sufficiently high to ensure
that whilst w.,; is large, the effective collision frequency of trapped thermal ions z/éﬁ
is, by comparison, relatively small, ie véﬁr/w,,pi & 1, thereby justifying the collisionless
limit. Throughout this paper the collisionless limit is assumed. This assists in reducing
the number of parameters appearing in the theory and clarifies the origin of the various
trends observed in the results. Also, because the effective electron collision frequency is
large (uéff/r/éﬂ- = y/m;/m,, where m;/m, is the ion-electron mass ratio), electrons do
not contribute significantly to kinetic behaviour, unlike thermal ions.

The plasma rotation is limited to Q¢ ~ w.yp;, or equivalently, E, ~ 8F;/0r [ n;eZ.
Such an ordering simplifies the formalism describing internal kink mode stability. This
follows from the fact that MHD fluid terms do not depend directly on the diamagnetic
component of the plasma rotation because w,p; is small. As a result the MHD fluid
terms are also independent of Qg ~ w.y. Even at higher velocities where centrifugal
effects are taken into account only small modifications to the MHD stability have been
calculated [10]. For kinetic terms, the situation is markedly different. Here it is found
that the dynamics of single particles are strongly modified by the radial electric field.
In particular, an electric field dominates over inhomogeneous magnetic field effects on
trapped precessing particles. Since kinetic terms describe single particle and collective
resonances, perturbations of a kinetic origin are also strongly modified by an electrostatic
potential. If no such potential exists the dynamics is simplified and the perturbed kinetic
distribution function defined in Ref. [3] applies in the external region. In this paper the
effects of finite Q¢ on the fluid and kinetic terms of the singular layer are also taken
into account.

It is useful to review the form of the perturbed thermal ion distribution function
for the external region when Qg = 0 [13]:

o m 05:/00
W= NZeas/oel, Of;

_ omy 8T/0¢|e
W= NZea7/ecl, Ot |,

£(J). (4)

6fi=—-€-Vfi+2

Here f; is the equilibrium thermal ion distribution function, £ = v%/2, € the fluid
displacement, 7 the longitudinal invariant, so that J = ABV -£,/2—€, k(1 -3AB/2),
where A = /£ with p = v2 /2B the magnetic moment and & is the magnetic field line
curvature vector, n is the toroidal mode number and 1 is the magnetic flux where, for
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circular flux surfaces, r By dr = ¢(7) dip. Inspecting the RHS of Eq. (4), the first term
is the convective component, which gives rise to fluid MHD quantities, and the second
term is the perpendicular compressional term, giving kinetic effects. Kinetic quantities
can be recognised through the frequencies
Wei = % KB e ang (mas) = = BII0% e (5)
e 0fi/0€ |, Ze 87 J9€ |,
The numerator of Eq. (4) contains the difference between the internal kink mode
frequency and the ion diamagnetic frequency. The denominator contains the difference
between the kink mode frequency and the magnetic precessional frequency of trapped
thermal ions.
We now turn to the more general scenario where there is an equilibrium radial
electric field and examine how this modifies the resonances appearing in Eq. (4).

Unperturbed particles now have
K=&+ Zed/m; (6)

as a constant of their equilibrium motion. Antonsen and Lee [13] developed a drift-
kinetic equation in terms of K, and the adiabatic invariants z and J, and solved it
for the perturbed &f;. Following Ref. [13], the only changes to Eq. (4) that result
from the inclusion of a non-zero equilibrium electrostatic potential correspond to the
transformations 8/9€ |, — 9/0K |, and 0/0¢y |, — 0/0% |. Hence Eq. (4) is

generalised to

m; 85:/9¢ |
W= nzean/okl, Of:

—  m 0T/ HK
"Ze 37 /oK], oK1y

Whilst the kinetic component of the perturbed distribution function is modified, the

£(J)- (7)

5fi=—€-Vfi+2

fluid component is unchanged.
We now explore in more detail how the equilibrium electric field affects the kinetic

component of the perturbed distribution function §f; and relate these changes to the
equilibrium plasma rotation Q. Regardless of whether @ is non-zero, the longitudinal

invariant

g = f y)dl,
with the integration between trapped particle bounce points, is conserved and in general
one can define the drift precession frequency [14] as:

m; 0T [0V |
= i 8

wa) = Zeaglo], ®)
To evaluate expression (8) it is necessary to define the parallel velocity in terms of K
rather than &: vy =2 (K — puB — eZ®/m;)?, giving

o7 :}((%@_ﬁ@)dl_%aj a4 0T

N g Oy

¥

dl
U

% Y| 81,0 m; 5‘1,0 Y| %
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The first and second terms appearing in the first integral correspond to the curvature
drift and V B drift respectively and collectively identify the magnetic drift. The second
integral corresponds to the drift due to the electric field. Using r Bydr = ¢(r)dy and

referring to Eq. (3) yields:
m; 0T [0 |
V= —— = D+ Q.
(wdt) Za aj/aic |¢ (wmdz) ] (9)

Thus an equilibrium electric field modifies the bounce averaged drift frequency of
trapped ions in exactly the same way as it does the bulk toroidal plasma rotation
Q.

The remaining quantity occurring in the numerator of Eq. (7) requires evaluation.
For this application the Maxwellian distribution written in terms of K is required:

o () e (52) e (5 :

=i ()" exp (50 exp (7). (10)
Using Eqs. (5) and (3) it can be seen that

m; afz/ail’ |,c _

B BRjoK], T (11)

It is now possible to identify the modifications of the perturbed kinetic distribution
function which are attributable to finite ¢. Using Egs. (9) and (11) and noting
Afi(r,E)/8E |, = 8fi(r,K)/OK |, when f; is Maxwellian, the kinetic contribution to Eq.
(7) becomes

w—Qe(r) —ww \ Of;
spu=z (el ) S ), (12)
on setting n = 1. Comparing Eq. (12) with the kinetic contribution to Eq. (4) it is clear
that the inclusion of finite @ has the effects w.; = w.; + Q¢ and wWmg — Wmai + ¢. This
transformation applies throughout the analysis, and 6W}; can be obtained by following
the method of Ref. [3] on replacing the kinetic component of Eq. (4) with the generalised
term of Eq. (12).

We now consider the singular layer and more generally the internal kink dispersion
relation. Matching the layer solution for £ to the ideal regions r < r; and 7 > r; yields
the following dispersion relation [15, 16]:

ysvl+al) — W, (13)
Wa 3 62 r1
where the magnetic shear s = rq'/q, wa = v4/Ro with v the Alfvén velocity, e = 7/ Ry,
SW = 6W 67262 RoB2et /g, 72 = —w(w — Wapi)|r, and A = 2¢2 [17].

Finite Q¢ effects are introduced by noting that the inertia is most conveniently
calculated in the absence of an electrostatic potential. This can be arranged by
transforming the eigenvalue w to a frame moving with the toroidal rotation at the
resonant surface Q4(r1), i.e. w — w — Qg(r1), thus giving (15, 18]:

7 = —(w— Q) (W — wWepi — Qa)l,, - (14)



Toroidal Rotation and Internal Kink Stability 7

To be consistent with the external region, collisionless kinetic effects of thermal ions
are retained in the singular layer. Following a procedure similar to that of Ref. [19],
plasmas in the banana regime have the above definition of A modified to [7]:

A= 1'?/2 [1+ 0],
€y

Details regarding the evaluation of A can be found in the Appendix.
From Egs. (13) and (14), the generalised ideal internal kink mode dispersion relation
is :
(W — Weps 3 S i
M Poie T [(5Wf + 5Wki(d3)] =0, (15)

D(@) = —i
(@) L VIt A

Wa

Tl
where the Doppler shifted eigenfrequency is

0 =w— Qa(ry). (16)

Substituting Eq. (4) for the kinetic component of Eq. (12) yields [3]:

70 e 7/2,3 2 q
Wei(@) = —2 ﬂm;( )f drr/dk 2

0 E’/zafi[ & = [wei + Qa(r) — Qa(r1)] ]
X/ dgg 85 Q—[(wmdi)'i‘ﬂcp(r)"‘ﬂi’(rl)] , (17)

where k% = [1 + ABy(e — 1)]/(2eABy),

Ky(k?) = \[K(;ﬁ (7, K?) = \/7/ cos 2\q/j1n kz\/—znqb)]dqs,ug)
Sin

and K (k?) is a complete elliptic integral of the first kind [20].
In Section 4 the above generalised dispersion relation is solved numerically for

various regimes inferred from the models and parameters described in Section 3. For the
present it is of interest to emphasise some of the more obvious characteristics regarding
the generalised dispersion relation. Consider Qg(7) — Qa(r1) > @. If Qs(r) — Qo (ry) is
large enough, the square bracket of Eq. (17) will approach unity and consequently W ;
will be independent of Q¢, @, w.p and (Wme). This result is identical to the Kruskal
and Oberman limit [21] of @ — oo, which yields the stability criterion

- N - 2
(6Wo — 6W1B, — 6W,B2) + '”;M;‘ B> 0 (19)

where the 8TV, terms depend only on the safety factor profile, q(r), and are evaluated
by Bussac et al [4]. Also p; & 1.1 (see Ref. [8]), which together with

5,U.0 2P
P = 5/2_/ drr 3/2 (20)

contains the stabilising effect of trapped ion compression.
Now consider when the magnitude of Q¢ is comparable with @, w.p; and (wma;), but

the radial profile of {24 is not sheared, i.e. Q¢(7) = Q¢(r1). It can be seen by inspection
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of Eq. (17) that if Q¢ is not sheared, the dispersion relation D(&) is independent of Q.
This result is intuitively obvious, since w = @ + Q4(7;) represents the translation of a
frame of reference rigidly moving relative to the laboratory frame.

In general however {14 may be sheared. Experimentally it is found that Q4 is peaked
at the plasma centre and decreases towards the plasma edge. For such an equilibrium it
can be seen from Eq. (17) that §W;(w), and hence D(®), are sensitive to small changes
in Q, particularly for the most interesting regimes in which @ ~ wepi ~ (Wmai) ~ Qe.

The reason why the dispersion relation is sensitive to sheared toroidal plasma
rotation is because single particles are strongly affected by the equilibrium electric field.
This is reflected in the local dependence of §Wy; on 2¢(r) in both the numerator and
denominator of the integrand in Eq. (17).

The inertia is affected by Qs only through contributions to the dispersion relation
from the singular layer. The Doppler shift observed in <y; corresponds to the equilibrium
electric field at 7;. Therefore, since part of the dispersion relation contains an integral
which is a function of Qg(r) and another part which is a function of Q¢(r;), sheared
toroidal plasma rotation necessarily introduces non-trivial modifications to the stability

of the internal kink mode in the banana regime.

3. Modelling the Effects of Plasma Rotation on Stability

This section describes the models and choice of parameters that will be used to obtain
the solutions to the dispersion relation in Section 4. A convenient way to reduce the
parameter space is to determine internal kink stability close to marginal threshold

conditions.
At marginal stability, Eq. (15) can describe two different types of mode. One of

these is in the Alfvén continuum, which requires either @ > w.,;(r;) or @ < 0. Assuming
this to be the case, the imaginary and real parts of Eq. (15), respectively, are

sV1+A \/m -—CE{CSWM} = (21)

3me? WA

1

SWy + R {0} = 0. (22)
Equation (21) describes a balance between Alfvén continuum damping and the ion
Landau drive. In this respect, when the frequency of the marginally stable mode lies
in the continuum the mode resembles the fishbone instability discussed by Chen et al
[3]. The other class of mode can be referred to as a ‘gap mode’ which experiences no
continuum damping, since its frequency lies in the low frequency diamagnetic gap in the
Alfvén continuum 0 < @ < w,pi(r1). If the mode frequency, at marginal stability, falls
within the diamagnetic gap then the mode is neither continuum nor Landau damped.
Hence for 0 < & < w.pi(ry), the imaginary and real parts of Eq. (15) yield:

% {(5Wki} =0 (23)
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\/1 A Uyw*i_&) - &
VLA Yl =) +6W, + R{6Wy} = 0. (24)

3me? wa

Tl
When the marginally stable mode is in the gap, finite Larmor radius effects provide
additional internal kink stability through the positive definite inertial term in Eq. (24).
The stability of the internal kink mode is gauged by evaluating the critical poloidal
beta B5 at marginal stability. This quantity is chosen because the computation of
B5 permits direct comparison of the marginal stability boundary with the ideal MHD
calculations of e.g. [4]. In evaluating the fluid potential energy sW 5 we use the exact
expression defined in Ref. [4], rather than approximate forms. However, a unique value
for 35 cannot be obtained from a dispersion relation that includes kinetic effects, since
in addition to the pressure (and hence f3,), W}, also depends on the temperature and
density profiles. Thus B¢ depends on 7; = dInT;/dInn, and R/Ly, = RdInT;/dr; i.e
on the two parameters which detemine stability of ion temperature gradient ( ITG )
modes. There is also a weak dependence on density because the inertial term scales
as 6/11:/ 2 Throughout Section 4 f; is evaluated by keeping the central density ng
fixed. Two pressure profiles (one more peaked than the other) are investigated and,
within these, a range of values of 7; is considered. Equal electron and ion pressures are
assumed throughout. The problem is simplified by noting that when all frequencies are
normalised to w.pyi(r1) both terms in Eq. (3.1) scale as §, (in the low beta limit where
the trapped ion precessional drift does not depend on the equilibrium Shafranov shift of
the magnetic surfaces or its radial variation). Thus, in the low beta limit, the imaginary
part of the dispersion relation determines the mode frequency

w

Wypi (7”1),

which can then be inserted into the real part of the dispersion relation to determine the
critical value of 3,. At higher beta values, where the ion precessional drift depends on
B, through the Shafranov shift (see below), a few iterations of this procedure converges
to the required solution. This determines the values of 5, and @ at marginal stability.
Perturbative analysis around these values is required to determine whether instability
is predicted above or below the critical value 8;. This has been done, and establishes
that the kink mode is unstable at higher values of 5.

Considerable effort is made here to integrate §Wj; without recourse to limiting
approximations. Accurate representations of the pitch angle dependent quantities y
and (wmg) are required. For I, a two dimensional fit in k? and g which accounts for
the logarithmic singularity in pitch angle at the trapped-passing boundary B =11s
employed. It is accurate to within 0.01 percent for 0.5 < ¢ < 1 and 0 < k* < 1. Writing

1 /2
Iq = ;\/;Fq(q’kZ),

the fit takes the form

@w

Fg, RH2(8) — (7)) - S0 56 4 4 — K
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— (14 cos(mq) f(a) [BR) + (K = D) + 2B(%) ~1]
— L+ cos(r))[B(E) — K(¥)] - fa(@)(1 ~ k) |5 = (k)] 25)

with
fi(g) = % [1.0841 - 0.3193(1 — g)* — 0.0683(1 — g)°]

falg) =51 (q = %) (1-¢)*[1 - 0.034(1 - g)],

and E(k?) a complete elliptic integral of the second kind [20].

For cases where 8 = 2uoP/B? is relatively large, the effects of Shafranov shifted
circular flux surfaces on the magnetic drift of trapped ions [22] must be included. Unlike
most other studies, where the effects of finite pressure on trapped ion orbits have been
neglected, the definition of {(wme:) used in the computations of Section 4 include finite

B effects. Referring to Connor et al [22]:

(W) = % {Fl +25F; — o (é + F3)J , (26)
where F) o3 are defined in terms of complete elliptic integrals of the first and second
kind:

F, =2E(KY)/K(kK*) -1,

Fy, = 2E(K%) /K (k?) + 2(k® — 1),

Fy = 5128 ~ )ER)/K () + (1= K, (27)
and
=L@y (28)

Before the dispersion relation can be solved numerically the various quantities that
characterise the plasma must be defined. The profile of Q¢(r) is modelled for r < ry, by

Qa(r) = Qo [1 - (%)} . (29)

The high rotation shear within 7, indicates that finite Q¢ will have an important effect
on the stability of the internal kink mode. The sign of 24 is also crucial. If Qg > 0, then
Q¢ and w.p; are in the same direction. Henceforth, {24 > 0 is referred to as co-rotation
and 24 < 0 as counter-rotation.

In Section 4 Qg, where

de = Q@(""l)

w-«pi(rl)
is used as the independent variable and the dependent variable is 3, or, equivalently, the
central temperature Ty, which must necessarily satisfy the marginally stable dispersion
relation. The effect of the different profiles of the density and temperature is also
investigated. It is assumed that n; = ny[l — (r/a)¥*» and T; = Ty[l — (r/a)?]’T, with
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n; = n, and T, = T;. Different values are assigned to the pressure profile index v, + vr

and the parameter 7;:
_dInT; vr
"= Qlnn v (30)

The following profiles and parameters, which are typical of JET equilibria, are
used: Ry/a = 2.4, By = 3T, njy = 4 x 10" m™® and Z = 1. The safety factor profile
isg=gql +d(r/a)2°]1/c, with g = 0.7, d = 9.09, ¢ = 1.33 giving r;/a = 0.36 and
g(a) =5. ) )

For this equilibrium the coefficients, §W,,, in Eq.(19) take the values §W, = 0.027,
SW; = 0.133 and W, = 0.359. The equilibrium is therefore unstable according to the
Bussac stability criterion (inequality (19) with gy = 0) for 8, > 0.15. The addition of
trapped ion compression in the Kruskal-Oberman form (inequality (19) with u; = 1.1)
raises this beta limit to 8, = 0.19 (when v, + vr = 3) and to B, = 0.25 (when
v, + v = 3/2). In the next section we evaluate the effect on this beta limit of trapped
ion drift resonance and FLR stabilisation, in the presence of sheared toroidal flow.

4. Results

The purpose of this section is to demonstrate the sensitivity of the internal kink mode
to changes in Q4. We first investigate the mode satisfying & > 1 in an equilibrium with
v, +vp =3 and m; = 2. Figure 1 (a) shows R{6W;}, S{6Wy;} and the layer term
—3{D*} as a function of & for Q5 = 0 and B, = 0.26, where we define:

s AN B — ) -

D= —g
3me? WA .

T1

such that D% + W = 0 and ‘s’ denotes singular layer. The solution for & occurs when
S{6Wi} = —S{D*}, i.e. when Eq. (21) is satisfied, clearly indicated in Fig. 1 (a)
from which it can be seen that R{§W} < 0. However, it should be noted that for the
parameters assigned in this example, the thorn does not correspond to a self consistent
solution of Eq. (22) (the real component of the dispersion relation), although Fig. 1 (a)
does highlight a sharp peak and trough of R{6W;} and demonstrates how the solution
is constructed. Figure 1 (b) is for a toroidal plasma rotation Qs = 2.5. In contrast with
the previous case the solution for @, which corresponds to the thorn, now occurs close
to a peak in R{6W;} rather than a trough. Consequently Fig. 1 (b) suggests that for
the particular choice of equilibrium, co-rotation (Qe > 0) provides enhanced stability.
The reason for this is simple: the real and imaginary parts of 6W; are altered by a
shift in frequency Qe(r) — Q4(r1) as indicated by Eq. (17), whereas the inertia term is
not affected.

The marginally stable dispersion relation is now solved self-consistently. However,
we first note that a complete investigation of internal kink stability requires
consideration of the effects of n;, Eq. (30). #; can vary from one discharge to another,
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and also can evolve during the sawtooth cycle. The values of n; are typical of those
measured and fall in the range 1/4 < n; < 4.

Figure 2 shows three solutions to the dispersion relation, each with vr+ v, = 3, for
different values of n;. Figure 2 (a) depicts the normalised self-consistent mode frequency
&€ as a function of the normalised plasma rotation Q¢ for differing n;. Such normalisation
allows the boundary between the Alfvén continuum and the gap to be easily located in
Fig. 2 (a) at @° = 1. Other fundamental parameter values can also be identified in Fig.
2. For example at Qs = 1, the total plasma rotation § at r; has equal contributions
from the pressure and electric field, whilst at (1 = —1, the total plasma rotation is zero

atr.

Since R{6Wy,} is (approximately) proportional to f,, Figs. 2 (b) and (c) appear
to be similar. For each n;, both 8; and R{6W};} are minimised for Qs ~ 0, and the
minimised value of the threshold beta corresponds to R{6W};} < 0, whereas [3': and
R{6W};} are maximised for Qs ~ 2. Within the range —3 < Qg < 0 the threshold beta
only increases slightly for increasing counter-rotation.

Figure 2 demonstrates that f; is increasingly sensitive to changes in Qs for larger
values of 7;. This trend is enhanced when the peaking of the pressure profile is reduced.
Figure 3 illustrates the modifications to Fig. 2 for when vr+v, = 3/2. It can be seen that
for n; = 4, the magnitude of 8 varies by a factor of two within the range 0 < Qg 21,
and can rise to values three times greater than the Bussac value of 8 = 0.15 for this
equilibrium.

For all but the case 7; = 1/4, Fig. 3 illustrates that counter-rotation modifies
R{6Wi;} and B5 only slightly. However, for n; = 1/4 with —2.4 S Qs S — 0.5, the
marginal internal kink mode lies in the gap in the Alfvén continuum, ie. 0 < w® < 1.
For Qp < —2.4 or Qg 2 — 0.5 the mode is in the continuum with, respectively, w® <0
or @ > 1. When the marginal frequency lies in the gap, Eq. (24) shows that the inertial
layer term §R{f)5} contributes to the real part of the dispersion relation and has the
effect of enhancing f5; this represents the familiar diamagnetic stabilising effect which
peaks when @&° = 1/2, as confirmed by Fig. 3 (a) and (b).

Figures 2 and 3 demonstrate that the threshold poloidal beta is an increasingly
sensitive function of Qs for increasing 7;. Comparisons between Figs. 2 and 3 show
that the pressure profile also influences f;. In partlcular for a fairly flat profile
(vn + vr = 3/2), B; is most sensitive to changes in (s about unity, whereas for steeper
pressure gradients (Vn + vp = 3), larger values of Qs are required to produce a similar

degree of sensitivity.

5. Summary and Discussion

In this paper the ideal internal kink stability analysis has been modified to include the
effects of finite Larmor radius (FLR) stabilisation, trapped ion compression and ion
Landau drift resonance in the presence of small sheared toroidal flow in the equilibrium.
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The latter, which includes a component g caused by the equilibrium radial electric
field, is limited to an order of magnitude similar to that of the thermal ion diamagnetic
frequency. The ideal internal kink mode calculations take into account the kinetic
response of thermal ions in both the singular layer (close to ¢ = 1) and the external
region. Modifications arising from the inclusion of Q¢ are shown to exist solely in the
external kinetic term. If {24 is not sheared, except for a Doppler shift in the real mode
frequency, there is no effect on the internal kink mode. If {23 is sheared, the enhancement
to the total plasma rotation Q = Q¢ + w.p; has the effect of locally shifting §Wy;[@] to
Wil + Qs (r1) — Qo (r)]. For modes with @ ~ w,p; ~ (Wma:), the result of a frequency
shift Q¢ (r) —Qa(71) ~ wap: is to modify dramatically B, the beta limit for internal kink
stability.

In general it is found that ﬁ; is an increasingly sensitive function of {24 for increasing
;- Provided 7n; is not much less than unity, counter-rotation has little effect on gy,
whereas co-rotation enhances §; by up to a factor of three above the fluid MHD limit
(ie the value calculated by Bussac et al analysis). In particular, choosing a relatively
flat pressure profile (v, +vr = 3/2) and large 7;, B, proves to be very sensitive to small
changes in co-rotation.

This paper has demonstrated that finite ¢ has an important effect on the internal
kink stability of tokamak plasmas in the banana regime. Furthermore, the results may
explain some of the observed interaction between sawtooth stability and plasma rotation
[11]. For further experimental interpretation the dispersion relation of Eq. (15) could
easily be modified to include the effects of an NBI population. The additional term
§W (@) would be identical to Eq. (17) except for the interchange of the thermal ion
distribution function, diamagnetic frequency and precessional drift frequency with f,
wyp, and {wWpman), respectively. It is plausible that in many NBI experiments the plasma
rotation could be ordered such that Qg(r;) ~ (wWmar), and this being the case, the effects
of finite sheared {24 should be included when using internal kink models to interpret
sawtooth and fishbone behaviour in such discharges.
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Appendix: Kinetic Modifications of the Singular Layer

This appendix calculates the leading order kinetic potential energy 6W}; which modifies
the minimised energy of the singular layer. We must first calculate the perturbed kinetic
distribution function, denoted by ‘h’, which takes a different form to Eq. (12) which is

only valid far from r;.
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First we consider the quantity J, which is defined following Eq. (4). In low
beta plasmas, MHD modes satisfy BV - £ = —2B¢| -k = —2(§, - V)B. In
addition, the leading order displacement satisfies V - £7 = 0, and, consequently, in
the singular layer the discontinuity of the internal kink eigenfunction gives & > &;.
Using (vf + 1B)0B/06 = —B*v0(v/B) /99,

8§ . B
28] = (v + pB)% — iy ”5: = (). (A1)

The poloidal displacement takes the form £; = é;(r) exp (10 —i¢—iwt) and the perturbed
kinetic distribution function h = h(r, ) exp(i — i¢p — iwt). Hence, from Eq. (A.1) and
using the ordering w ~ w,i(r1) ~ Qa(r1) > Wmai(r1), the drift kinetic equation becomes
[13]:

5 . 0:& v 9
%“E l:% + Z(l - q):l h. (w Qrb) - E(W Wai— Qi)) 62‘ 69 T}}gag (RUH)a(A‘z)

where the relation BOR/80 = —ROB /08 results from the dependence of B on R.

Since ¢ =~ 1 in the singular layer, the 1 — ¢ term on the left hand side of Eq. (A.2) is
neglected. Consistently with the treatment of the external region, the kinetic equation
is expanded in orders of w/(27/7), where 7 is the bounce time or transit time of trapped
or passing ions, respectively. The leading order kinetic equation is

wohy 0 &0

Rgag @@ Selgg R R
with solution

. s 9 f; —

ho = i(w — wy — ) fﬂ 31; Ruy + hy,

where hg is independent of 6.
Proceeding to the next order determines hg through:
2 Oh
Rq 06
which, in conjunction with the leading order solution, gives

= i(w — Qo) ho, (A.3)

_'U|_|3_f11__ _ _ L Q§9 fa
Rq 90 (w = Qo) (w — wes — Qo) == 5= Ry +i(w = Qs)ho.  (A4)

A solution for hg is obtained by annihilating h, separately for passing and trapped ions.
Transit averaging Eq. (A.4) over passing particle space annihilates h; directly to

7= . _ o Q£0 afz 2 dBR
ho(pass) = —t(w — wa; " j{dﬂR j{ o

Annihilating %, for trapped particles gives the result.

give

ho(trap) = 0.
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Therefore, the leading order kinetic distribution function is

g = i(w — wy; — Qq»)qf" af’R 1, (A.5)

with

1—(§df R?) /(Rv” § dgTR) passing ions.

It is now necessary to determine how kinetic effects in the layer modify the internal
kink stability. This is achieved through evaluating 6W};, the kinetic potential energy at
the singular layer. It follows from Chen et al [3] that §W}; can be defined as:

VB
s L
oW = 5 [z (6P +6PL) 2215

1 trapped ions
X

with

6B + 0P = my f d*v [vﬁ + [.LB] h.
Note that §W}; is non-zero when A is even in v, and the largest even component of i
is h;. Hence, from Eq. (A.1)

= 1/Bm 5% v
SWg, = —midm*RoB} [ ar [ age [ ax faoesh— (E'),')
where the integration in # is defined appropriately for either passing or trapped ions in

conjunction with the integration over pitch angle A. Integrating the poloidal integral by
parts, and noting that £;*h; = §jh,, gives

. e [ 1/Bm v\ dh
SWE, = mi4w2RgB§/;dr§9fo dS&'/O "ax fdo ( ”) -
Referring to Eq. (A.3), note that 61}, can be written in terms of the leading order
distribution function hg. Hence, substituting Eq. (A.5) gives

2y 1/Bmin
§W, = —minRoBon} | dr @Y § ag ( ) [4 B[ de£ 95 [17

af, /Boax  §df R?
-—47r( )/ aeEE dAW],(A.G)

where the notation 77 = —(w — Qs)(w — Wipi — Qa)|r, has been used.

The first term in the square brackets of Eq. (A.6) is evaluated over all particle
velocity space and is identified with the ion density n; = [ dv? f;. The remaining term
is more complicated. By transforming to a new pitch angle variable y = 1/k?, it can be
seen that the integral § df R/v) gives rise to an elliptic integral of the first kind, K (y).

Evaluating the energy integral with p = m;n; one finds

con 1| 7 do R © df R2\?
Vs = 2m2 Ryy? 52,5 @y .
SW; 7° Ro; /sdr r(g&;) P - QWRSJ ( . QWRE) Ql, (A7)

143£2 142

~
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where

L | dy e%/?
°- f (I =)+ 2P2K(y)’ (A.8)

Defining ¢ = 2¢/(1 — €) and integrating (A.8) by parts, results in
T 1 812 :
= —— -+ T 1
°="2-9 ([(wtwmmh )

__[ dyt3? K (y
(y+1) 3/21'( )
and ' = d/dy. Since 1/K (1) =0 and 1/K(0) = 2/,
1 s
= 1—=1].
< l1—¢ ( QI)
7 still cannot be evaluated explicitly in terms of the parameter ¢ but an asymptotic

expansion may be obtained for small ¢ by writing

_ | MKW dy b dyS(y)
r=en [ (oo gt L e 0

Here S is chosen so that the second integral can be evaluated analytically in such a way
that on taking ¢ = 0, the first integral converges at y = 0. Hence S(0) = K(0)'/K(0)*
and its local dependence for small y is obtained using the expansion

where

19
K(y) = 2[1+ e ]

Truncating S beyond y?, we take
1
5= [1 ]
o N y
and so the second integral of Eq. (A.
a2 ! dySly) _ 2| _
o (y+1)¥? w
The first integral of Eq. (A.9) can now be evaluted numerically taking ¢ = 0. Hence,

-2 [&— §\8/—§£3/2 + (2¢)%2 /01 (ig((g)); —5(9)) ci?rz] +O(e?)

9) is
3\/5 3/2]_1_0( &)

p
or, on numerical evaluation,
T=-— [£+1653/2] + O(e?).
The terms in Q of older e now cancel to leave :
Q=1-16e%%+ Que?,

where evaluation of Q, requires a higher order construction of S(Z) above. Upon
substituting Q into Eq. (A.7), the leading order terms cancel to give

Wi = QﬁaRofﬁ/dT r(gés)’pAs, (A.10)
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with

1.6

A: (—17-2-+2—Q2) qz.
€
Equation (A.10) is easily combined with the fluid contributions to the dispersion

relation and, following the procedure described in Refs. [15, 16], yields the dispersion
relation of Eq. (13). The leading order term of A is 1.6/5}/ ? and represents a correction
to the inertial enhancement calculated by Mikhailovskii and Tyspin [19]. The term +2 is

also observed in collisional MHD where it appears as an enhancement from the parallel
inertia [17]. The remaining term, @2, can be evaluted by a similar procedure, and has

the value 1.5, so that, finally,

1.6
i = W+0.5+O(E}/2) ¢
€
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Figure 1. Plots of real and imaginary kinetic potential energy terms together with the
singular layer term D as a function of the normalised mode frequency & = @/w.pi(r1)
for an equilibrium with v, + vy = 3, 7; = 2 and B, = 0.25. In (a) the plasma rotation
{l¢ = 0 and in (b) Q¢ = 2.5. The solutions to the imaginary component of dispersion
relation (Eq. (21)) occur for values of & corresponding to the thorns.
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Figure 2. Depicting &° = @° /w.pi(r1), R{6W 1} and B; as a function of Q¢ for three
different values of ;. In each plot the pressure profile is parameterised by vr 4+ v, = 3.
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Figure 3. Depicting @ = &° fwepi(r1), R{6W ; + D*} and pB5 as a function of s
for three different values of 7;. In each plot the pressure profile is parameterised by
vy + vy = 3/2. Note that R{D*} = 0 for modes in the continuum. The thorn indicates
the frequency transition as the marginal mode moves out of the gap into the continuum
for p; = 1/4.



