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Abstract

The polarization current plays an important role in the evolution
of magnetic islands with a width comparable to the characteristic ion
orbit width. Understanding the evolution of such small magnetic is-
lands is important for two reasons: (1) to investigate the threshold
mechanisms for growth of large-scale islands (e.g. neoclassical tear-
ing modes), and (2) to describe the drive mechanisms for small scale
magnetic turbulence and consequent transport. This paper presents
a two-fluid, cold ion, collisional analysis of the role of the polariza-
tion current in magnetic island evolution in slab geometry. It focuses
on the role played by the conjunction of parallel electron dynamics
and perpendicular transport (particle diffusion and viscosity) in de-
termining the island rotation frequency and the distribution of the
polarization current within the island.

1 Introduction

The role of the polarization current in the non-linear evolution of thin islands
was first investigated by Garbet et al. [1, 2] and Rebut and Hugon[3] using
kinetic theory, and by Smolyakov(4] using fluid theory. A very complete
bibliography of early work is given in Smolyakov’s review of nonlinear island
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evolution in inhomogeneous plasmas. [3] It has since been studied extensively
both in slab[6, 7] and toroidal (8, 9, 10] geometry.

The majority of the literature considers a regime such that the ratio p./w
of the Larmor radius to the island width is small and develops expansions in
powers of this ratio. [4, 3,6, 7, 8, 9, 10] Here p. is the larger of the ion Larmor
radius p; and the sonic Larmor radius p; = ¢;/|we:|, where ¢, = /T./m; is
the speed of sound and w,; is the ion gyrofrequency. The results can be
expressed in terms of the quantity Apg that parameterizes the effect of the
polarization current on stability:

LQ Wl — Wy

Apol =49 —5 (—kg;z—:) (1)
where Ay, < 0 indicates that the polarization current is stabilizing. Here
w and w,; are the island rotation and ion diamagnetic frequencies, L, is
the magnetic shear length, k is the wavenumber along the island chain, vy =
By /+\/dmnm; is the Alfvén velocity, and g is a geometric coefficient. The effect
of the polarization current clearly depends on the sign of the coefficient g.
The value of g, and particularly its sign, is the subject of the present paper.

The value of g depends on the velocity profile across the island. The
authors investigating the w > p, limit[4, 3, 6, 7, 8, 9, 10] considered velocity
profiles that were discontinuous across the separatrix and approximately con-
stant in magnitude outside the separatrix, modeling an island slicing through
the plasma much like a sailing vessel through the seas. They found that
g < 0, and concluded that the polarization current is destabilizing when the
island is rotating at a frequency lying in the range between the ion drift
frequency and the guiding-center drift frequency of the unperturbed plasma.
They further concluded that the polarization current would be stabilizing
for frequencies lying outside this range. These conclusions led to models for
anomalous transport [4, 6, 7] and to a possible explanation of the observed
threshold island size for neoclassical magnetic islands. [9, 10] The latter are
presently the subject of wide concern as a result of the threat they pose to
the performance of Next Step tokamaks.

The conclusions of References 4-10 regarding the limit w > p. are in
conflict, however, with the conclusions reached in References 3 and 11-12. In
Reference 3, Rebut and Hugon carried out a kinetic calculation, taking into
account the finite Larmor radius of the ions in order to study the effect of
the polarization current on an island close to the stochastic threshold. They



found that the polarization current was destabilizing for islands rotating in
the electron diamagnetic direction, in conflict with References 4-10. The
discrepancy between the results of Rebut and Hugon[3] and References 4-10
can be understood in light of the results of References 11-12, which studied
the effect of the polarization current on the interaction of magnetic islands
with external structures. Fitzpatrick ef al[l12], in particular, examined a
family of continuous velocity profiles. The results show that as a velocity
profile develops a pedestal at the island separatrix, a substantial fraction of
the polarization current becomes concentrated in the layer where the velocity
is changing rapidly. The contribution of this layer was omitted in References
4-10, resulting in an underestimate for g.

In many applications of interest, however, the width of the layer where
the velocity changes rapidly is comparable to the ion-sound Larmor radius p;.
In such narrow layers, collisional effects and nonlinearities that are neglected
by Rebut and Hugon(3] are important. Equally important are the drifts and
electron parallel dynamics effects that are omitted from the magnetohydro-
dynamic (MHD) model used in References 11-12. A recent investigation [13]
has addressed the question of the role of the layer using a model in which the
electron temperature is treated as small, and the problem is solved analyti-
cally by expanding in powers of k,p;, keeping higher order terms to improve
the treatment of the separatrix layer (where k.p; ~ 1 in general). Here, we
present a solution of the drift-MHD equations with cold ions that includes
the effects of the nonlinearity of the ion response as well as the effects of
collisions[14]. We find that the layer width scales as p, in this low ion tem-
perature limit, so that we can consistently neglect finite ion Larmor radius
effects, k.p; < 1, as well as ion diamagnetic drift effects.

The paper is set out as follows. We begin by describing in Section 2 the
sheared slab magnetic geometry and the equation governing island evolution.
We then introduce in Section 3 the fluid model that forms the basis for our
calculations. As previously mentioned this model assumes that T; <« T,
where T; and T, are respectively the ion and electron temperatures. In Sec-
tion 4 we present the equilibrium solutions of this model. These are magnetic
islands rotating at approximately constant frequency and evolving at a rate
determined by transport processes. We present, in particular, an explicit
solution for a model such that the electrons respond non-linearly to the mag-
netic perturbations, but the ion motion is dominated by a linear response
to the electrostatic perturbations. In this model the width of the separa-



trix layer is of order p,/1/1 — Wie/w, where w.. = —kp,c,/L, is the electron
diamagnetic frequency. Here L, = n/(dn/dX), where X is the coordinate
transverse to the magnetic surfaces. In order to overcome the assumption
of a linear ion response, we develop in Section 5 a theory of transport near
magnetic islands. The results of this theory take the form of a set of one-
dimensional transport equations that govern the evolution of the profiles
across the island. After presenting the analytic solutions of these transport
equations in relevant limits, we describe their numerical solution. The precise
form of the electrostatic non-linearities in the resulting ion response deter-
mines the layer width, and this leads to a slight modification of the role of
the polarization current. In Section 6 we draw conclusions, and discuss the
consequences for tearing mode evolution in tokamaks.

2 Magnetic Geometry and Ampere’s Law

We consider a periodic sheared slab geometry with a magnetic field given by
B = Byz — V'IL‘(_Y, 6) X Z, (2)

where By is a constant magnetic field pointing in the symmetry direction z =
V Z, and where the azimuthal magnetic flux ¢ is related to the longitudinal
vector potential 4z by ¥ = —Az. The reference state is chosen such that
o = —BoX*/2L,, where L, is the magnetic shear length. We consider
a perturbed azimuthal flux of the form ¥ = g + ¥ cos§, where ¢ is the
azimuthal angle (note, X, £ and Z form an orthogonal coordinate system).
This perturbed flux describes a magnetic island of half-width w given by

4 L)

i = By (3)
We will use the normalized flux-surface label x defined by
b —
_X2= EZJ ~u=$2+sin2£ {4)

2 2’

where z = X/w. We have defined x so that y = 0 is the island ‘O’-point,
X = 1 is the island separatrix and y > 1 is the region outside the island. At
large distances from the island, x ~ |z|. It is often convenient to use x as
the transverse variable, rather than x.
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The above sheared-slab geometry can be considered to model a large
aspect-ratio tokamak by making the correspondence z = (r — r,)/w, where
r is the minor radius and r = r, is the radius of the resonant surface, and
£ = mf@—n(—["w(t')dt' where § and ¢ are the poloidal and toroidal angles, m
and n are the poloidal and toroidal mode numbers, and w is the propagation
frequency of the island, which in general depends on the time ¢. The shear-
length is related to the tokamak parameters by L; = Rg/s, where R is the
major radius, ¢ is the safety factor, and s = (r/g)dg/dr is the magnetic shear.

We will assume that the constant-v approximation holds: ¥ > 8,%. Fol-
lowing Rutherford,[15] we integrate Ampere’s law radially across the island
region (i.e. where Jj, is localized). Taking the cos ¢ component of both sides,
and matching this to the linear solution away from the island, we arrive at
the equation determining the island evolution:

where

co Al .
fd&f_wdm‘ﬁ[cos{’::—ww, (5)
Aol (31/)

P \ 90X ax ) (6)

and 0% indicates the asymptotic limits as X approaches the resonant surface

from either side.
From the asymptotic matching, Eq. (3), and Ohm’s law, it follows that
we can write the island evolution equation in the form:

X=0t

dw
df A + Apoh (7)

where A’ represents the free energy available in the equilibrium current den-
sity profile, and A, is the contribution to the free energy from the polar-

1zatlon current:

16 L, =
Apol = — 6 fdg/ dz Jpol cos f, (8)

CB(] w

where J,o represents the polarization current.
Our aim is to calculate Jyo), and use Eq (8) to evaluate its effects on the

island evolution.



3 Fluid Model

In order to investigate the basic properties of small scale magnetic islands, we
adopt a two-fluid, cold ion model (7; = 0) based on the Braginskii equations
[14]. We denote the convective time derivative along the E x B flow by D/ Dt,

D d

s g N

Dt ot VE Y
where v, the electric drift velocity, is related to the electrostatic potential
@ by vg = (¢/Bo)z x V. Note that since T; = 0, vg is approximately equal
to the ion fluid velocity.

We are interested in narrow islands, kjjc; < w., where k) is the parallel
component of the wavevector and ¢, is the sound speed. For such islands
we may neglect the ion parallel motion. The electron continuity equation is
then D i

n 2
T = g Vi +E¥ L, (9)
where n is the density (equal for ions and electrons by quasi-neutrality), e
is the electron charge, V| = (B/B) -V and V represent the gradients,
respectively, along and transverse to the magnetic field, and D is the radial

(ambipolar) diffusion coefficient. For the case of classical transport,

62

D=p—,
o 0'”
where 3, = 87nT./B?, T, is the electron temperature, and oy is the parallel

electrical conductivity.
The quasi-neutrality condition requires V -J =0, or

¢ [DU 2
v =___[—— vyl 10
M= 3 | e ~#YE (10)
where U = V2¢ is proportional to the vorticity, and g is the viscosity.
Eq. (10) can be viewed alternatively as a vorticity or a local torque-balance
equation.
For Ohm's law we use
\Y J) VI T. .
B+ 2ol gl (11)
ne aj| €
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where E = (1/c)d /9t — V)¢ is the parallel electric field, p is the plasma
pressure, and o = 0.71 is the coefficient describing the effect of the thermal

force.
Lastly we describe the electron temperature evolution [5] with the equa-

tion

3 DI, ‘ I T.
—n = V(s V)Te) + L. VAT. + (1 + )V, ! ; (12)
2 Dt e
where «),,. are the parallel and perpendicular thermal heat conductivities,
respectively.

Equations (9)-(12) describe a collection of processes that occur on several
disparate time-scales. These may be grouped into fast and slow processes.
The fast processes consist of parallel temperature equilibration and of dy-
namical evolution under the effect of force imbalance, such as drift-Alfvén
motion. The slow processes, by contrast, consist of perpendicular transport.
Two comments are appropriate here. First, the ability to distinguish the dy-
namical from the perpendicular transport time-scales is a defining property
of nonlinear island theory (in linear theory, the layer widths are determined
by the balance between transport and dynamical processes). Second, states
that are stationary or in equilibrium on the fast time scale include states
with steady-state island rotation. In fact, such rotation is a salient feature
of all the solutions obtained here.

The separation of time scales described above forms the basis for reduc-
ing the two-dimensional system of equations (9)-(12) to a one-dimensional
system of transport equations describing the evolution of the profiles of par-
ticle density, temperature, electric potential, and current-density across the
island. Our approach is closely analogous to that used to derive neoclassi-
cal transport equations in the Pfirsch-Schliter regime. We proceed in two
steps. First, we seek an equilibrium solution (/8¢ = 0) neglecting the per-
pendicular transport terms. We find that the equilibrium solution depends
on a family of undetermined profile functions. Second, we obtain equations
for the profile functions from the solvability conditions for the equations that
determine the corrections to the equilibrium resulting from the perpendicular
transport terms.

In the following section, we present equilibrium solutions for the fluid
model described in Eqs. (9)-(12), and briefly discuss the solution of these
equations for model profiles. We then describe the derivation of the transport
equations and their numerical solution in Section 5.



4 Drift-Alfvén Equilibrium

4.1 Generalized Grad-Shafranov equations

The equilibrium equations are obtained by neglecting the perpendicular trans-
port terms in Eqs. (9)-(11), and setting all the time derivatives equal to zero.
Note that the latter step implicitly fixes the frame of observation to be that
moving with the island. The equilibrium equations are

1
VB'VTL = gv”f”, (13)
2
[
VIl = gz VE- VU (14)
1 eV“cgb _ . .V”Te _
;V”n— Te = —(1-|-CY) Te . (1'3)

The heat equation, Eq. (12), is structurally different from the others in that
the parallel transport term dominates the dynamic terms. Stationarity thus
requires

Vi(r V) Te) = 0. (16)
The solution of the heat equation is simply
L= Ta‘(X): (]'7)

where o = + distinguishes the temperature profile to the right (+) and left
(—) of the island (inside the island, Ty (x) = T-(x) = T(x))-

Using the solution of the heat equation to simplify Ohm’s law and inte-
grating the remaining terms yields the Maxwell-Boltzmann law

n = N,(x)exp (fﬁ’i) , (18)
Te

where N, (x) is an integration constant. We adopt the convention that ¢(z =
0,€ =0) = 0. Since the variation of the density across the island is of order
w/ry € 1, it is convenient to introduce the normalized perturbed density
= (n — ng)/ngy, where ng = N(0) is the density at the O-point of the
island and ny = (dn/dz)sp.. We also introduce the normalized potential
¢ = —keo/Buww., = (e¢/T.)(Ln/w). Keeping only terms of first-order in
the island width, the Maxwell-Boltzmann relation takes the form

1} =SQ+IIU(X)1 (19)
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where H,(x) = (Ns(x) — no)/ng is proportional to the profile-function A of
Wilson et al. [9].

To solve the remaining two equations, (13)-(14), we eliminate the mag-
netic derivative of Jj and integrate the resulting equation along the equipo-
tentials, or ion streamlines. We find '

piVip — i = Ly(p), (20)

where Ly(p) is an undetermined integration constant. We have included the
subscript A in order to allow for the possibility that L takes different values
on distinct equipotentials corresponding to the same value of ¢. We note that
the quantity on the left hand side of Eq. (20) is conserved in the absence of
dissipation, as seen by eliminating the current from Egs. (9) and (10). An
analogous quantity, called the potential vorticity, plays an important role in
geophysical fluid dynamics.

We may eliminate the density from Eqs. (19)-(20) in order to obtain an
equation for ¢ in terms of the profile functions. We find

piVie — Ki(p) = H,(x), (21)

where K (@) = Li(¢)+¢. This equation plays a role analogous to that of the
Grad-Shafranov equation in tokamak equilibria: it determines the geometry
of the equipotentials, or ion streamlines, in terms of the two profile functions
H and K. The profile functions themselves must be determined from the
transport analysis.

In order to completely specify the potential, it is necessary to supply
boundary conditions to Eq. (21). From Taylor-series expansion of the unper-
turbed density, we see that the density perturbation must be odd to lowest
order in the island width. Likewise, the odd part of the electrostatic potential
dominates (in fact, the contribution of the even part of ¢ to Apol vanishes
identically in a viscously relaxed state [11]). We thus restrict consideration to
states such that the density and electrostatic potential are odd with respect
to the resonant surface. For such states, H,(x) = ¢ H(x) and thus H(x) =0
for x < 1 (i.e. inside the separatrix). Likewise, T,(x) = oT(x). Consis-
tent with our choice of parity, we will further assume that K)(¢) = K(y) is
one-to-one (the solutions we calculate for ¢ are invertible).

The assumption of odd parity yields the first boundary condition on ¢,
@(z = 0,£) = 0. The second boundary condition consists of matching the
asymptotic electric field at large distances from the island to the electric field

9



in the reference state. Note that the asymptotic electric drift velocity in the
island’s rest frame is the negative of the island phase velocity in the frame
where the electric field vanishes. Thus, our second boundary condition is
dp/0r = w/w.., where w is the island rotation frequency in the frame where
the electric field vanishes far from the island.

We complete the solution of the equilibrium problem by integrating the
continuity equation, Eq. (13), along the magnetic field line after eliminating
the density with the help of Eq. (19). In doing this we use the fact that

Vg - V'w = —-Cv”¢. (22)
We find H
NEC .
Jy=———0c¢+ I(x), 23
1= T ¢+ 1(x), (23)

where I(x) is an integration constant. The average along the field lines of Jj
(and thus [{x)), is determined by Ohm’s law: this is the inductive current.
The oscillatory part of Jj, obtained by subtracting from J| its average value,
is the polarization current:

ot Lozl (oh) :
( M) (24)

noecs w L, x dx
Here we have introduced the flux-surface average,

¢ f o
(f)x = j{ 2 [2ax| o (25
T d¢ O(x —|sin(6/2)])S -
e T L

- where O is the Heaviside step-function. Note that in a torus, the oscillatory
part also contains a contribution from the Pfirsch-Schliter current that gives
rise to a stabilizing effect, as shown by Kotschenreuther et al.[16]

Substituting the polarization current into the equation for Ay, we obtain
the 7; = 0 limit of Eq. (1), with

() FE LR (o ) e

An equivalent form for g that is often more convenient is

e W d¢ dr dH . B {cosfly i
= (wps) f /m X dx (COS£ (L)x ) 126)
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Our task is thus to solve Eq. (21) for ¢, and to substitute the result in Eq. (26)
in order to calculate g. Note that ¢ is clearly a function of p,/w through
Eq. (21). Less visibly, it also depends on the island rotation frequency w/w,.
through the boundary conditions.

4.2 MHD limit

We begin by showing how the MHD results can be recovered from the two-
fluid equilibrium equations obtained above in the limit where p, — 0. We
seek an asymptotic solution in the form

© = o+ (ps/w)pr + (ps/w)*p2 + - -- (27)
Substituting the above expansion in Eq. (21), we find that to lowest order
o =0®(x) = K[~ H(x)], (28)

where K1 is the inverse of the function K. Note that ®, like H, vanishes
identically inside the island. Equation (28) shows that, to lowest order, the
plasma flow is confined within the flux surfaces. Substituting the solution in
Eq. (28) into the term proportional to p? in Eq. (21) yields the next-order
correction,

_ a 0%
7T Ke(] 0t
We use the convention that a prime denotes differentiation with respect to
a function’s argument (here A" = dK/d®). Using the lowest order solution
(28), we see that the denominator in Eq. (29) is

_H'(x)
®’(x)

Substituting our solution for ¢ into the definition of g, we now recover
the MHD result

(29)

K'[@(x)] =

a 2
wdy d [1d® ) (cos €)2
IMHD —_/; Y (X dx) ((COS E)x . ) (30)
where i
O="¢
w
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is the electric potential normalized so that 8®/8z — 1 far from the island.

The difficulty with velocity profiles that are discontinuous on the separa-
trix is immediately apparent from Eq. (30). For such profiles, the integrand
of g contains a contribution from a delta-function multiplying some very
rapidly varying geometrical coefficients. Evaluating Eq. (30) with this delta-
function, we find

IMHD = g5 + Jext, (31)
where 16 \
— 2B+ } -
g = & (#(17)) (32)
is the contribution from the delta-function and
ody d (1dd\°(, , (cos€)?
ext — pevne-canl| (o b el 33
g ] /;4_ X dY (Y fh\) ((COS 6)3( (]_)>L ( )

is the contribution from the velocity outside the separatrix. It is natural to
ask, however, whether gyup gives an accurate representation of the effect
of the polarization current, especially in the presence of drifts and related
effects. We consider this question next.

4.3 Small p,/w corrections to MHD

In order to resolve the question of the accuracy of the MHD approximation,
we return to the asymptotic solution [Eq. (27)] and note that if ® has a
discontinuous derivative, the small-p, ordering breaks down in a layer of
width p, around the discontinuity. In this layer (p,/w)?d*¢ /2%, ¢, H, K,
and p,/w are all comparable. Assuming that A" and H are well behaved at
the separatrix, we may use in the layer an alternative expansion based on
the “distance” to the separatrix. To lowest order, Eq. (21) becomes

pZVikp — @ = —Pexty (34)

where

describes the layer width and

Gexc(2,€) = a o (Ja] - cos(€/2)) O (|a] - cos(£/2) (35)
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is simply the first term in the series expansion of the external solution,
Eq. (28), about the separatrix. Here

a = ®'(1) cos(£/2).
Note that if K(y) is linear, A'(0) = 1 — w../w. For K'(0) < 0 (or if K(¢)
is linear, for 0 < w < w..) the equation for the potential admits oscillatory
solutions: that is, the island excites drift waves. We will not consider this

case here, except for a brief discussion in Sec. 4.5
The solution of the layer equation, Eq. (34), is

0(,€) = Pea(z, €) + (/)1 (2, ), C (36)

where
ei(z,€) = _9_ ( —llzl=lcos{&/2)Il/p _ e—(lwI+l008(E/2)D/p) (37)

&

1s proportional to the Green’s function for the differential operator on the
left of Eq. (34). The discontinuity in the derivative of ¢; cancels that in @eys.
Our solution, Eq. (36), thus shows that parallel electron streaming resolves
the discontinuity in the electric drift velocity in a layer of width p. Note
that the second term in ¢, is only important close to the X-point where
cos(£/2) ~ p.

Since ¢, decays exponentially outside the layer, the asymptotic expansion
Eq. (27) with o, @1, and ¢, given by Egs. (28), (29) and (37) is in fact
uniformly valid inside as well as outside the layer. We may thus calculate g
by substituting Eq. (27) in the definition of g. We find that g = geyx + Gt
where gey is the contribution to g from flows outside the velocity pedestal
given in Eq. (33) and

" d dH . .
i (u w) }f f/‘ s pIPL ( g5 — iﬂ&) _ (38)
wps dx wy {1)s
1s the contribution from the velocity pedestal in the separatrix layer. We

may estimate the latter contribution by expanding the geometric coefficients
in the vicinity of the separatrix. We find

goea = g5 (1 =3 [In(8w/p)] ™), (39)
where g5 is the contribution of the delta-function in Eq. (30). Equation (39)

shows that the correction to the MHD result arising from small but finite

p/w is substantial, and it even suggests that g changes sign near p/w = 0.1.
This is not the case, however, as we will see from the numerical and large p,

solution,.
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4.4 Large p,/w solution

We next consider the solution of Eq. (21) for large p,/w. Here, the vorticity
term dominates so that to lowest order

Vigﬂo = 0.

The solution is simply

Here

o dH (cos£),
T = -4/ » X 50,
X dx  (1)x

where H(x) = H(x)/[(1 — w/ws)]. Equation (41) is in agreement with the
results of previous authors.[19, 4, 7] The polarization drift is thus desta-
bilizing for frequencies outside the electron drift band {0,w..}. Inside the
electron drift band, the excitation of electron drift waves (discussed in the
next section) prevents us from drawing firm conclusions but the above result
suggests that the polarization drift is likely to be stabilizing.

4.5 Numerical solution for linear ion response

We now present the results of numerical solutions of Eq. (21) showing how
the polarization current affects the island evolution for finite values of p;/w.
These results complement the small and large ps/w asymptotic formulae
obtained above. We use a model in which K(y) is taken to be linear. This
model is equivalent to assuming that the flattening of the electron density
and temperature across the island constitutes the dominant non-linearity,
and that the ion response to the electrostatic perturbations associated with
the island is approximately linear.

For linear K'(¢), the solution of Eq. (21) depends only on p = p,/(1 —
Wae/w) /2. We begin by commenting on the case when p? < 0, which occurs
when 0 < w < w,.. (i.e. when the island propagates in the electron drift
direction, but more slowly than the electron diamagnetic frequency in the

14



frame where the radial electric field far from the island is zero). In this
case the solutions are oscillatory in the radial coordinate, and the effect of
the separatrix layer extends far beyond the separatrix region. The physical
interpretation is as follows. In the vicinity of the island separatrix, a wide
range of wavelengths are driven by the delta-function contained in H". As
a result, the island resonates with an electron drift wave whenever the mode
frequency satisfies 0 < w < w,,. This electron drift wave propagates away
from the island towards the regions of strong ion Landau damping. The
excitation of waves in numerical simulations of linear drift-tearing modes has
been reported previously by Biskamp.[17]

The fluid model used here fails to capture the full physics of this effect
because of the assumption that k”vth,; < w. The electron drift wave carries
energy out from the island to large distances where w ~ kyvtn,:, where it
is dissipated by ion Landau damping (here &k = kz/L, is the parallel wave
number and vy ; is the ion thermal velocity). The effect of such islands
is therefore not simply localized on the w length-scale, but extends instead
to distances ~ \/T./Ti(Ls/Ly)psw/wie > w. Of course, new dissipative
processes associated with the ion Landau damping will likely have an impact
on the solution for w as well as on Al ;. While the physics of such modes
1s certainly interesting and warrants further exploration in the future, we
restrict our attention here to the more localized modes having p? > 0.

We have considered three distinct forms for the profile H(x) = (1 —
w/w.)H(x). In the limit where the profile relaxes to a steady-state governed
by transport, the form of H()x) is given by Eq. (64) of Sec. 5.4. We have also
considered two alternative models. The first of these is similar to the profile
introduced by Smolyakov,[5] modified so as to make H continuous:

A(x) = = (yx2 - 1/2 - /1/2)O(x - 1). (42)

This profile is very similar to the relaxed profile, Eq. (64): their derivatives
are compared in Fig. 1. The last model we have considered is

H(x)=(x-1)0(x—1), (43)

representing a simple, linear dependence on x outside the separatrix. Table
1 lists the numerical values of the various constants for these three profiles.
For numerical simplicity, we have used the Smolyakov profile Eq. (42) in
the numerical integration of Eq. (21). In Fig. 2 we take p/w = 0.2 and plot
the solution for ¢ as a function of z across the island ‘O’-point (£ = 0) and

15
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Figure 1: Stability coeflicient g, defined in Eqgs. (1) and (26), as a function
of p/w = (ps/w)(1 = wae/w)™? for linear K (¢p).

across the island ‘X’-point (¢ = w); the dashed curves show the the small
p/w expansion of the exterior solution given in Eqs. (28)-(29). Note how the
discontinuity in ¢ at the island separatrix (i.e. z = 1 in Fig. 2a) is smoothed
by the finite p/w effects, while further from the island the z — cos&/2 > p
expansion and numerical solution are in agreement. The complete asymptotic
solution, shown as the dotted lines in Fig. 2, is in good agreement with the
numerical solution even close to the separatrix.

In Fig. 3 we show the results for g and compare them to the asymptotic
results in the limit of small and large p/w. The comparison shows that
the asymptotic formula is only accurate at extremely small p/w. The error
originates in the asymptotic evaluation of the g integral, and is due to the
poor convergence properties of the expansion in powers of [log(p/w)]™" used

Table 1: Numerical parameters for the various models of the H(x) profile

Model  Eq. s Jext guup I
Smolyakov (42) 32/3m =340 -1.06 2.34 0.39
transport  (64) 4w/3=4.19 -143 2.76 0.40

linear-y  (43) 16/37 =170 -0.44 1.26 0.3
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Figure 2: Comparison of the forms of dH [dx corresponding to the transport
solution, Eq. (64) (full curve), the simplified expressions of Eq. (42) (dashed
curve), and Eq. (43) (dotted line).

to describe the geometric coefficients near the separatrix.

In conclusion, we see that MHD substantially overestimates the desta-
bilizing effect of the velocity pedestal but correctly predicts the sign of g.
That is, the polarization current is destabilizing, but its magnitude is much
reduced compared to the MHD prediction.

-5 Transport

The transport of particles, momentum and heat across a magnetic island
is a complex problem that remains incompletely understood. A particular
source of difficulty is the breakdown of the transport ordering: the separation
between the time-scale for ideal (drift or MHD) motion and the time-scale
for non-ideal (collisional) processes. For large islands the breakdown of the
transport ordering occurs either in narrow layers surrounding the separatrix
or near the X-point. One manifestation of this breakdown is the incomplete
flattening of the temperature in very thin islands due to the competition
between parallel and perpendicular transport near the separatrix,[18] or be-
tween parallel transport and convective drifts. [19]

In order to lay the foundations for future work on island transport, we
begin by deriving transport equations that are independent of the transport
ordering. We next apply the transport ordering and the equilibrium results
of Sec. 4 in order to obtain equations that specify the unknown profile func-
tions T, H, and K that appear in the solution of the equilibrium equations.
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Figure 3: Electrostatic potential ¢ for p/w = 0.2 on a chord crossing the
island O-point (a) and X-point (b) for a linear A'(). The full curve shows
the numerical solution of Eq. (21) and the dashed curve shows the asymptotic
solution away from the separatrix (x — 1 > p,/w) given in Eqgs. (28)-(29).
The dotted line shows the complete asymptotic solution for small p/w given
in Eqgs. (36)-(37).

Lastly, we complete the section by presenting numerical solutions of the pro-
file equations.

5.1 General transport laws

We derive here a set of transport equations from the steady-state limit
(0/dt = 0) of the fluid equations (9)-(12). The transport equations con-
sist simply of the solubility conditions for the fluid equations.

The first transport equation is simply the flux-surface average of Ohm'’s

law,
1o\ 1 .
p <E>x = <J”>x' (44)

In the steady-state limit, d¢/dt = 0 and the average current in the island is
equal to the inductive current in the reference (unperturbed) state.

The second transport equation is only slightly more complicated. It fol-
lows from the ion continuity equation, which is obtained by eliminating the



current between Eqs. (9) and (10),

Dn c? [DU
Dt 4mevd

;e pViU] = DV n, (45)
Setting the time derivatives to zero, we see that the resulting equation con-
sists of transport terms and convective derivatives due to the electric drift
velocity. Since the physical variables are single-valued, the integral of the
convective derivatives along a closed streamline must vanish. This motivates
us to introduce an average along streamlines, (-),, that plays a similar role
to the flux-surface average (:), introduced in Eq. (23). Assuming that ¢ is a
single-valued function of £, we define

(f)wzjé‘ﬁ‘f— (46)

2% @y

where the integral is to be carried out along an equipotential. The sub-
script = denotes partial differentiation: ¢, = dyp/dz. Generalization to more
complicated streamline topology is straightforward but unnecessary for our
purposes.

Applying the streamline average to the ion continuity equation yields the
second transport equation,

2 /x4 _ 2 ~
HPg <VJ.9’>w =D <VJ.R>¢' (47)
We may integrate this equation once by using Gauss’s law,

d
(V-I), -_-E(I‘-th)w.

There follows

D(9*n), — ypi(@””Vifp),p = D/w?, (48)
where we have used the asymptotic boundary condition n ~ no(1 + X/L,).
Here 8¥f = Vf - Vg is the contravariant ¢-component of the gradient of
f. Equation (48) expresses the conservation of ions: the first term on the
left-hand side is the ambipolar flux caused by the drift associated with the
electron-ion friction forces, and the second term represents the non-ambipolar
flux resulting from the drift associated with the viscous forces. The sum of
these terms equals the particle flux in the reference state given in the right-
hand side.
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The third transport equation expresses the conservation of electrons. We
obtain it by taking the flux-surface average of the electron continuity equa-
tion,

2 ;
(vg-Vn), =D <VJ_n>x - (49)

The term on the left-hand side of this equation vanishes when evaluated with
the lowest-order solution, Eq. (19), confirming that it is in fact a transport
term. We may integrate Eq. (49) by observing that by virtue of the in-
compressibility of the electric drift, the electric convective derivative is the
divergence of the convection flux,

vg:-Vn =V (nvg). (50)
We integrate this equation once by using Gauss’s law in the form,
d
(VL) :a(I‘-V){)x.
We find
D(&*n), — (nvE)y = Dng/wk,, (51)

where we have again used the asymptotic boundary conditions. Here 9%n =
Vn-Vyand vg = vg- Vy. Equation (51) expresses conservation of electron
flux: the first term on the left-hand side is the ambipolar diffusion flux, and
the second term is the convective flux caused by the electric drift across flux
surfaces. The sum of these terms equals the particle flux in the reference
state given in the right-hand side. Note that the flux caused by the electric
drift did not appear in the ion equation, Eq. (48), because that equation
describes the fluxes across stream-surfaces. A disagreeable feature of Eq. (51)
is that although the electric-drift term is a transport flux, as noted above,
1t possesses no simple expression in terms of a sum of transport coefficients
multiplying thermodynamic forces. We will show below a partial remedy
based on combining the electron and heat conservation equations.

The fourth transport equation, expressing the conservation of heat, is
formally identical to Eq. (51). We obtain it by taking the flux-surface average
of the heat equation,

no (Vg VT.) =y (vin)x. (52)
Performing the same manipulations as for the particle flux, we arrive at

kL(O*Te)y — no(Tevg)y = &1 Te/wlz. (33)
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Equation (53) expresses conservation of the heat flux. The terms in this
equation have analogous interpretations to those in the particle transport
equation. .

We next show how to eliminate the electric-drift fluxes in Egs. (51) and
(53) in favor of explicit transport fluxes. To this end, note that Eq. (22)
allows us to express the electric-drift fluxes in terms of the gradient of the
convected quantities along the magnetic field,

5. G- psc-"Ls - _chsLs o
(FoBhe = S (IVIR), = =L (Vo (54)

where f stands for n or T,. The purpose of this substitution is to make use
of Ohm’s law,

g

(e = (1 + ) F (VL) (55)

€
e e

(eV)n)x =

to evaluate the electric drift fluxes. Equation (55) expresses the fact that the
electric-drift component of the particle flux is produced by the combination
of electron-ion drag, pressure, and thermoelectric forces along the magnetic
field. We now obtain an equation consisting entirely of explicit transport
terms by combining Egs. (51) and (53)-(55),

no (Te)x 1\ _ L, ngc
wLn) tr(l+a) ( T wLr) wlnx Booy (pdinx:
(56)

This may be used to replace either the electron or heat conservation equations

in the final set of transport equations.
We next apply the transport ordering and replace the fields in the trans-
port laws by their equilibrium values. This yields equations for the profile

functions.

D (@) -

5.2 Profile equations under the transport ordering

We consider here islands of sufficient width as to satisfy the transport order-

ing.
i Ml 2
vy K wie K ?Vﬁ,

where v ~ & /(nw?) represents the rate of perpendicular transport. This
allows us to substitute the equilibrium results obtained in Sec 4.1 into the
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steady-state transport laws derived above, and obtain a set of equations
determining the profile functions #, 7', and K
We begin by substituting the equilibrium solutions Egs. (19) and (21)
)

into Eq. (48). This yields an equation for K(¢) in terms of H(y) and ¢,
o D 1 D ) (220:H (X))o -
K =—|(l-——}|+0c|——-1| ———=£. 37
W=7 (-gm) +o (5 (2 o

We may obtain an equation for H(x) by solving the electron continuity and
heat equations. Before doing this, however, we must find the variation of the
temperature along the magnetic field lines in order to express the convective
heat transport in Eq. (33) explicitly as a transport term.

To find the variation of the temperature along the magnetic field lines,
we solve the heat equation (12) for the parallel gradient of the temperature.
Keeping only terms of order w,.T., we have

Ve ViTe) = gTWE VI. - (1+a)V (T J") (58)

Using the result that T, = oT'(x) to leading order, as found in Eq. (17),
Eq. (38) is easily integrated:

3 3 sL F J, o -
g ViiTe = noch' '(ZUL ~ (a,o - ({'D)x) - (l4+a)oT 2]. (39)

Substituting the parallel temperature gradient into the heat conservation
equation (53), using Eqs(24) and (54), and solving for T77/T yields
" (1+apTH +1n. w
T~ 2T+2E[/r L,

(60)
where n, = L, /L, E = E(x™?) is the complete elliptic integral of the second
kind, ¢ is a constant given by

_ (Pacsn0)2 Li
= RH"‘CL L2

and T is the function of y defined by




Lastly, we solve for H' by using Eq. (60) to eliminate the temperature
from Eq. (56). We find
, 5( — 2(20:0) x) (‘7E/7r + gLT) +(1+a)dn.T

- . (61)
Mth.ﬂ‘@Eh+§ﬂj+ﬂl+aﬂxEﬁ

Here

_ (psesmee)’ Ly o Dno
Teoyky L2 K1

Together, the set of profile equations (57), (60), and (61) determine K,
T, and H in terms of ¢ alone. We next show that these equations have a
rotating solution: that is, the island has non-zero frequency in the frame
where the unperturbed electric drift vanishes. To show this we consider two

important limiting cases.

5.3 Classical transport in weakly sheared field

In the case of classical transport the coefficients appearing in H' take the
values 2 I

oy 25 Olle; L—OOGSF, o=1.

We consider the limit of weak shear, L,/L, < 1, pertinent for stellarators and
large aspect-ratio tokamaks. In this limit, H' ~ (L,/L;)* < 1. A solution
that satisfies both the electrostatic Grad-Shafranov equation, Eq. (21), and
the ion flux-conservation equation, Eq. (57), is :

0=+ O0(La/L,)? =z + O(La/L,)>

The above solution describes an island rotating at approximately the
electron diamagnetic frequency, w ~ w.. + O(L2/L?). At this frequency
the island is co-rotating with the electron fluid. The ions, by contrast, drift
through the island under the effect of the electric field. This makes it possible
for the density gradient to maintain itself in the island. Since the ions are
unaccelerated, however, the polarization current is small in the weak shear
classical limit, as can be seen from Eq. (24). For this reason we will not
describe this solution further here.
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5.4 Case of strong perpendicular heat transport

A more realistic ordering than the classical transport ordering discussed
above is to assume that the perpendicular heat conductivity is strongly
anomalous. Specifically, we assume that ¢ ~ v < 1, but that the per-
pendicular heat diffusivity nevertheless satisfies the transport ordering:

2 LZ - 2
PsCsNo - PsCsNge __1-2;_ KL & kLnE—,
| Teoy L3 psesno L3

where the last inequality expresses the transport ordering.
With the above assumptions, the solubility condition for the heat con-
duction equation reduces to

w (VAT(0) =0 (62)

The solution is
T w 70(x —1)
T Lt 2E(x7?)
The above temperature profile is identical to that found by Rutherford [15].
We next consider the expression for H’. In order to decouple the cal-

culation of A from that of ¢, we assume that particle diffusion is at most
moderately anomalous, in the sense that § < ¢ ~ v or

(63)

D L%  pyngc, N PsCsnp€?
PsCs Lg K| Teo’“

When the above condition is satisfied, Eq. (61) shows that H(x) is indepen-
dent of . There follows

L, T _17.’@(,\'-—1)

=== ik s S 64
w Tn. n. 2E(x7?)° (64)
where .
T]C=g l+a+-—-——-iﬂ~—— . (63)
3 TG‘"(l + O.f) ’

For classical parallel transport coefficients, 7. = 1.75.
The asymptotic behavior of H, H ~ (1 — w/w..)z, determines the island

rotation frequency:
w= (1 - ”-‘) Wie. (66)

e
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The above solution for w is the same as that obtained by Smolyakov [3]
neglecting viscosity and radial diffusion, and using an energy conservation
law. Strictly, we should retain the propagation frequency evolution terms
to demonstrate that this is a stable solution. This would complicate the
algebra considerably, but we note that the derivation of Smolyakov [5] does
demonstrate that this is a stable solution. While it is possible that the
separatrix layer may modify this result, we leave the study of this to future
work.

It is appropriate here to make two comments on the form of H(x): (1) its
derivative is discontinuous at the island separatrix (x = 1) and (2) its second
derivative is logarithmically divergent as the island separatrix is approached.
The discontinuity in the derivative of H(x) is the feature which was neglected
in References 4-10, and is the basic source of the discrepancy between these
references and the results of Rebut and Hugon(3]. It is therefore important to
retain this feature. The logarithmic singularity, on the other hand, provides
a negligible contribution to Eq. (26) and it is safely neglected. Therefore, to
avoid the numerical complication associated with the form of H(x) given in
Eq. (64), we will again use the simpler form Hg(x) given in Eq. (42).

In summary, we replace the solution for the H(x) profile given Eq. (64)
with the model profile given in Eq. (42). We are then faced with the task of
solving the system consisting of Eqgs. (21) and (57) for ¢ and K. This is a
difficult task because one cannot calculate the averages over the constant ¢
surfaces until one knows the form for ¢, and one cannot solve for  until one
knows the form of K().

5.5 Solution of the transport equation in the viscous
limit

We can gain some insight into the transport properties by considering the

asymptotic solution for ¢ away from the separatrix, z — cos(£/2) > p,/w,

where ¢ is constant on the perturbed flux surfaces, i.e. ¢ = ®(x). In this

limit it is more convenient to use the form of the ion conservation equation

given in Eq. (48). For ¢ = ®(x), this equation takes the form

; d py 0 )
;fuzg; ((Xf:)x;(;) = (v = (EH — 1, (67)
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where v = dg/dy is proportional to the flux-surface average of the velocity,
(x3)x = 2E(x7?)/m, and

(= = [22 = xEG) ~ (1= XKD
Here K (x~?) is the complete elliptic integral of the first kind. Equation (67)
shows that the transport processes introduce a new radial length scale into
the system: \/u/Dp,.

We can obtain solutions to Eq. (67) in two limits. When p? < pp?/D <«
w?, the first term is only important near the separatrix, where it smooths the
velocity distribution. We may thus approximate the coefficients of Eq. (67)
by their values on the separatrix. We require that v be continuous at the
separatrix (v(1) = 0). The solution, after substituting the value of H’ given
in Eq. (64), is

rwf 1 wx-1) [D
v() =3 - {m — R [_W\/ﬂ } o

where A; = \/-2—/5 and x > 1. Note that for consistency with the assumption
@ = ®(x) it is necessary that the viscous layer be much wider than p,. This
is the case when D < p.

The second solution corresponds to the limit where the velocity localiza-
tion width greatly exceeds the island width. This occurs when w? <« pp?/D.

In this case the solution is
[1 —exp (_M 2)] : (69)
PsAco H

w

vlx) =~

where A, = 1 and x > 1. Since the velocity vanishes in the proximity of

the island, the polarization current is negligible in this limit. Note that for

w* ~ wp?/D, Eq. (68) can be used as a rough approximation by suitably
adjusting A between A; and A.

In the absence of particle diffusion (D — 0) we see that, for the model we
are using, the ‘transport’ length scale ~ (/u/Dp, becomes very large, so that
one needs to go to very large distances from the island to recover the linear
dependence of @ with = expected in the absence of the island; thus the effect
of the island is not radially localized in this limit. One can see qualitatively
why we should expect this to be the case by considering the following simple
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model. Suppose we impose a flow v = vy associated with the dynamics of the
island, and initially localized around the island. This profile will evolve under
the action of viscosity; a simple model equation describing the evolution of
v is

dv  p 0%

at wz?ﬁ'
This is to be solved subject to the boundary condition v = vo(x) at time
t = 0. We assume that there is no flow inside the island in this example:
v = 0 at the island separatrix, x = 1. The solution can be constructed from
the appropriate Green’s function, [20]

v = vy erf [WT\/_;:)-] ) (71)

where erf is the error function. Clearly flows localized on the island width
length scale can exist for short times, ¢ <« u/w?, but Eq. (71) shows that
eventually the island will be brought into co-rotation with the rest of the
plasma (i.e. v = 0 everywhere).

In the presence of particle diffusion, by contrast, Eq. (68) predicts a
localized, steady state solution for the flow. Remarkably, Eq. (68) further
predicts that viscosity only affects the localization width of the flow, and not
its amplitude. That is, the island rotation frequency is independent of u.
Note that for turbulence-dominated transport models, for which we expect
u ~ D, the velocity pedestal outside the separatrix has a width comparable to
ps- For such models the asymptotic analysis presented above is inapplicable.
We next present numerical results for the solution of Egs. (21) and (57) in
the regime where p ~ D.

(70)

5.6 Numerical solution of the transport equations

We present here the numerical solutions of equations (21) and (57), providing
more quantitative details of the effect of the transport processes on both the
radial structure of the electrostatic potential and on the polarization current.

The numerical procedure we have developed is the following. At each
iteration ¢ we have a form for A; and a solution ;, where K; is calculated
from Eq. (57) using the solution ¢;_; to evaluate the averages at constant
. We impose the boundary condition K'(0) = 0, and write K(p) = K, +
e(Kyr — Ki), where Ki(¢) = (1 — wie/w)p is the linear form, and Kz is
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Figure 4: The full curve shows the electrostatic potential ¢ determined by
dissipative relaxation (transport). The two profiles shown correspond to
chords that cross the island’s O-point (a) and X-point (b). The dashed
curves are the corresponding ¥ — 1 >> p,/w asymptotic solution for linear
K(p) [Egs. (27)-(29)]. The parameters are p,/w = 0.4, w/w.. = —2.5 and
/D =1.

the non-linear form derived from Eq. (57), and slowly step € up from a small
value € € 1 to € = 1 at the end of the iteration procedure. The results which
we present in this section are the fully converged solutions.

We begin by considering the case pp = D (i.e. equal viscosity and diffu-
sion). In this case the linear solution A'(¢) = K1(¢) — ¢ is an exact solution
in the limit w/w.. — oo. The trivial solution K (¢) = 0, corresponding to
w = w,,, constitutes a second exact solution. These two exact solutions serve
as useful references for the numerical solutions. Figures 4 and 5 show the so-
lutions for ¢(z, €& = 0), ¢(z,€ = 7), and K (¢) for the parameters p,/w = 0.4,
w/wee = —2.5. The solution for w/w.. — 00, K(p) = ¢, is also shown for
comparison (dash-dotted line). From Fig. 5 we see that for these parameters
the dominant non-linearity in A'(¢) arises inside the island separatrix, and
leads to a more pronounced flattening of ¢ in this region than occurs for
linear K (compare Figs 2a and 4a). In Figs 6 and 7 we show the situation
for islands propagating in the electron direction, w/w.. = 1.5, p;/w = 0.4.
In this situation we see that K'(p) becomes much flatter inside the island
separatrix compared to the linear model (Fig 7); the result of this is that ¢
is not flat inside the island, but has a more linear dependence with z: that
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Figure 5: Relaxed non-linear K(p) (full curve) and linear K(p) (dashed
curve) for the parameters of Fig 4. The vertical dotted line represents the
value of ¢ at the island separatrix, opposite the O-point, i.e., p(z = 1,£ = 0).
The dash-dotted line represents the solution A(¢) = ¢ corresponding to the
limit w > w..

is, there is an electic drift through the island. Figure 8 shows how g varies
with p®/w?. Comparing with Fig 3 for the linear K () model we see that
the dependence of g on p®/w? has changed significantly, although the po-
larization current remains destabilizing. Note that for the non-linear K (¢)

model, g depends on both p*/w? and p,/w: examples for two values of p,/w
are shown in Fig 8.

- We have also considered cases where viscosity dominates radial diffusion.
In Fig 9 we show the dependence of g on the ratio p/D; we see that for
the value of w/w, = 1.5, g is relatively independent of u/D. In Fig 10
we show the radial form of ¢ for /D = 10; it is more broad than the
corresponding form for u/D = 1, as expected from Eq. (68). Note, however,
that the assumptions underlying Eq. (68) are not satisfied by the parameters
of Fig. 10. Specifically, ps;/w = 0.4 is too large for the asymptotic analysis
to be successful, so that Eq. (68) only indicates the qualitative nature of the

solution.
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Figure 6: Electrostatic potential ¢ determined by dissipative relaxation
(transport). The two profiles shown cross the island O-point (a) and X-point
(b). The parameters are p;/w = 0.4, w/w. = 1.5 and p/D = 1.
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Figure 7: Relaxed non-linear K'(¢) (full curve) and linear K(p) (dashed
curve) for the parameters of Fig 6. The vertical dotted line represents the
value of ¢ at the island separatrix, opposite the O-point, i.e. p(z = 1,¢ = 0).
The dash-dotted line represents the solution A(¢) = ¢ corresponding to the
limit w 3 w..
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Figure 8: Plot of g versus (p/w)? = (ps/w)?/(1 — wwe/w) for the non-linear
K(p) model with g = D. The curves show results for p,/w = 0.4 (full curve)

and p,/w = 0.8 (dashed curve).
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Figure 9: Variation of the coefficient g with the ratio of viscosity to radial
diffusion, p/D. Other parameters are fixed: w/w.. = 1.3, p;/w = 0.4.
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Figure 10: Variation of ¢ — wz/w,. with z for (a) £ = 0 and (b) £ = 7 for
1/ D = 10; other parameters are as for Fig 9.

6 Conclusions

We have investigated the evolution of a small scale magnetic island in a
sheared slab geometry, with particular attention to the processes taking place
in the layer around the island separatrix. Our results show that the MHD
model correctly predicts the destabilizing effect of the polarization current
on island growth for mode rotation frequencies w lying outside the drift-band
Wei < W < Wae. The MHD model, however, substantially overestimates the
magnitude of this effect. _

The mode rotation frequency depends on the radial profiles of plasma
flow, density and temperature. These radial profiles are determined by the
conjunction of parallel and cross-field transport arising from viscosity, par-
ticle diffusion and thermal conduction. The transport is governed by a set
of coupled, non-linear equations, (57) and (64), that determine the radial
‘profiles in terms of the electrostatic potential ¢. The electostatic poten-
tial itself is determined by an equation, Eq. (21), that is reminiscent of the
Grad-Shafranov equation.

Surprisingly, we find that even in the presence of viscosity, the island
rotates at a different velocity than the surrounding plasma as a result of
diamagnetic effects. We estimate the width of the region where the plasma

is entrained by the island to be ~ +/u/D p,. It is interesting to compare
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our results to those of Monticello and White, [21] Biskamp [22], and Scott et
al.[23]: Monticello and White found that diamagnetic mode rotation persists
in the nonlinear regime, while Biskamp and Scott et al., by contrast, found
that it is nonlinearly arrested. The difference may be due to the effect of the
sound wave, which was included by Biskamp [22] and Scott et al. [23], but
omitted by Monticello and White [21] as well as in the present paper. The
sound wave affects the rotation frequency by flattening the density profile
and thus suppressing diamagnetic effects.[22, 23] Its role becomes significant
for islands of width comparable to or greater than p;L;/L,.

We have stated above that the polarization current is destabilizing for
frequencies outside the drift-band w.; < w < w,,. We will show in a com-
plementary paper, however, that it is stabilizing when the mode propagates
in the ion drift band of frequency: that is, when the island is rotating in
the ion diamagnetic drift direction but more slowly than the ion diamagnetic
drift frequency, w.; < w < 0. We will further show that the polarization
current can be stabilizing in significant portions of the electron drift band,
0 < w < wye. The result of the present work is thus to show the importance of
the mode rotation frequency in the onset process for magnetic island growth,
and to improve our knowledge of the conditions under which the polarization
drift is stabilizing.

Although we believe that the work reported here represents a significant
step forward in developing our understanding, we note the following two
cautionary remarks:

1. Dissipation effects have been treated perturbatively. There is an addi-
tional sub-layer around the separatrix, assumed negligibly small here,
where this is invalid and where perpendicular and parallel transport
processes compete. In this sub-layer the density and temperature ex-
perience significant variation along flux surfaces [18].

2. In tokamaks, trapped particles provide a significant enhancement to
the stabilizing contribution of the polarization current outside of the
separatrix layer. It is unknown whether the destabilizing contribution

of the layer is similarly enhanced.

Clearly, there is still much to be done to understand fully the role of the
polarization current in tearing mode evolution.
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