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Abstract: Stabilisation of the Resistive Wall Mode (RWM) is an essential require-
ment for many confinement devices if they are to produce attractive power plant
designs. This can be achieved by the introduction of a second, rotating, wall. An al-
ternative approach arises naturally from schemes for a tokamak power plant involving
a flowing lithium wall, which produces a poloidally varying rotation. The stability of
RWDMs in such configurations is investigated.

1. Introduction

The resistive wall mode (RWM), which grows on the timescale of the vertical field
time constant of the vacuum vessel, poses a threat to steady state advanced tokamak
operation. Bulk rotation of the plasma can result in the plasma seeing the wall as
perfectly conducting due to the skin effect, but this can be undone if the mode ‘locks’
to the wall [1]. This has led to the suggestion that there should be a second, rotating
wall [2] (possibly ‘faked’ by a suitable configuration of external sensors and coils [3])
in addition to a static one: then the plasma cannot simultaneously lock to both and
the mode is predicted to be stabilised. However, the proposed use of a flowing lithium
wall in a power plant [4] leads to a configuration in which the ‘wall’ moves poloidally
in opposite directions in the upper and lower halves of the poloidal cross section.
Such non-uniform poloidal ‘rotation’ could also tend to stabilise the RWM as it clearly
cannot lock to the wall everywhere. In this paper we analyse the effect of non-uniform
rotation on the RWM stability, first considering the case with poloidally non-uniform
toroidal rotation, then the case of poloidal flows. As shown in Section 2, the effect
of the non-uniform rotation is to couple different poloidal harmonics (labelled by



poloidal mode number m) so that the matching condition at the wall leads to a
recurrence relation between these harmonics involving the wall time-constant, the
flow velocity of the ‘wall’ and the set of stability indices A!,, corresponding to jumps
of the eigenfunction across the wall. Introducing a model for the plasma response at
a resonant surface in the bulk plasma leads to an eigenvalue problem for the RWM.
Results for the critical flow for RWM stability and the corresponding poloidal mode
structure for the cases of current driven and pressure driven modes are presented in

Section 3. Section 4 provides conclusions.

2. Formulation of the problem
The starting point is the linearised induction equation for the magnetic perturbation
b in the wall:
db
at
where 7w is the wall resistivity (assumed uniform). Now, in the envisaged flow

= Vx(Vxb)+nyV?, (1)

pattern for a power station we would have V = V' (f)ey, with ey a unit poloidal vector.
Indeed, to simulate injection and extraction points V() would be discontinuous at
these locations. As mentioned above, we first investigate the more tractable flow

V =V (f)e,, with e, a unit toroidal vector. Decomposing the radial component of b

as
oo
by = ( > bpexp z’mé?) exp (pt + ikz), (2)
the radial component of Eqn (1) gives, assuming a cylindrical limit,
. . %y,  m? :
Y Phmexpimf = Y —ikV(8)by, + nw o TT”Wbm expimf.  (3)
m m

To connect up the interior plasma with the outer vacuum region we integrate Eqn.(3)

across the wall (radius a, thickness &), to find
> (p+ikV(0)) bwbnexpimd = 3 (nw/a)(Al, — m®6w/a)bm (4)

where A is the well known (dimensionless) stability index at the wall of the mth

poloidal harmonic.

Now we must choose a suitable functional form for V/(§). A particularly tractable
choice is V'(#) = V' sinf. Inserting this expression into Eqn.(4) we see that equating
each coefficient of exp(im#f) produces a difference equation. In fact, introducing the

wall time 1w = adw /nw, normalising p to 7w, and replacing Vp by kVomw /2, we have

Pbm + I/O(bm—l - bm+1) = A:'n,bm - M""'n?brn. (5)



So, the redefined V} is the key parameter in the problem (the inclusion of the small
parameter £ = dw /a merely serves to help convergence in m). The case of a poloidal
flow Vp sin @ leads to a similar equation, but with the substitution ¥ — —m/a. More
realistic poloidal flows couple more harmonics: modelling the lithium wall as counter-
rotating flows in the upper and lower halves of the poloidal cross section (which we
term a ‘step’ flow) leads to an infinite set of these harmonics, since then

4 sin(2r +1)0

V=l et e
T 0 ; 2r+1 (6)
Correspondingly Eqn (5) takes the form
pbm T+ V(El E Crnm/ (bm+2m"+l - bm—?m’—l) = (A;n - Emz)bm (7)

where ¢pm = (2/7)m/(2m' + 1) and Vorw/a — Vo. The A!  quantities are to be

calculated from the equilibrium profiles of current and pressure chosen.

It may be that one harmonic M is resonant at r, in the plasma, where we assume
the plasma response is visco-resistive: A}, = pry, where 7y is the viscous diffusion
time normalised to 7y [5]. This must be matched to the jump in the radial derivative
of the Mth eigenfunction at ;. Using the matching condition at the resistive wall,
Al (a) = p, we obtain [6]

1+cp
A (1) = 8
() = 8 ®)
which can be used to write
—1+copry
A fg)=——TF 7 9
(o) = ©)

3. Results and Discussion

We consider two cases: (i) a prototype current driven RWM situation of a current
profile with a non-resonant m=3 mode which is ideally unstable in the absence of a
wall, having a resonant m=2 sideband; and (ii) the situation of interest for advanced
tokamaks with a pressure driven resonant m = 2 mode which is ideally unstable

without a wall. We take v = 7w in all calculations.

For case (i) we choose current and safety factor profiles as shown in Fig 1 and calculate
Al.. We find A} = 4.89; the stability indices for all other harmonics with m # 2 are
negative. For m = 2 we have ¢; = -0.017 ¢; = 1.722 and ¢z = 0.218 in Eqn (8). In
Fig 2 we show the effect of increasing V; on the growth rate and frequency of the
RWM in case (i), for a toroidal flow V;siné.



; /. L5
: —am ’ B\
) Iy ] o (
. 3 \
LE— - b \\
- - Vo]
~, vl ! ! T
_ e _ o H 3 s ? . o
g :
[T . - OJS
B / i‘
A_[@J'ljlrary Units hed, —-——'f\ i
_ T e _ FEUE J
\ o \\v_/l'
\\.“ -"'.5 va B
. T . P& L 8 m s m e oa o
Figure 1: Current and safety factor Figure 2: Growth rate and frequency
profiles used in case (i): the m = 3 against V} for case (i) with toroidal flow
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Figure 3: Growth rate against V for case (ii) with poloidal flow V;sin 6

In case (ii) we simulate the effects of an unstable, pressure driven, m = 2 mode in
toroidal geometry by generic stability parameters € and §: € represents the degree of
instability of the ideal mode in the absence of a wall, § the degree of stability of the
tearing mode in the presence of a perfectly conducting wall. Then [1]

1—4dp
ALlr,) = 10
2(Ts) —e+p (10)

We choose d = 1 and € = 0.1 in Egn (10). For the other harmonics we calculate
0 =—2, A}, = —2¢,(q. F1)7!, with g, = 2.8, and take A!, = —2|m]| for all other



m. In Fig 3 we show the variation of growth rate with flow for a poloidal flow V; sin 6

(the case of a toroidal flow is similar).
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Figure 4: Case (ii) with V = Vjsin6 and V; = 1.0: (a) Fourier spectrum of b,,; (b)

the poloidal eigenmode structure at z = 0.
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Figure 5: As in Fig 4, but with a step function flow

Figures 2 and 3 show a stabilising influence of a poloidally varying flow on the RWM.
In case (i), Fig 2, the situation is more complex: with increasing flow two unstable
modes eventually coalesce to produce a mode with a real frequency which, with
further increase in flow, stabilises before separating to produce two modes, one of
which becomes marginally unstable. Thus there is at least a window of stable flows:
4.85 < ¥y < 7.81. The situation in case (ii), Fig 3, is much simpler: a steady decrease
in growth rate with flow until one arrives at a stable mode. Calculations have also
been carried out with more complex forms for V (6), retaining a greater number, N,
of harmonics in the Fourier representation of the step flow in Eqn (6). The results are
quantitatively similar, growth rates decreasing smoothly until the mode stabilises at
a critical V4, although the eigenfunctions become progressively more peaked around
¢ = (where the poloidal flow vanishes), with a corresponding broader spectrum of

Fourier harmonics. Figures 4 and 5 show the eigenfunctions (for z = 0) and Fourier



decompositions for cases with NV = 1 and N — oo, respectively. The critical flow
for stability changes relatively little: N = 1,V = 1.016; N = 3,V; = 1.025; and
N =35, V5 =1.025.

4. Conclusions

Our investigations of the introduction of a poloidally varying flow, stimulated by the
lithium blanket concept, show that it is possible to stabilise the RWM in this way.
This encourages a more comprehensive study of different equilibria and corresponding
A7, to see how robust this conclusion is and what are the requirements on V. For
the cases with poloidal flow studied we find the critical value of the dimensionless
parameter Vp for stability is near unity, lower than for the toroidal case (the actual
flows differ by a further a/R factor where R is the major radius). Physically this
corresponds to a flow V' ~ a/my ~ mw/éw. For lithium with § ~ lcm, this yields
V ~ 25m.s!. Similar results have been found in Ref 4, although a truncation at
three poloidal harmonics used there can produce misleading results, particularly at
larger V. The parameter V; can be recognised as the magnetic Reynolds number
for the ‘wall’. However, it is always possible to simulate the stabilising influence
of a poloidally rotating wall by a system of programmed coils, which allows one to
separate the idea from the lithium wall concept; this raises the question of what is

the optimal configuration for this scheme.
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