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Abstract

The Grad-Shafranov equation for a plasma with axial symmetry has been generalised
by lacono and co-workers [Phys. Fluids B 2, 1794 (1990)] to include arbitrary flow,
pressure anisotropy, and an arbitrary equation of state. In this report numerically-
tractable forms of the equation are derived for two different scenarios: one is the double
adiabatic model of Chew, Goldberger and Low [Proc. R. Soc. London Ser. A 236, 112
(1956)]; the other (“single adiabatic”) model is based on the assumption of constant
temperature parallel to the magnetic field on magnetic flux surfaces. The equations
derived are found to be equivalent, in the appropriate limits, to anisotropic Grad-
Shafranov equations with and without flow obtained by previous authors. Physical
constraints on magnetic flux functions appearing in the analysis are discussed. In the
limit of low flow speed and low plasma beta, for a given set of flux functions and
boundary conditions, it is shown that there exist two self-consistent solutions for the
plasma density, in both the double and single adiabatic cases. In a tokamak, the lower
density solution is applicable if the poloidal flow speed vy exceeds a value of the order
of ¢s(r/Roq), where ¢, is the sound speed, Ry/r is the local aspect ratio, and ¢ is the
local safety factor.

1 Introduction

Equilibrium analyses of axisymmetric plasma configurations are generally based on
the assumption that momentum balance in the plasma fluid can be described by the
equation
Vp:i(VxB)xB,
‘ Ho

where B is the magnetic field, p is a scalar plasma pressure, and pq is free space per-
meability. Equation (1) is valid if the pressure is approximately isotropic, and if flow
velocities v are of sufficiently small magnitude that the (v-V)v term in the fluid equa-
tion of motion can be neglected. There are grounds for believing that these assumptions
may not be valid in certain tokamak experiments. For example, waves in the ion cy-
clotron range of frequencies (ICRF) preferentially accelerate ions perpendicular to the
magnetic field, leading to a higher plasma pressure in that direction. Conversely, neu-
tral beam injection (NBI) tangential to the magnetic axis of a tokamak can cause the
parallel pressure pj to exceed the perpendicular pressure p) . NBI can also result in the
injection of significant momentum to the plasma. However, although several authors
have derived modified forms of the Grad-Shafranov equation which can, in principle,
take such effects into account, there have been few if any attempts to actually solve
these equations. The main purpose of this report is to derive from first principles a
form of the generalised Grad—Shafranov equation which is tractable numerically and,
in certain limits, analytically (Sect. 2). Having derived such an equation, we take the
limit in which there is no flow, but retain pressure anisotropy, in order to compare
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our analysis with the work of previous authors (Sect. 3). In general, the incorpo-
ration of flow and pressure anisotropy makes it necessary to specify six functions of
poloidal magnetic flux. These functions are all formally arbitrary, but in practice they
are severely constrained by the requirement that the values obtained for the variables
describing the equilibrium are physically meaningful. We discuss this issue in Sect. 4.
In principle, the flux functions are governed by appropriate transport equations. The
problems connected with self-consistent evolution of the latter, subject to appropriate
sources, will be discussed in future work.

2 General Analysis

Our starting point is the steady—-state single fluid equation of motion with anisotropic
plasma pressure, which can be written in the form

2
U 1
pKXV:—V-P—pV(?)-I-—(VXB)XB, (1)
Ho
where p is plasma density, P is the pressure tensor and K = V x v. Equation (1) is
equivalent to Eq. (15) in Ref. 1, except that external gravity has been neglected and
the possibility of anisotropic pressure has been taken into account. Following Ref. 2,
we write
' (Pu i pl)
B2

where | is the unit tensor. Substituting this expression in V - P, introducing 7 =
(py — pL)/B? and using V - B = 0, we obtain

P= 'pJ_ + BB:

V-P=Vp, +V-(rBB), (2)
V-P=Vp, +B(B-Vr)+7B-VB. (3)

Using the vector identity

BZ
B-VBE(VXB)XB+V(?), (4)
we infer that
BZ

V'PZVPJ_+T(VXB)XB+TV('§')+B(B‘v7—). (5)

We now adopt a cylindrical coordinate system (R, ¢,Z) and, as in Ref. 1, use the
following potential representation of B
10U 10v
(6)

B = —EB—Z"ER -+ B¢E¢ + Eﬁ&z,



where eg, e4, ez denote basis vectors in the R, ¢, Z directions. We can then write

_19(%,7) _ |[v¥or -

B V=2~ R o

where [ denotes arc length along a curve of constant poloidal magnetic flux, 27V, at

fixed ¢.

Using Eq. (13) in Ref. 1 and Egs. (5) and (7) above, we infer that the azimuthal
(toroidal) component of the equation of motion, Eq. (1), can be written as follows

F'O(¥, Rvg) _ RBy 9(¥,7) 1\ 10(¥ RBy) (s)
R? 9(R,Z)  R? O(R,2) Lo R (R, Z2)
where F” is a flux function relating the poloidal components of v and B:
~Fot + pugey + Ea—lee (9)
V= "Roz R TP T ROR Y

As shown in Ref. 1, the existence in toroidal symmetry of a function F' satisfying Eq.
(9) follows from the steady—state mass continuity equation and the toroidal component
of the ideal MHD Ohm’s law: :
vxB =V, (10)
where ® is the electrostatic potential. Equation (8) can be expressed concisely in the

form

' D, 1
0 (F'Ruy — (£ — ) RBy, ¥) N -
d(R, Z)

This implies the existence of a flux function f(\¥) given by

£(D) = (i - T) RB, — F'Ru,. (12)
Lo

We now consider Eq. (1) in full, using the expression for V - P given by Eq. (5):

pKxv=-Vp, —B(B-Vr)-7V (%E) —pV (%2)+(Hi—f) (¥ xB)xB. (13)
0

&

Introducing

1
A= — —T, 14
- 1)

and noting that
[V x (AB)] x B=(VAxB) xB+ A(V xB) xB,

so that
MV xB)xB=[Vx(AB)] x B+ B*VA-B(B:V)\), (15)
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we find that Eq. (13) can be re—written in the form
2

1 1 —
Iacono and co-workers? obtained a Grad-Shafranov equation for a plasma with arbi-

trary equations of state. However, for reasons of clarity it is appropriate to specify an
equation of state at this stage of the analysis. We consider two separate cases.

2.1 Double Adiabatic Model

The steady-state “double adiabatic” equations are the following:?

vV (%) =0, (17)
vV (p'lfg) =0. (18)

Because of the assumed toroidal symmetry, these equations imply the existence of flux

functions ¢, o) such that
pL=0.(¥)pB, (19a)

p) = 0y ()p*/B. (19b)

Expressing the quantity in square brackets in Eq. (16) in terms of these new flux
functions, one obtains

1 = 3 2 1 2
: [vzsu - (ﬂ%) vB|=v [-2-0” (£) + O‘_;_B] - [EJI’I (£) + BJLJ V. (20)
The equation of motion [Eq. (16)] thus takes the form

1

2 2 1 2

2 " 2°1\B
(21)

We now evaluate the components of the left hand side of this equation, noting first
that

P . 10
V x (AB) = —a_Z(/\qu)eR + Jpep + Eﬁ(ﬁ)‘f%)ez, (22)
whers 5 [ v 8 [\dv
x 1 1
Jo=-% [55 ()‘EE) +Rop (E@)} - (23)
Hence
_(;10¥ By 9 1 (¥, ARBy)
[V x (AB)] x B = ("%R@ R OR (R/\Bc’)) R R AR Z)



- 190V By 0
—— — ——(RAB . L
( “R27 ~ ROZ" "’)) e (249
Substituting this result in the equation of motion, taking the scalar product with ey,
and noting that the assumed toroidal symmetry implies e4 - V = 0, one recovers Eq.

(11). Taking the scalar product with B, we obtain

B Vo] a [v* 3 (,o)2 .

O—B'KXV+ = '6_{_2 +20'|| B +O'J_B_, (_,5)
e VU8 [ 3 2 ]

. b I ﬁ) 2

0=K-vxB+ Tl 2+20-”(B +o,B]|. (26)

Using the R and Z components of the ideal MHD Ohm’s law [Eq. (10)], it can be
shown! that the electrostatic potential ® is a flux function whose derivative Q& = &’ is
given by

= R*Q(W), (27)

Since @ is a flux function it follows that v x B = QV W, and hence

QO(¥, Ruy) _ VY| D
R (R, Z) R

K-vxB=0K VI =— (QRv,), (28)

where we have used the fact that 2, being a flux function, commutes with the operator
0/0l. Combining this result with Eq. (26), we obtain the Bernoulli relation

Y QRus+ o (£)2+a B = H*(¥) (29)
9 ¢7T 5 Il B 12 = ’ =

the quantity H*(¥) being an arbitrary flux function. The full equation of motion can
now be written in the form

1 , 1, 2 )
E[V X (AB)] xB=Kxv+H"VV¥ + V(Q2Rvy) — [50” (%) + BO’_L] V. (30)

The components of this equation in the (R, Z) plane are

1[J, B, L (F 1 "
! R QI 1 ! p 2 B ! vqj
where K 5 18 defined as in Ref. 1:
" 118  F'ov g  F'ov
Ky=-% [0_2(?52) + EE(R_pﬁ)] : (32)
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Using the definition of f [Eq. (12)], Eq. (31) can be rearranged to give

% PVQJ — (—F—) VY = (@) V [F'Rus + f] - (%B,ﬁ) V(Ru,)

R pR pR? 3
! 1 p ?
i.e.
1 " o _ RB¢ " 4 R_B_._‘f’
- K] v = (Eﬁ) (Rog) 'V + f (22 | v
1, o2
" [H*' + RugQ) — Eaﬁ (E) = BUlJ V. (34)

Equating the coefficients of VW, we obtain finally a generalised Grad-Shafranov equa-
tion for a toroidally-symmetric plasma with flow and anisotropic pressure
1 RBy

1 T * */ P 2 ! "
;R'[Jd’—'[(daF’]:H —50'{] (E) —BO"J_+RU¢Q’+f’(pR2)+(pR2)(R'U¢)F.

Writing this explicitly in terms of ¥, we obtain
0 (AT 8 [ 0T\  FF'u |(0¥\* [ow)?
nar (am) + 07 (452) + 5 Kaﬂ) +(3)

1 2 ' ! ! ' ’
= Ju,OpR2 [ia‘{l (%) + BO'J_ - R’U¢,Q - H J = RB¢M0(]C =+ R’U¢.F ’), (36)

where

F!? P - Ff?
AE#O(A—7)=1—#0 d pl—#o—-—. (37)

The equilibrium is completely determined by the partial differential equation Eq. (36)
and the following set of algebraic relations:

1
B = ﬁ|V\I!|2+B§,, (38)
F:Q
v? = Rzpzjvw + v3, (39)
f(¥) = ARBy — F'Ruy, (40)
'RB

R*Q(¥) = Ruy — F ; 2 (41)

2 3 2
H*(‘I’) = % — QR‘U¢ + '2'0'” (g) +o0,B. (42)

We thus have a system of six equations, six unknowns (¥, p, By, vs, B, v), and six
arbitrary flux functions (F', Q, f, oy, 0., H*).
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2.2 Single Adiabatic Model

We now consider the case of an “isothermal” model for p: that is to say, we take
T = mp,/p rather than p;B?/p? to be a flux function (m being the mean particle
mass). This is justified physically by the fact that parallel transport in tokamaks is
generally extremely fast. Equation (17) remains valid in this case, while Eq. (18) is

replaced with
vV (ﬂ) =)
o}

We now reconsider Eq. (16), noting that

L Dy ] 1pJ_ 1 (p ) TH(\P) (B)
= gy — Ely Plow = o [ Loippy | — 2 deryn f — ALV
- [Vp“ B B o VB P “(\ ) , n B, +O'_|_(\ ) B

:_[;nim(fé)JrB ]w+v[%{1 (gﬁ;)ﬂ}wﬁ}. (43)

Here, By and pg are arbitrary constants with the dimensions of magnetic field and den-
sity respectively, introduced in order to make the logarithm arguments dimensionless.
Taking the scalar product of Eq. (16) with B, as before, we infer a Bernoulli relation

of the form 5 7 5
%——QR ¢.+—{1 (‘0 ;) +1}+0’LB=H*(\I’), (44)

Po
AANNTCEAY
dR 8z

T B
= ]_J,UpRg l:—ﬂ% In (p ;) + B = R'U¢,Q’ H*’] = RB¢/.L0(fI + R'Ung”). (45)

and a Grad-Shafranov equation

o (AT 8 [, 0F\ FF'u
REE(R@R)+EE(A32)+ P

Po

3 Anisotropic Pressure without Flow

In the isotropic limit without flow, A = 1, F' = Q = 0, and f = RBy/ue. Equa-
tions (36) and (45) then reduce to equations which are similar to the standard Grad-
Shafranov form.* They are not quite identical, however, because of the use of the
double adiabatic and single adiabatic equations of state. It can be shown, however,
that Eqs. (36) and (45) are particular forms of a Grad—-Shafranov equation obtained
independently in"Ref. 2: we can be confident, therefore, that they are correct.

Considerable simplification occurs when flow is neglected but anisotropy is retained.
We then have A = ), and in the double adiabatic case the Grad-Shafranov equation



[Eq. (36)] reduces to

o (AT 5} ov) 4 p , o s
RBR (R@)-l-aZ (Agg) topR [ CTH (B) +BJJ’_H}—_A ,  (46)

where the Bernoulli flux function H* is now given by

ey — 3 (P
B () =50y (£) +0.B. (47)
It is possible to show that Eq. (46) corresponds exactly to Eq. (12) of Ref. 5 when the
double-adiabatic equations of state are used. It is also identical to the Grad—-Shafranov
equation in Ref. 2 in the double adiabatic case without flow. In order to establish this
equivalence, it is essential to recognise that the quantity 9p;/8¢ in Ref. 2 differs from
(Opy/0%)p in Ref. 5: in the former case, p| is treated as a function of ¥, B and p; in
the latter, p is a function only of ¥ and B. To see what this means, one can write Eq.

(19b) in the form
p(¥) = oy (¥)p(B, ¥)°/ B?, (48)

where the function p(B, ¥) can be obtained for given H*, o and o, from Eq. (47).
From Eq. (48), we obtain

o\ _ 91p’ | 3oyp” (p
(_3717)3— BT " \ay), (49)

Differentiating Eq. (47) with respect to ¥ at fixed B, we find that the expression in
square brackets in Eq. (46) is proportional to (9py/8v)g: it corresponds to the first
term on the right hand side of the Grad-Shafranov equation in Ref. 5.

4 Solution Procedure

We have seen that when flow and anisotropy are taken into account the number of flux
functions which must be specified increases from two to six. These functions cannot
be chosen arbitrarily, however: they are constrained, for example, by the requirement
that solutions for the plasma density p be real and positive for all R and Z. One can
ensure that this requirement is satisfied as follows. From the definition of f [Eq. (12)

or Eq. (40)] we have that

FEy
(,\ -5 ) RB, = R’QF' + f(¥). (50)

Introducing

S = = (RQF + f(¥)), (51)

=



and denoting the poloidal component of the magnetic field by By = |V¥|/R, we find
from Eq. (50) that the total field B can be expressed in the form

pgS®

B? = B? ) 2
Ba + {1 _ molp—pL) ,ugF’z}2 (5 )
B2 P
We now consider the limit
— EF"?
MMBQ—M <1, B« (53)

i.e. we assume that the difference between the parallel and perpendicular plasma betas
and the square of the poloidal Alfvénic Mach number (the ratio of poloidal flow speed
to Alfvén speed defined in terms of the poloidal magnetic field) are everywhere much
less than unity. Both of these approximations are justified in the case of tokamaks. If
Eq. (53) holds, it is clear from Eq. (52) that we can write

By~ poS = %" (RPQF + f(1)). (54)

Equation (54) gives the toroidal field in terms of prescribed functions of ¥: if ¥(R, Z)
is known we can then use calculate the total field B using B? = |[V¥|*/R* + B}. In
this limit, B is independent of density p. To calculate the latter, we can proceed as
follows. It follows from Egs. (9) and (27) that

2 QROB,F' B\?
'[)2 — Ufi + F’2 (@) — RZQE + ﬂ 4 FIQ (_) . (55)
Rp p p

Hence the double adiabatic Bernoulli relation [Eq. (29)] can be written in the form

F? (B\®> 3 /p\* . O2R?
7 (5) +3 () =rw+ T e 0
Putting (p/B)% = X,
2 (¥ R?
= — | H*(P -0, B 7
= (ww+ T - o), (57
and
F*
c= ﬁ, (58)
one can write Eq. (56) as a quadratic equation for X:
X? =X +e=0. (59)

From its definition [Eq. (19b)], it is obvious that the flux function o] must be positive
definite: the quantity c is then also positive definite. Having specified (V) and o, (¥),
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it is necessary to choose H*(¥) to be sufficiently large that b > 0 V R, Z, since otherwise
Eq. (56) cannot be satisfied for real p/B. We emphasize here that the absolute values
of H* are completely arbitrary: since the Grad-Shafranov equation [Eq. (36)] depends
only on H*' rather than H* itself, one can always add a constant to the latter without
changing the physics of the problem [the solutions of Eq. (36) would, however, be
affected by such a transformation, since Eq. (56) indicates that the density would also
change]. Solutions of Eq. (59)

X. = % [b+ (8* — 4c)'/?], (60)

are represented schematically by the curve in Fig. 1la. The condition for these solutions
to be real is that ¢ be less than or equal to 52/4, i.e. that

Q2R?

2
(H*(\II) + - O’J_B) > 30||F'2. (61)
If this condition is satisfied, the two roots will both be positive if 5 > 0 and ¢ > 0. An
intriguing result is that there will then be two solutions for the density:

px = BXY* (62)

It should be stressed that these “solutions” are purely formal, since in order to evaluate
p(R, Z) it is still necessary to solve the Grad-Shafranov equation [Eq. (36)]. Moreover,
the absolute values of the density are indeterminate, since the addition of an arbitrary
flux function to H* necessarily changes p(R, Z). In practice, however, p is constrained
by the total mass of plasma and the size of the system. Finally, Eq. (62) only represents
an explicit solution for the density if we assume that B is independent of p. This
assumption, which is valid if Eq. (53) holds, needs to be verified a posteriori. Low
density implies a relatively high poloidal Alfvén Mach number uoF'?/p (for a given
F'), and so it is particularly important to check that Eq. (53) remains valid in the
case of the low density solution. To quantify this remark, we note that the first term
on the left hand side of Eq. (56) is of the order of v}(B/By)?, where vy is the poloidal
flow speed. The second term in Eq. (56) is of the order of ¢, where ¢, ~ (p/p)"/? is
the sound speed. The low density solution is applicable if the first term is dominant,

which requires that

B
vp > g"cs. (63)

The second of the two inequalities in Eq. (53), on the other hand, requires that

B
Vg K _BECA’ (64)

where ¢y = B/(uop)Y/? is the Alfvén speed. Equations (63) and (64) can be consistent
if c4 > ¢,, l.e. if the total plasma beta 8 ~ c2/c? is small. When this condition is
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satisfied, the first of the two inequalities in Eq. (53) is also satisfied, and the low density
solution will be self-consistent. In a large aspect ratio tokamak By/B ~ r/(Rpq) < 1,
where Ry is major radius, 7 is minor radial distance from the magnetic axis, and ¢ 2 1
is the safety factor. The low density solution could thus be realized even if the poloidal
flow speed were subsonic.

For cases in which p(p—p.)/B?* or ,uOF’z/p are not negligibly small, one could obtain
an iterative solution for p and B, with Eq. (54) as the initial estimate of By. In gen-
eral, Eqs. (52) and (56) constitute a pair of algebraic equations which must be solved
self-consistently for B and p. An analogous pair of equations was obtained for the case
of scalar pressure and an isothermal equation of state in Ref. 6. The above discus-
sion indicates that there are circumstances in which at least two physically—acceptable
density solutions exist, for a given set of flux functions and boundary conditions.

In the case of the single adiabatic model, the form of the Bernoulli relation analogous
to Eq. (56) is

Fr? B 2 'T” PBD . 9232
: (5) +E{l“(%§)“}_mm+ 7~ W

As in the double adiabatic case, there are two possible real roots. This is shown
graphically in Fig. 1b, where X, again defined as (p/B)?, is plotted versus ¢’ = mF"” /T
for a particular value of ' = 2m(H* +Q2*R?/2— 0, B)/Tj,— 2+ 1n(p3/BZ). To examine
the nature of the roots, it is useful to consider, as in the double adiabatic model,
limiting cases in which one or other of the density—dependent terms on the left hand
side of Eq. (65) is dominant. Considering first the limit of large p/B, we obtain from
Eq. (65)

(66)

B m(H* + £ — o, B)
P= P XD 7 :

This corresponds to the upper branch of the curve in Fig. 1b, and provides a suitable
initial estimate of the density in an iteration solution when the poloidal flow speed is
known to be much lower than (By/B)cs [cf. Eq. (63)]. At sufficiently low p/B the first
term on the left hand side of Eq. (65) is dominant and we can write

BF'
5 67
B+ 2 B .

Equation (67) represents a solution for the density if Eq. (53) holds, i.e. if By does not
depend explicitly on p. As in the double adiabatic model, this must be verified a poste-
riori. The coupled equations for B and p [Egs. (52) and (65)] are now transcendental
rather than algebraic, and so the problem of determining all the physically-acceptable
solutions is more complex. However, it is clear from Eq. (65) and Fig. 1b that the
existence of a self-consistent low density solution of the form given by Eq. (67) re-
quires the same criteria as those which apply in the double adiabatic case, namely
(r/Roq)ca > vg > (r/Rog)cs and B < 1.

p=



For both equations of state, there is a critical poloidal flow speed separating the high
and low density solutions: this corresponds to the points in Fig. 1 at which the curves
have infinite gradient. In the double adiabatic case, it is straightforward to show from
Eq. (60) that the critical vy is vg. = (By/B)(3p)/p)*/?. Taking the low beta limit, one
can demonstrate that the determinant corresponding to the second order derivatives
in the Grad-Shafranov equation [Eq. (36)] vanishes when vy is equal to the critical
value.? Corresponding singularities exist in the equations describing isothermal®7 and
adiabatic® axisymmetric plasmas with isotropic pressure. For poloidal flow speeds
below vy, the Grad-Shafranov equation is elliptic; above the critical value, there is
a range of flow speeds in which the equation is hyperbolic. It is possible that both
high and low density solutions could be realised in different regions of a single tokamak
plasma equilibrium. In that case, there must exist points in the plasma where the
Grad-Shafranov equation is singular. In general, the presence of such singularities is
likely to aggrevate the problem of determining numerical solutions.

X X
b (a) e (b)

b/2

p—1|

2 I b'l—l
b /4 e &

C

Fig. 1. Schematic plots of normalised density variable X = (p/B)? versus (a) ¢ =
F*/ (30)) (double adiabatic model) and (b) ¢ = mF” /T (single adiabatic model).
The point of infinite gradient on each curve defines the critical flow speed separating
the high and low density solutions.

An example of a plasma configuration in which both high and low density solutions
might occur is a tokamak in high confinement (H) mode. Such plasmas are charac-
terised by an edge transport barrier, indicated by a steep pressure gradient. Transport
barriers generally are believed to be associated with strong poloidal flows (see, e.g.,
Ref. 9). On the other hand, the poloidal field can be very small close to the plasma
edge (in the case of a divertor plasma, By — 0 at the separatrix). The critical flow
speed is thus relatively low, and it is possible that the inequality vy > vg. could be sat-
isfied in the edge plasma. Indeed, it has been proposed!? that the transition from low
confinement to H-mode is facilitated by poloidal flows approaching the critical value.
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It is important to note that when the Grad—Shafranov equation is solved for a region of
space in which it can change from being elliptic to hyperbolic, the solution procedure
and the boundary data must take full and consistent account of this transition (similar
considerations apply to transonic aerodynamics). To the best of our knowledge, such
solutions have not yet been obtained for tokamak plasmas.

5 Conclusions

We have derived from first principles a generalised Grad-Shafranov equation for an ax-
isymmetric plasma with flow and pressure anisotropy. In particular, we have obtained
numerically tractable forms of the equation for two specific models of the parallel
and perpendicular pressures: the double adiabatic theory of Chew and co-workers;?
and a “single adiabatic” model, based on the assumption of constant temperature on
magnetic flux surfaces. Anisotropic Grad-Shafranov equations with? and without?
flow, and with arbitrary equations of state, have been obtained by previous authors:
these reduce, in the appropriate limits and with appropriate equations of state, to the
equations derived in the present analysis. We have discussed physical constraints on
otherwise arbitrary magnetic flux functions appearing in the analysis. In particular,
we have identified conditions which must be satisfied for the plasma density to be real
and positive. In the limit of low flow speed and low plasma beta, for a given set of flux
functions and boundary conditions, we have found that two self-consistent solutions
exist for the plasma density, in both the double and single adiabatic models. The low
density solution is applicable when the poloidal flow speed exceeds a value vy, which,
in a tokamak, is of the order of the sound speed divided by the product of the local
aspect ratio and the local safety factor. It is possible that the low density solution
could be applicable to existing tokamaks. In this connection we note that Betti and
Freidberg!! have recently obtained shock—free solutions of the steady MHD equations
with anisotropic pressure, viscosity and poloidal flows of the order of vg.. It should be
stressed that the arbitrary flux functions which appear in the equilibrium MHD solu-
tions cannot in general be prescribed a priori, but must be obtained using appropriate
transport equations. We will consider the problem of self-consistent determination of
these flux functions in a future report.

Appendix: Notation and Units

Comparisons between the various equilibrium analyses in the literature are complicated
by differences in notation. For this reason, we present a summary of the relationships
between the variables used in Ref. 1, the present treatment, Ref. 2, and Ref. 5. In
some cases the comparison between variables in Ref. 5 and corresponding variables in
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the other papers are only meaningful if the limit of zero flow is taken in the latter.
Note that Gaussian units were used in Ref. 1, while SI units are used in the present
paper. The final sets of equations obtained in these two papers can be compared by
replacing factors of 47 in Ref. 1 with uo. Refs. 2 and 5 employ units in which g = 1.

Table 1. Equivalent variables used in treatments of Grad-Shafranov equation with
flow and/or pressure anisotropy.

McClements & Thyagaraja et al. Iacono et al.? Salberta et al.’
Thyagarajal! (this paper)

\VJ ) — —

T R T JY

i Z z Z

- A T (o)

A(D) —f(9) — Iy —(2G/ po)*?
rB, RB, I g

F F Ui -

Q 0 — s -

H H* Hy, —
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