UKAEA FUS 433

EURATOM/UKAEA Fusion

The resistive wall instability and critical
flow velocity

C N Lashmore-Davies

September 2000

© UKAEA

EURATOM/UKAEA Fusion Association

Culham Science Centre, Abingdon
Oxfordshire, 0X14 3DB

United Kingdom

Telephone +44 1235 463357
Facsimile +44 1235 463647






The Resistive Wall Instability and Critical Flow Velocity

C N Lashmore-Davies

UKAEA Fusion, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

Abstract

A cylindrical model with an equilibrium surface current and a uniform equilibrium plasma
flow velocity parallel to the axis of the cylinder is used to investigate resistive wall instability.
This system can be unstable to the ideal, external kink mode, which can be stabilised by the
presence of a perfectly conducting wall. This is the classic condition for the resistive wall
instability and the effect of a plasma flow velocity on this mode is explored. It is noted that
a stable kink mode, Doppler shifted by the flow velocity, can pass through zero frequency
for a velocity which depends on the marginal condition for the external kink instability. The
passage through zero frequency is the condition for the kink mode to carry negative energy.
It is shown how this mode implies a critical flow speed at which the resistive wall mode
is further destabilized, with a growth rate inversely proportional to the square root of the
wall time. Under these circumstances, the resistive wall mode behaves more like an ideal
instability. All flow velocities are shown to be potentially destabilizing and the flow velocity
can produce a resistive wall instability even when the plasma is stable to the external kink
mode in the absence of a wall. At velocities well above the critical flow speed, the resistive
wall growth rate is much reduced (inversely proportional to the wall time and to the flow

speed).






I INTRODUCTION

With the advent of advanced tokamaks with improved confinement there has been renewed
interest in resistive wall instability' since this would be a threat to the success of these
devices. The recent observation® of an extension of the wall stabilised lifetime of DIIL-D?
to more than 30 times the resistive wall time in the presence of toroidal rotation has also
focussed attention on the effect of rotation on resistive wall instability. An early treatment
of the effect of rotation on resistive wall modes was given by Gimblett* who later considered
the effect of a secondary wall® rotating relative to the first wall. Since this early work several
authors®'? have analyzed the effect of rotation with the aim of identifying a stabilizing effect

due to rotation.

Recently, Wesson'? discussed a very simple model in order to clarify the role of a flow velocity
on the resistive wall instability. For a uniform incompressible slab of fluid in the presence of
a uniform flow velocity along a uniform magnetic field it was shown that the flow velocity
resulted in a resistive wall instability if vy > /2c4 where v, is the flow speed and c4 the
Alfvén speed. An extension of this model to a compressible plasmal¥'® showed that, in
addition to this instability, a second resistive wall instability occurred when vy > cs where
cs is the sound speed, and for low beta conditions, cs < cy4. However, these very simple
models are not relevant to a tokamak. The most important feature missing from these
models is free magnetic energy. The purpose of this paper is to analyse the effect of a flow
velocity along the equilibrium magnetic field on resistive wall instability for a model which
contains free magnetic energy. The characteristic feature of the resistive wall instability of
a magnetically confined plasma is that in the absence of a wall the plasma is unstable to an
ideal kink mode which is stabilized by the presence of a perfectly conducting wall close to
the plasma-vacuum boundary. When the perfectly conducting wall is replaced by one with
finite resistivity the plasma becomes unstable to the resistive wall mode.

In order to keep the analysis as simple as possible a cylindrical model with a surface current
at the plasma-vacuum boundary is used. A uniform plasma flow velocity along the axis of
the cylinder is assumed which is parallel to the equilibrium magnetic field in the plasma.
The motivation for this study is to elucidate the effect of a flow velocity on the resistive wall
instability of the type defined at the end of the previous paragraph. It is also of interest
to discover whether there are any critical values of the flow velocity for the instability. The
outline of the paper is the following. In Section II the cylindrical model is defined and the
equations of ideal magnetohydrodynamics (MHD) are used to obtain a second order equation
for perturbations to the equilibrium state. The boundary conditions at the plasma-vacuum
interface at r = a and at the wall at r = b are given in Section ITI and used to obtain
the dispersion relation. Solutions of the dispersion relation are given in Section IV and a
summary and conclusions are given in Section V.

II THE CYLINDRICAL MODEL

The starting point for the analysis in this paper is Ref 16 in which an infinitely long cylinder
of plasma, of radius a, with uniform density, pressure, and magnetic field is considered. The
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confining magnetic field is produced by a surface current Jy flowing parallel to the axis of
the cylinder at the plasma-vacuum boundary. Thus

J|)= .EJO(S(T'—G) (1)
where 0(z) is the Dirac é-function. The magnetic field resulting from this current is
ng (T) = 0 ) 0 S r<a
By(r) = B=h , a<r

There is also a constant axial magnetic field in both plasma, Bf,, and vacuum Bj,. Since
there is no poloidal surface current it is assumed that Bf, = Bf,. The equilibrium pressure
balance at r = a gives

_ (B3y(a))?
Do = —029#—0 (2)

In Ref 16 the plasma is assumed to be stationary in the equilibrium state and to be sur-
rounded by a vacuum which extends to infinity. In this paper, the plasma is assumed to have
a uniform flow velocity vy parallel to the axis. In addition, there is a thin wall, of thickness
A, having finite resistivity and positioned at = b, concentric with the plasma cylinder. In
the regions between the plasma and the wall and beyond the wall (r > b) there is a vacuum.

Perturbations about this equilibrium are described by the linearized equations of ideal MHD.
In the presence of a uniform axial flow of the plasma, the linearized equations are

0 B, B 1
pol+,00('00'v)vl :_vpl_v(ﬁ—ll_{__(]go.v)}_}l (3)
ot Ho Ho
B
88t1 =V x (v1 x Bg) + V x (vo x By) (4)
0
%"'POV'UI‘*’(UO‘V)JOl:O (5)

Assuming an isothermal equation of state, p; = c%p1, where ¢s is the sound speed (po/ oo )3,
and that all perturbations vary as f(r)expi(kz + m@ — wt), the perturbed variables can be
expressed in terms of v;z. Carrying out this elimination, the following second order equation

for v,z is obtained
dzt)lz 1 d’Ulz 2 m2
- —a*vg — —vz =0 6
dr? r dr T (6)

,_(+-8)(-5) ;

where

(V]

@ = 2 2
kg_u) _w
( A
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and @ = w — kvy. The solution of Eq (6) which is finite at r = 0 is
Uiz = CIm(CET) (8)

where I, is a modified Bessel function of the first kind. In addition, p1, vy, and B,z are also
required. These variables can be expressed in terms of v,z and are

(]
n= —pﬂfhz (9)
k
-2
. kz _w )
By = ( %) dnz (10)
TR a2 dr

kByz (02 = kzcg)

Bz = = o Uiz (11)

III THE BOUNDARY CONDITIONS

The perturbations in the plasma must be matched to the corresponding perturbations in
the vacuum region. The perturbed magnetic field in vacuum is given by B} = V1. In the
region a < r < b, 9 is given by

Y(r) = DK (kr) + FI, (kr) (12)

where I, (kr), K (kr) are modified Bessel functions of the first and second kinds respectively.

For r > b,
P(r) = EKp(kr) (13)

which satisfies the condition that ¥ — 0 as r — co. The boundary conditions at the thin
resistive wall® at r = b are:

By, is continuous, and
b+A
v
dB 1r
dr |,

where ¢y = (190 A)~1, with A the thickness of the resistive wall and o its conductivity.

=% g ) (14)
Cw

Substituting Eqs (12) and (13) into these two boundary conditions, and eliminating the
constants E and F' in favour of D, v, given in Eq (12), can be written as

iw(K,, (kb))*DI, (kr)
{kew (I (kb) K (kb) — K7 (kb)I! (kb)) — wkK (kb)I! (kb)}
where a single prime denotes the first radial derivative of the corresponding Bessel function
and a double prime the second radial derivative.

(15)

$(r) = DEKp(kr) +

In order to eliminate the two remaining constants, two further boundary conditions are
required. These are both obtained at the plasma vacuum interface at r = a. The first
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condition is obtained from the continuity of the total pressure which can be obtained by
integrating the radial component of Eq (3) across the plasma vacuum boundary, giving

P ppP
BUZBIZ

Lo

_ BizBiz
a Ho

B, By
4 DosPie
a Ho

ZBE]JQ ngg Uir

. Ko dr @

(16)

pi(a) +
a
where the third term on the right-hand-side of Eq (16) results from evaluating the equilibrium
magnetic pressure at the perturbed surface (see, for example Ref 18). The second boundary
condition at the plasma vacuum boundary can be written'®

ivlr

B, (a) =i (T Big(a) + kB ) (17)

Substituting Eqs (8) - (11) and Eq (15) into Egs (16) and (17) the dispersion relation for
the modes of oscillation of a cylindrical plasma with uniform flow, a surface current and a
thin resistive shell at 7 = b is

wck 2 I'(aa) [ (Bgla))’ oy NP
g o kBY, + By
(@2 — k2c%) T potroctn(aa) a + ( 0z ¥ 09) % (18)

{[Km(ka)f,in(kb) — L(ka) K", (kb)] K, (kb) + ECH. (17 (kb) KL, (kb) — KL% (kb) Ity (kb)) Kom(ka)

: {[K;n(ka)I,’n(kb) — I' (ka)K! (kb)) kK, (kb) + 1‘%‘41 [I! (kb)K!,(kb) — K (kb) It (kb)] kK] (ka

Within the limitations of the present sharp boundary, surface current model, Eq (18) is the
most general dispersion relation. It describes all the modes of the system, namely, shear
Alfvén waves, fast and slow magnetosonic waves and kink modes. Solutions of Eq (18) will
now be obtained for various limiting cases.

IV SOLUTIONS OF THE DISPERSION RELATION

In order to make contact with earlier work consider the case when the wall at r = b is a
perfect conductor, ie ¢y — 0. In the limit b — co, Eq (18) is then identical to Eq (11) of
Shafranov!® for the equilibrium assumed here and taking vy = 0.

Since the main aim of the present paper is to analyse the effect of a flow velocity on resistive
wall modes attention will be concentrated on the kink modes. For this purpose it is sufficient
to consider the incompressible approximation to Eq (18), obtained by letting cs — oo, giving

o)1 - b )
5)2 — k2C2 _ kIfrn(ka’) (Bge(a‘))z + (kBU 3 T_BU )2 Km(ka) [1 I(m(ka)f:n(kb)
a 4 potioIm(ka) a Y kK! (ka) [1 _ I;n(ka)lf:n(kb)]
m\"a K’ (ka)I (kb)
(19



where, for the moment, it is still assumed that ¢ = 0 and & — & when ¢s —+ 0o0. In the
long wavelength limit, ka < 1, kb < 1, Eq (19) reduces to

(855 + 285)" [1+ ()] (myaym

EO O BT

&% = k2cf4 +

Again, in the limit b — oo, and taking vy = 0, Eq (20) gives the well known dispersion
relation for external kink modes (see for example, Ref 18). The kink mode is unstable for
m =1 when —mBg,/(aBy;) < k < 0. For m = 0, 2 the external kink is marginally stable
and for all higher m it is stable.

For the later discussion of resistive wall modes it is helpful to review the corresponding
properties of kink modes when the perfectly conducting wall is at a finite distance from the
plasma. The m = 1 mode is still unstable but the band of unstable wave numbers is reduced
to —Bjp/aBi; < k < —Bgy(G—1)/(aBy,(G+1)) where G = [1+(a/b)*™]/[1— (a/b)*™]. For
this case the m = 2 mode is stable and does not reach the marginal condition. However, it
is instructive to obtain the frequency of the m = 2 mode. This is done for the wave number
k which minimises the first two terms on the right-hand-side of Eq (20). The resulting value
of k is —2B(,G/aBg,(1 + G). Using this value (for &) in Eq (20) the solution for @ is given

Y (Bia)” (G- 1)
2 4 (By)’ (G-1
VTR poto 2(G+1) (&)

For vy = 0, the frequency is progressively down-shifted as the conducting wall is moved
further from the plasma. As the distance to the wall tends to infinity, G — 1 and w — 0,
the marginal condition. For intermediate positions of the conducting wall, the kink mode
will have a phase velocity along the magnetic field which is significantly smaller than the
Alfvén speed. For example, when a/b = 0.25, and using Eq (21), the phase velocity is
w/ | k |~ 0.09cs. Clearly, the phase velocity can be reduced to zero at the marginal
condition. This property has already been noted in another context!®.

Returning to Eq (21) with the plasma flow velocity vg included, the kink mode solutions can
be written

(22)

2 B [{G—U}m

I
v "= 2 o) |2(C 1)

where the solutions of Eq (23) describe stable kink modes propagating parallel or anti-
parallel to the magnetic field. However, when the flow speed exceeds the phase velocity of
the kink mode one of the kink modes becomes a negative energy wave, namely the one whose
frequency passes through zero. It will be found that this will have important consequences
for resistive wall modes, especially as rather low velocities can cause the change in sign of
the wave energy when the kink mode is close to the marginal condition.



The effect of a plasma flow velocity on resistive wall modes can now be discussed by returning
to the general dispersion relation given in Eq (18). The same approximations are made as
in the previous case, namely, the incompressible limit, cs — oo, and the long wavelength
conditions, ka < 1, kb <« 1. However, a resistive wall is now assumed instead of a perfect
conductor. Hence, finite values of cy are now included. Under these conditions, Eq (18) can
be reduced to

(kByz + TBg)* G (1 + 2imkew /(wkb(1 + (a/b)*™)))  (Bip(a)*m

—2:k2 2 £ - —_ 23
&=k e (LF Zimbow /W@ — @/6P™))  poma® )

The dispersion relation given in Eq (23) is identical to the one obtained recently by Veeresha
et al'® although these authors wrote the equation in a different form. It is helpful to re-write
Eq (23) as follows

2
(kBiz + BBl) G (By(a)m

wi@® — k% — + =
Polo Poto a
2
. . RV m pv
o itmew  Jy oo (FBEt@BY)  (By(a)lm
- ) Y AT Potio T poted? 24
8 [1 —~{F] ]
Introducing the notation
2
. RV m
2 522 (;“BDZ i ?Bgﬂ) G (Bgy(a))’m
Polo Potoel
i m g \?
S e 0.2 (ABE')Z + EBS‘?) (Bge(a))zm
Potto Poltol
the dispersion relation given in Eq (24) can now be written in the compact form
2
W@ —uf) =~ @ - ]) (27)
. [1 ~-& ]

The meaning of the quantities wy and w; is that @ = w? is the dispersion relation for kink
modes with a perfectly conducting wall at r = b and @? = w? is the corresponding dispersion
relation in the absence of a wall. The dispersion relation, Eq (27), is in exactly the same
form as the one given by Eq (3a) of Finn and Gerwin'® for a different equilibrium. It is
also worth noting that Eq (27) has the same structure as the dispersion relation derived by

Wesson!3.

The dispersion relation given in Eq (27) is the basis of the discussion which follows on
resistive wall instabilities and their dependence on a plasma flow velocity. Since the kink
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mode dispersion relation with a perfectly conducting wall at r = b contains the three cases of
interest, unstable, marginally stable and stable, Eq (27) is used to consider the various cases
which might arise. Before continuing with the discussion of resistive wall modes, it should
be emphasised that this discussion is of a heuristic nature. Although the dispersion relation
given in Eq (27) is treated as being representative of the resistive wall instability, there is
always a band of k-values for which the m = 1 ideal kink is unstable. The justification
for the model is that it allows a comprehensive treatment of the problem to be given and
enables further understanding of the underlying mechanisms to be gained. It is hoped that
the information obtained from this simple model will serve as a guide for the analysis of
more realistic situations and be of some qualitative help to experiment.

It is useful to begin with the case without a flow velocity. The classical resistive wall mode
is readily obtained from Eq (27). For this case the plasma is unstable to the ideal kink mode
in the absence of a wall, ie w} < 0 or w¥ = —42. In the presence of a perfectly conducting
wall at 7 = b, the ideal kink mode is stable, so that w2 > 0. The dispersion relation, Eq (27)
1s now written as

i2mew (w? + 72)
' - (28)
1= (8)"] (@ - i)

w=—

Treating cw as a perturbation, Eq (28) is solved for the wall mode which is approximated
as a zero frequency mode. The correction, éw, to the wall mode frequency, due to a weakly
resistive wall, can be obtained perturbatively from Eq (28) by substituting w = 0 on the
right hand side, giving

iy
dw =~ 2 (29)
where 9
e S (30)

b[1-(3)"]

Hence, the stabilised ideal kink mode is destabilized due to the inclusion of finite resistivity
of the wall. The growth rate is inversely proportional to the wall time. This is the definition
of the MHD resistive wall instability. If w? < 0 then the plasma is unstable to an ideal kink
with a perfectly conducting wall and the addition of a resistive wall is not significant. It will
therefore be assumed that wg > 0. Note, also, that if the kink mode is stable without a wall,
so that w? > 0, then the wall mode solution is

—ilw?

bw ~ — (31)

Wy

In this case, the wall mode is damped.

Next, the effect of a plasma flow velocity is considered. Again choosing the condition that
wi = —9? it cannot be assumed that the wall mode will still be a zero frequency mode.
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Therefore, substituting w = w, + 7y into Eq (27) and assuming small w,
i il 2’)(]\71)0(’)( + F)
" - )
_ D(k*v§ + 1)
T - )

(32)

(33)

Assuming that T' is small, w, < . As before, the wall mode is unstable due to a weakly
resistive wall. Since w, < 7, the growth rate can be obtained by perturbing the wall mode
about zero frequency as in the case without a flow velocity. Thus, in the presence of a flow
velocity, Eq (28) becomes

iT(@?* ++2)

= —— " 34
R G o
Perturbing about zero frequency, the correction, dw, to the wall mode frequency is
T k2 2 2
5 ~ Lk +77) (35)

(wF = )

which is in agreement with Eq (33).

It will be noticed that Eqgs (33) and (35) have a pole wy = kvp. The meaning of this is as
follows. When kvg = wy one of the kink modes passes through zero frequency and its energy
changes sign. When the wall mode and kink mode both have frequencies close to zero they

are able to couple. This effect has also been discussed in Refs 10 and 14. The dispersion
relation can still be solved perturbatively, as follows.

Assuming the condition
k'Uo = Wy (36)

the dispersion relation can be written

w(w — kvg — wo)(w — kvg + wp) = —il(@* +7) (37)

Perturbing about zero frequency, Eq (37) becomes

6w - (—2wp) - 6w ~ —iT(K*vZ + %) (38)
Hence e
(6w)? ~ if% (39)
The perturbed frequency is given by
1
T k2 2 2\ 2
MziyL%ﬁDﬁ]ﬂ+@ (40)
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The growth rate of the resistive wall mode is therefore enhanced by the coupling to the
negative energy kink mode. The growth rate now varies inversely as the square root of
the wall time, ie (cw/b)2. It is also worth noting that the frequency of the wall mode is
comparable to the growth rate under these conditions.

For still higher flow velocities, kvg > wy, it is the slow kink mode (negative energy) which
is destabilized by the resistive wall in a manner analogous to the resistive wall amplifier of
Birdsall et al?’. In this case, the perturbation solution of Eq (37) is obtained by assuming

w = kvp — wy + 0w (41)

Substituting Eq (41) into Eq (37) gives

il(wg + 1)
R P ) (42’

In this case the frequency of the resistive wall instability is kvg — wo and the growth rate is
again inversely proportional to the resistive wall time.

The final case to consider is when the plasma is stable to the ideal kink mode in the absence
of a wall, ie w? > 0. Without a plasma flow velocity, the wall mode is damped by a resistive
wall. Now consider the effect of a plasma flow velocity. It can again be shown that w, < 7
for the wall mode so that wall mode stability can still be analysed by perturbing about zero
frequency. In this case, the correction to the wall mode frequency can be obtained from Eq
(27) and is given by

iF(k'Uu — wl)(kvu + wl)

@ - k) )

dw =~

It can be seen, that even for this case, the wall mode can become unstable when vy > (w; /k).
At the threshold vy = (w1 /k), the real part of the frequency is zero.

As the velocity increases, the growth rate increases. As vy approaches (wp/k) the wall mode
will couple to the negative energy kink mode, again producing a strong enhancement of the
growth rate. The resistive wall mode behaves rather like an ideal mode in this case since the
higher growth rate ~ (¢ /b)? results from a coupling of two modes. A similar interpretation
has been given by Finn and Gerwin®, although these authors refer to the coupling between
the wall mode and a backward MHD mode. In fact, as demonstrated above, the coupling
occurs when the backward kink mode changes to a forward wave as the frequency passes
through zero and the wave energy changes sign. A similar quadratic perturbation analysis
for dw of the dispersion relation, Eq (27), yields

1

3.2 2\12

P_(‘I”Lwl)] (1+14) (44)

4&)0

5wz:|:[



For still higher flow speeds, vy > (wo/k), the growth rate falls with increasing vy and the
corresponding result to Eqs (41) and (42) is

Sw ~ Z].—‘(U)g — wlz.)

o ng(kvg — wo) (45)

The instability again corresponds to the slow kink mode with a frequency w = kvy — wy.
V SUMMARY AND CONCLUSIONS

Experimental results® from the DIII-D tokamak have suggested that, in the presence of
toroidal rotation the lifetime of the discharge can be significantly extended. This has provided
the motivation for the present attempt to gain some insight into the role of a plasma flow
velocity on the resistive wall instability and whether there are any critical flow velocities.
For this purpose a simple, sharp boundary cylindrical model with a skin current, axial flow
and a thin resistive wall has been studied.

The classic resistive wall instability results from an external kink mode which is unstable
without a wall but is stabilized by the presence of a perfectly conducting wall. When the
finite resistivity of the conducting wall is included the system is unstable to the resistive wall
mode, growing on the slower time scale of the resistive wall. These are the essential features
of the resistive wall instability and are all contained in the present model. However, it should
be remembered that the results obtained from this model can only be used as a qualitative
guide to the behaviour of resistive wall modes. This is because the sharp boundary, surface
current model is always unstable to an m = 1, ideal kink mode.

Although this model is oversimplified, it allows the physical mechanisms to be more easily
identified. These mechanisms would be expected to play a role in more realistic models.
This expectation is supported by the work of Finn and Gerwin'® who have also examined a
cylindrical model but one in which an equilibrium current flows in the plasma. The dispersion
relation obtained in Ref 10 has the same form as the one derived in this paper. The analytic
results given in the present paper are complementary to the numerical results obtained in
Ref 10.

The effect of a flow velocity was first considered for the ideal kink mode with a perfectly con-
ducting wall. In particular, the properties of wall stabilized kink modes have been discussed.
Far from marginal stability the phase velocity of kink modes along the magnetic field is of
the order of the Alfvén speed. However, these modes are down-shifted in frequency as the
condition of marginal stability for the ideal kink mode is approached with the result that
the parallel phase speed can become much smaller than the Alfvén speed, tending to zero at
the marginal condition.

In the presence of a parallel flow velocity, the kink modes are Doppler shifted in frequency so

that the waves propagating parallel and anti-parallel to the magnetic field have frequencies
w = kvg £ wy, where wy is the frequency of the mode without flow. It is noted that the mode
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w = kvy — wy passes through zero frequency when v, = w, /k and that the change in sign of
the frequency corresponds to a change in sign of the wave energy. This is an MHD example
of a wave carrying negative energy when the flow speed exceeds the phase speed of the wave
in the medium?'. Under these conditions the two waves, w = kvy & wy are often referred to
as fast and slow waves.

Resistive wall modes are discussed making use of this point of view. These modes are
only of significance when the ideal kink modes can be stabilised by a perfectly conducting
wall. It is clear that any rotation can destabilize a resistive wall mode depending on the
proximity of the marginal condition for a perfectly conducting wall. If a plasma without a
parallel flow velocity is stable in the absence of a wall then it remains so if a resistive wall is
introduced. However, in the presence of a flow velocity, a resistive wall instability can occur
when vy > w;/k where w; is the kink mode frequency without a wall. When the plasma is
unstable without a wall, w? < 0, but stabilized by a perfectly conducting wall, the resistive
wall instability is further destabilized at a critical flow speed, vy = wp/k, when the zero
frequency, negative energy kink mode couples to the zero frequency wall mode. Under these
conditions the resistive wall instability behaves more like an ideal instability and the growth

rate is proportional to (cy/ b)%, ie to the inverse of the square root of the wall time.

For still larger values of vy > (wyp /k) it is the negative energy kink mode, rather than the
wall mode, with a frequency kvy — wp, which is unstable in the presence of a resistive wall, in
a manner reminiscent of the resistive wall amplifer?’. In this case, the growth rate is again
inversely proportional to the wall time (cw/b) and varies inversely with the flow speed wy.
Hence, although all flow speeds are evidently destabilizing, a system driven at a higher flow
velocity, ie vp > (wo/k), will be subject to a weaker instability than for the smaller flow

speed, vp =~ (wy/k).

The final conclusion is that there are two critical velocities. The first, v9 = (wp/k), is the
more threatening since at this velocity, the resistive wall instability would have a growth rate
closer to an ideal instability. The other critical velocity is vg = (w; /k), corresponding to the
case when the plasma is stable in the absence of a wall. When this velocity is exceeded, the
plasma is again unstable to a resistive wall instability. Since w; < wy, this instability is also
enhanced when vy = (wy/k) and becomes weaker as Vg increases further as discussed for the
case where wf < 0. If (wy/k) is low, ie the plasma is close to marginal stability, a velocity
vp > (wo/k) would be preferred whereas if the plasma is not near the marginal condition,
vg < (wp/k) might be preferable. In either case, the plasma would only be subjected to
a weak instability rather than the strong instability associated with the critical velocity,

Vg = (wo / A.)
ACKNOWLEDGEMENTS
I would like to thank Chris Gimblett and John Wesson for helpful discussions and Mikhail

Gryaznevich for his encouragement. This work was funded jointly by the UK Department
of Trade and Industry and EURATOM.

11



REFERENCES
1 D Pfirsch and H Tasso, Nucl Fusion 11, 259 (1971).
2 A M Garofalo, A D Turnbull, E J Strait et al, Physics of Plasmas, 6, 1893 (1999).

3 J Luxon, P Anderson, F Batty et al, Plasma Physics and Controlled Nuclear Fusion
Research, 1986 [International Atomic Energy Agency, Vienna 1987] Vol I p159.

4 C G Gimblett, Nuclear Fusion 26, 617 (1986).

5 C G Gimblett, Plasma Phys Contr Fus 31, 2183 (1989).

6 A Bondeson and D Ward, Phys Rev Lett 72, 2709 (1994).

7 R Betti and J P Freidberg, Phys Rev Lett 74, 2949 (1995).

8 J M Finn, Phys Plasmas 2, 198 (1995).

9 R Fitzpatrick and A Aydemir, Nuclear Fusion 36, 2344 (1996).
10 7 M Finn and R A Gerwin, Phys Plasmas 3, 2344 (1996).

11 M S Chu, J M Greene, T H Jensen, R L Miller, A Bondeson, R W Johnson and M E
Maul, Phys Plasmas 2, 2236 (1995).

12 ¢ G Gimblett and R J Hastie, Phys Plasmas 7, 258 (2000).

13 3 A Wesson, Phys Plasmas 5, 3816 (1998).

14 ¢ N Lashmore-Davies, J A Wesson and C G Gimblett, Phys Plasmas 6, 3990 (1999).
15 B M Veeresha, S N Bhattacharyya and K Avinash, Phys Plasmas 6, 4479 (1999).

16 V D Shafranov, J Nucl Energy II, 5, 86 (1957).

17 R J Tayler, Proc Phys Soc B70, 1049 (1957).

18 W M Manheimer and C N Lashmore-Davies, MHD and Microinstabilities in Confined
Plasma (Adam Hilger, Bristol, 1989) p49-52.

19 I Bindslev and C N Lashmore-Davies, 26th EPS Conference on Controlled Fusion and
Plasma Physics, Maastricht 1999.

20 C K Birdsall, G R Brewer and A V Haeff, Proc IRE 41, 865 (1953).

12



2L P A Sturrock, J Appl Phys 31, 2052 (1960).

13






