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Finite Larmor-radius theory of magnetic island evolution

F. L. Waelbroeck, J. W. Connor! and H. R. Wilson!

Institute for Fusion Studies, University of Tezas, Austin, Texas 78712 and
'EURATOM/UKAEA Fusion Association, Culham Science Centre,
Abingdon, Oxfordshire, OX14 3DB, United Kingdom
(Dated: August 15, 2001)

Gyro-kinetic theory is used to investigate the effect of the polarization drift on magnetic
island evolution. Three regimes are found. For island phase velocities between the ion and
electric drift-velocities the polarization current is shown to be stabilizing. For phase velocitics
between the clectric and electron drift-velocities, the island emits drift waves. This results in a
radiative drag force. For all other phase velocities the polarization current is destabilizing, in
agreement with the fluid limit.

PACS numbers: 52.30.Ex, 52.55.Tn, 52.35.Py, 52.35.Qz

The polarization current has an important influence on the stability of thin magnetic islands[1-9]. In particular, it
has been invoked as a drive for magnetic turbulence[1-5], as an agent in the process of mode locking in tokamaks[6,
7], and as the source of the observed stability threshold against the growth of neoclassical tearing modes[8, 9].
Questions have been raised, however, concerning the role of a narrow layer surrounding the island separatrix where
the polarisalion current is large[7]. It has been shown recently, using fluid models, that accounting for this layer
reverses the effect of the polarization current on stability[10-12].

The occurrence of a current-layer on the separatrix is a consequence of the assumption, motivated by experimenial
observation, that magnetic islands propagate at different velocities than the surrounding plasma. For islands wide
enough to flatten the densily profile, such a difference in velocity requires the presence at the magnetic separatrix of
a pedestal in the electric field. The polarization drift of the ions in the pedestal gives rise to a density perturbation
that is neutralized by an electron current flowing along the field lines. We will follow the practice of referring to this
neutralizing electron current as the polarization current.

In this paper, we present the first kinetic analysis of nonlinear magnetic island evolution that includes the eflect of
the excitation of drift waves and extends over the complete range of [requencies comparable to the drift frequency.
Our analysis brings to light three new phenomena that have important implications for our understanding of island
dynamics. We find that first, the emission of drift waves leads to a radiative torque on the island. Second, the island
interacts resonantly with the drift wave it excites when its width is a multiple of the radial wavelength of this drift
wave. Third, there exist two bands of [requency where the polarization drift is stabilizing: the first extending from
the ion diamagnetic frequency almost to the electric drift frequency, and the second extending from the electron drift
frequency towards the electric drift frequency by an amount that varies inversely with the ratio of the island width
to the ion gyroradius.

We consider a periodic sheared slab geometry which serves as a model for many physical plasma systems. The
magnetic field takes the form B = Bz — V4 x %, where Bg is a constant magnetic field pointing in the symmetry
direction Z = Vz. In the reference stale B = Bg(z — (w/L,)zy), where z is the distance from the resonant magnetic
surface normalized to the island width w and L, is the magnelic shear length. We consider a perturbed azimuthal flux
of the form v = tig + ¥ cos €, where £ = kyy — ftw(i’) dt’ is the azimuthal angle in the frame such that the island is at
rest. In this [rame, the electric field far from the island approaches a spatially constant value such that kyvg = —w,
where vg is the electric drift velocity and w is the rotation frequency of the island in the (z,y, z) frame where the

unperturbed electric field vanishes. The perturbed flux describes a magnetic island of half-width w = \/41_',,1,5/30_

We use the normalized lux-surface label Q defined by 2 = —1,[}/1/; = 22% —cos £, so that @ = —1 is the island ‘O™-point,
€2 =1 is the island separatrix and © > 1 is the region outside the island.

Following Rutherford[13], we obtain an equation describing the evolution of the island’s width by integrating
Ampere’s law radially across the island region, making use of the constant-# approximation (¥ > 9.¢). We write the
condition that the cos& and siné components of the current match the jump in the perturbed magnetic field across

the island region as
% . eA! -
){d'ff dz Jje€ = =4, (1)
s 4w



where A’ = [(G¢/0x)zz0+ — (84/8z)g=0-1/¢ and 0% indicates the asymptotic limits as « approaches the resonant
surface [rom either side. Here J(A’) describes the part of the external perturbation that is in phase-quadrature
with the perturbed field B: it is proportional to the [ree energy available in the equilibrium current distribution.
J(A'), by contrast, describes the part of the external perturbation that is in phase with Br. This is proportional
to the external electromagnelic torque thal may arise, for example, in the presence of a resistive boundary or of a
synchronous external perturbation.
From the asymptotic matching Eq. (1), Ohm'’s law, and the vorticity equation, it can be shown[14] that the island’s

evolution in the fluid limit is governed by

2 dw A dw

Dy & HAw o A )
where D, = ne?/4n is the resistive diffusion coellicient, A = 32v/2 is a numerical coeflicient, kj = k- B/Bg is the
waveveclor, ."cfl = dkyfdx = ly/Ls, va is the Alfvén velocily and

16L, e _;

measures the effect of the polarization current Jpo on the island growth. Qur aim is lo calculate Jper, and to use Eq.
(3) to evaluate ils eflects on the island evolution.

For w <& lyvte, where vre = y/Te/m. and T, are respectively the electron thermal velocity and temperature, we
may use a fluid model to deseribe the electron response. In the vicinity of the island, e¢ /T, < 1, so that the density
is adequately represented hy an expansion of the Bollzimann response,

ne(2,8) = no[l + eg(Q,€)/Te (Q) + H(2)] (4)

The quantily H(S) is a stream function for the transverse component of the electron fluid velocity. We adopt the
following model, similar to the one introduced in Ref. [3]:
_ w w [(VQ-1 -
H(Q) =0, (1 u*e) I ( 73 )6(9 1), (5)
where o, = sign(x) and © is the Heaviside step function. This model, representing a quantity with a transverse
gradient thal has been flatlened inside the separatrix, was shown in previous work[12] to be a good approximation
for the exacl solution of the transport equation in the fluid limit. The gradient of H, proportional to the electron
transverse velocity, is shown in Fig. 1.

The electric current is oblained from the continuily equation, V| Jj = evg - Ve, where parallel ion velocity is
neglected on the grounds that ke, € w. Here, ¢; = /Te/m; is the sound speed. Substiluling the eleciron density
found in Eq. (4) into the continuity equation and integrating, we find

Iy =100)+ 2 G 06 - (1) (©)

Here the angle brackets represent the Mux-surface average. The first term of Eq. (6) is the inductive part of the
current, while the second term represents the polarization current.

We consider next the gyro-kinetic equation for the ions. Using the total particle energy as an independent variable,
the gyro-kinetic equation takes the form

V) fi +(VE}e - Vi =0, )

where (vg)q is the average of the electric drift velocily over the gyralion phase. For kjvy; <€ w, where vy = Vi
and T; are respectively the ion thermal velocity and temperature, the solution is

[i(X,E . 8) = g (G 1, &), (8)

where X, = are the radial and azimuthal coordinates of the guiding center, and g is an arbitrary function. The solution
given by Eq. (8) expresses the [act that the distribution function depends on position only through the gyro-averaged
electrostalic potential.
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FIG. 1: Comparison of the electric drift velocity profile across the island’s O-point for p; = 2w and 7 = 1 (dotted line)
with that found with cold-ien fluid theory for p, = .2w (dashed line). The solid line represents the derivative of the clectron
strcam-function H in Eq. (5), normalised to 1 — w/w... This is equivalent to the electric drift velocity in the limit p,/w — 0
corresponding to Magnetohydrodynamics

In principle, the form of the function g is determined at higher order by transport processes. Here, for simplicity,
we will use a linearized model for g, expanding with respect to the equilibrium Maxwellian distribution Sari. There

follows f; = (1 — e¢(,€)/T:)no fasi(v) + 6f;, where

e{d) e wT
8fi(X,Ev) = —%‘i’)— (1 = j) no fari(v) 9)

is the non-adiabatic part of the ion response. Here wh = [1+ (v?/v}; — 3/2)p]wai, 7 = dlogTi/dlogn, and w.; =
kycT;/eBLy,. The above solution was obtained previously by Connor and Wilson[5]. Nole that the adiabatic part
of the ion response depends on the local (unaveraged) electrostatic potential at the position of the particle. The ion
distribution function and ion density will thus have a discontinuous gradient if the electric field is discontinuous.

To obtain the ion density il is necessary to express the ion distribution function in the particle coordinates before
integrating over the velocity. This is mosl easily done by using Fourier transformations in the transverse direction.
Evaluating the spatial and velocity integrals, and using the quasi-neutrality relation, we obtain the governing equation
for ¢(kz,€), the Fourier transform of ¢:

G(Lip?/Q) e&(kx, 5)/—’[‘2 = —wﬁ(kz,f), (10)

where p; = v /wei, we; = eBfme, and G(b) = w(l + 1) — [(WT + wae)To(b) — Niwseb(Io(b) — I, (b))]e®. Here Iy and
Iy are the modified Bessel functions of the first kind, 7 = T, /T}, and H is the Fourier transform of H. The response
function G is clearly proportional to the dielectric permittivity. An important feature of Eq. (10) is that the dispersion
relation G(k2p?/2) = 0 has one or more pairs of real roots for k, whenever (0 < w/w.e < 1 (corresponding to islands
with a phase velocity intermediate between the electric drift velocity and the drift velocity of the electrons). When
G has real roots, ¢ has a pole on the real axis, indicating the excitation of a drift wave by the island. It is then
necessary to apply an oulgoing-wave boundary condition to determine the form of ¢(x,£)[15]. We have verified the
appropriateness of the outgoing wave boundary condition by matching the solution at large = to the WKB solutions
of the linear electrostatic eigenmode equations including the effect of parallel ion streaming and ion Landau damping.
The WKB analysis shows that the outgoing wave decays, as expected, for w/w.e > 0. For 1 < 7; = 3 however, we find
that there appears a narrow range of frequencies in the ion direction for which the oulgoing drift wave couples to the
ion temperature gradient instability. In this range of frequencies the outgoing waves will amplify as they propagate
away from the island.
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The application of the outgoing-wave boundary condition is complicated here by the nonlinear and nonlocal nature
of the solution, as well as by the secular divergence of H at large |x|. In order to treat the secular divergence, we seek
the response ¢4 (z, &) for a one-sided electron stream-function Hy(x,€) = H(Q(z,£))©(x). The Fourier transform of
Hy(z,€) is well-defined for S(k;) < 0. A particular solution ¢4, follows by performing the Fourier inversion integral
for ey [T = —wH, /G on a contour lying slightly below the real k -axis. The general solution ¢ is the sum of this
particular solution with the forward and backward propagating plane waves satis(ying the dispersion relation. We
may evaluate the asymptotic form of ¢4, (z,€) for @ — +oo by deforming the contour upwards. In the most common
case where the dispersion relation has a single pair of real roots ko, we find

Gap(, €) ~ bx) + $(x,€); & — o0, (11)

where ¢(z) = (¢ — 0,/V2)uw/Lpw., and ed(x,€) /T, = whpoS[H (kro, £)e*=07] /boG’ (by) are the residues of the poles
at b = 0 and ky = £keq, respectively. Here by = k2p?/2 and G' = dG/db. For x — —co, by conlrast, deforming
the integration contour downwards shows that ¢, (, £) decays exponentially.

We next construct the general solution of Eq. (10), ¢(x,£), by antisymmetrizing the solution ¢, described above:
oz, &) = ¢y(z,€) — ¢4+(—=,&). The function ¢(z,€) has the asymptotic behavior ¢ ~ é(z) + orc(€) cos kepa +
5(€) sin oz, where ¢(€) = ¢(0,€) and s(€) is a [ree function resulting {rom the antisymmetric homogeneous solution.
We determine this free function by matching ¢ to a Fourier superposition of outgoing waves,

b, &) ~ ox Z dp, cos[kgol|t| — mowé], (12)

m=0

where the d,,, are [ree paramelers and Lhe coellicient o, = sign(w) ensures that (12) represents waves with incoming
phase velocity. This corresponds to an outgoing group velocily, since the drifll wave is a backward-wave[15]. We
complete the asymplotic matching by observing that ¢(€) is an even function o £ and thus has the Fourier expansion
c(€) =327, emcosné. It follows that dm = ¢y and

m=0

s(&) = ou i €m sin mé. (13)

m=1

This compleles the description of the solution of Eq. (10) in the regime 0 < w/w.. < 1. A salient feature of the
solution is the presence of odd terms in . These terms give rise to polarization currents in phase with By which,
when crossed into the magnelic field, exerl a tangential force on the island.

The results of the numerical solution of Eq. (10) are shown in Figs. 1-3. Fig. 1 shows the velocity profile along
a chord crossing the island through the O-point for p; = .2w and 7 = 1 (dotted line). Note the jump in velocity
stemming from the adiabatic part of the ion response. The fluid limit (dashed line), by contrast, is continuous. Fig. 2
shows the effect of the polarization current on stability, given by R[Api(w)] (a), and on the drag force S[Apq(w)]
resulting [rom electron drift-wave radiation (b). Parametric studies show that the width of the stable band lying Lo
the left of the electron drift [requency increases rapidly with pi/w, but that the depth of the stabilizing region is
approximalely independent of p; /w.

The oscillatory behavior of the radialive drag and Ayg as a function of [requency in the region of wave emission
(Fig. 2) is caused by the resonances that occur when the island width is a multiple of the radial wavelength of the drift
wave. This is illustrated in Fig. 3, where the equipotentials are shown for an island of width equal to one transverse
wavelength of the drift wave. It should be noted that by introducing convection cells or eddies within the separatrix,
standing drift waves help to resolve the discontinuily in the electric field on the separatrix. That is, the convection
cells act as ball-bearings, reducing the [riction associated with the slippage of the island through the plasma. This
suggests that the excitation of standing drift waves inside the separatrix could be [avored by collisional transport
processes, a possibility thal needs to be explored using a nonlinear ion response. Another noteworthy fealure in Fig. 3
is the bow wave emanaling [rom Lhe island as it propagates through the plasma.

The emission of drilt waves raises interesting questions regarding the interaction of islands with background elec-
trostatic turbulence, and may be an important element [or understanding turbulence in finite 8 plasmas. Our resulls
indicate that the primary mode of interaction is the exchange of momentum between the turbulence and the island.
An improved understanding of this process could lead to the use of magnetic islands to modily zonal flow dynamics,
and thus to instigate and control transport barriers in magnetic fusion confinement devices.

In summary, we have shown that there exists two bands of frequency where the polartzation drift is stabilizing: the
first extending [rom the ion diamagnetic [requency lo very near the electric drift frequency, and the second exlending



l‘ \
N\

FIG. 2: Real (a) and imaginary (b) parts of the stability parameter Apo as a function of frequency. The solid, dashed and

dotted lines are for n; =0, 1, and 2 respectively. The real and imaginary parts indicate the effect of the polarization drift on
stability (%[Apa]) and on the radiative torque (S[Apa)).
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FIG. 3: Contour lines of the clectric potential (approximate stream function for the jon flow) in the fluid limit (v — oc) for
wy/1 — wsefw = 7ps. The solid lines represent flux surfaces, and the thick dashed line is the separatrix.
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to the left of the electron drilt [requency and of variable width. We have further shown that for 0 < w/w.e < I,
the island emits drift waves, resulting in a radiative drag. These drift waves propagate to the ion-Landau damping
region kjve; ~ w where they are reabsorbed. The wave-emission is clearly an important ingredient in determining the
propagation frequency of the island, and thus its stability in hot plasmas, particularly when collisional dissipation
effects are small.
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