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It is shown that the treatment of inhomogeneous void swelling near grain
boundaries in irradiated materials based on the rate theory by Brailsford
and Bullough (1972) gives good quantitative description of all the significant
experimentally observed features characterising the effect, including the for-
mation of peaks of void swelling and denuded zones, and explains the observed
shape of swelling profiles as well as the occurrence of anomalously large voids

in the regions adjacent to grain boundaries.

I. INTRODUCTION

The development of mathematical models describing materials driven far from equilib-
rium reviewed by Martin (1998) has recently become an important element of the interna-
tional programme on the development of a prototype fusion power station (Ehrlich, 1999,
Eyre and Matthews, 2001). Modelling the evolution of the microstructure of a material
in a hostile irradiation environment (Odette et al, 2001) requires investigating processes
occurring simultaneously on several distinct time and length scales and establishing a link

between theoretical predictions and experimental observations.
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On one hand, processes occurring at grain boundaries in an irradiated material play an
important part in determining its stability under irradiation. This was highlighted by the
recent molecular dynamics investigation of cascade effects occurring in nanocrystalline met-
als carried out by Samaras et al (2002) where it was found that a network of nanoscale grain
boundaries remained stable even after crystalline order in a part of a grain was temporar-
ily destroyed in the core of a high-energy cascade. On the other hand, by looking at how
the microstructure of the material evolves in the vicinity of a grain boundary it is possible
to investigate how the presence of a perturbation (in this case, a planar sink) affects the
dynamics of this evolution. It is reasonable to expect that by studying how the observed
quantities vary as a function of a new variable introduced into the problem (here this new
variable is the distance to the grain boundary) we should be able to investigate those aspects
of dynamics of microstructual evolution that cannot be addressed in the case of a spatially
homogeneous system.

The unusual phenomenon of inhomogeneous void swelling occurring in the vicinity of
grain boundaries under irradiation was observed experimentally in many materials, see e.g.
Chen & Buttry (1981), Singh et al (1982), Griffits et al (1988), Chen et al (2000) and
Zinkle & Singh (2000). Following the work by Foreman et al (1987), who concluded that
the treatment of the problem based on notions of three-dimensional diffusion of defects and
biased absorption of interstitials by dislocations introduced by Brailsford & Bullough (1972)
and Brailsford & Bullough (1981) could not describe the observed phenomena, the grain
boundary problem attracted attention of several research groups world-wide, see Trinkaus
et al (1993), Trinkaus et al (1996), Dudarev (2000,2001a) and Konobeev et al (2000). It
is currently believed that the observed enhancement of void swelling near grain boundaries
is associated with one-dimensional diffusional glide of clusters of interstitial atoms formed
in collision cascades. The large spatial scale characterising both the swelling profiles and
denuded zones adjacent to grain boundaries (the width of these zones may be as large as ten
microns, see Foreman et al, 1987) can be readily explained by this model (Trinkaus et al,

1993) as resulting from the drastic change in the statistics of collisions between mobile defects
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and sinks associated with the change in the dimensionality of the problem of scattering.

The formation of mobile clusters of interstitial atoms is often observed in molecular
dynamics simulations of collision cascades (Bacon et al, 1997, Wirth et al, 1997, Osetsky
et al, 2000). These simulations show that small clusters of interstitial atoms perform one-
dimensional Brownian motion in the direction parallel to their Burgers vector. It is therefore
fairly natural to assume that effects associated with one-dimensional motion of clusters may
be responsible for the void swelling anomalies observed near grain boundaries (Trinkaus et
al, 1993, Trinkaus et al, 1996, Dudarev, 2000). At the same time, the recent discovery by
Zinkle & Singh (2000) of the fact that spatially inhomogeneous void swelling occurs near
grain boundaries in concentrated alloys shows that at least in some cases the treatment
based on the concept of one-dimensional transport of interstitial clusters may be difficult to
justify. Indeed, the presence of compositional disorder in the crystal lattice is likely to have
a dramatic effect on the transport of clusters giving rise to a significant reduction of their
mobility.

Furthermore, a rigorous mathematical investigation of the problem of inhomogeneous
swelling carried out using the model that assumes the presence of one-dimensionally moving
interstitial clusters (Dudarev, 2001b) has shown that predictions made on the basis of this
model do not agree well with experimental observations.

This has stimulated the present study where we found that better agreement with exper-
iment can be achieved using a rate theory approach (Brailsford & Bullough, 1972, Stoller &
Odette, 1986, Mansur, 1987). The treatment does not require going beyond the approxima-
tion that radiation defects perform ordinary three-dimensional diffusion. The new feature
of our model is that we do not assume that the density of dislocations is a quantity inde-
pendent of the distance to the grain boundary. Instead, we take it as a continuous function
that vanishes at the grain boundary and reaches its asymptotic bulk value at some distance
away from the boundary. Our study shows that the observed relatively large spatial scale
characterising the void swelling profile near a grain boundary reflects the spatial variation

of the density of dislocations near the boundary. The origin of this variation of the disloca-
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tion density is likely to be associated with elastic forces acting between a dislocation and a
grain boundary (Bacon et al, 1979). This correlates well with recent dislocation dynamics
simulations showing that dislocations interacting wia long-range elastic forces form network
structures on the micron scale (de la Rubia et al, 2000). In our work we do not study the
dislocation dynamics aspect of the problem and instead attempt to restore the profile of

the density of dislocations on the basis of the available experimental information on void

swelling profiles.

II. THE MODEL AND ITS SOLUTION

In this section we investigate solutions of self-consistent equations describing diffusion
of vacancies and interstitial atoms, and also nucleation and growth of voids in the vicinity
of a grain boundary in the presence of a spatially inhomogeneous distribution of dislocation
lines. We assume that the grain boundary lies in the plane z = 0 and that concentrations
cy(2,t) and ¢;(z,t) of vacancies and interstitial atoms, which are functions of distance z

from the boundary, satisfy the system of two equations

Zap(z,t) + 4 f v(z, 7)a(z, t, T)dTJ Daca(z,t) = 0, (1)

2
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where index « refers to either vacancies (a = v) or interstitials (o = ). In equations (1) K
is the effective (inclusive of recombination) rate of generation of point defects, D, and D;
are diffusion coefficients and p(z,t) is the density of dislocation lines. The term in square
brackets is the spatial distribution of sink strengths, where v(z,7) is the void nucleation
rate, 7 is the nucleation time and a(z,t,7) is the radius of a void nucleated at time 7 at
distance x from the grain boundary. Z; and Z, are the dislocation bias factors (Brailsford &
Bullough, 1981, Mansur, 1987). These factors describe in the mean field approximation the
fact that, due to the larger formation volume of an interstitial atom defect and the resulting
larger energy of its elastic interaction with a dislocation, the rate of absorption of mobile

interstitials by edge dislocations is higher than the rate of absorption of vacancies. The fact



that Z; > Z, gives rise to a positive net flux of vacancies D,c, — Djc; > 0 and leads to
nucleation and growth of voids. Profiles of concentration of point defects considered as a
function of time ¢ are assumed to follow adiabatically the time dependence of the density of
voids and dislocation lines. The grain boundary is treated as a perfect sink for both vacancies
and interstitial atoms giving rise to the homogeneous boundary condition ¢,(0,t) = 0 and
gi{0,1) = 0.

The growth of a void situated at a distance z from the grain boundary and nucleated at

time ¢ = 7 is described by the equation (see Brailsford & Bullough, 1972)

da?(z,t,7)
dt

= 20(t — 7)[Dyey(z,t) — Dici(z, t)], (2)
where @(t —7)=1fort >7and @t —7) =0fort < 7.

In some simple cases equations (1) can be solved analytically. However, below we shall
see that these simplified solutions do not correspond to cases for which experimental data
are available. We therefore need to develop a numerically stable procedure suitable for
finding solutions of equations (1) in the case where p(z) is an arbitrary continuous function
of the distance = between a given point and the grain boundary. The requirement that the
procedure should retain stability in the limit of large = is very significant since in this limit
the two linearly independent solutions of equations (1) have the form ¢, ~ exp(++v/pZ,z),
and the presence of the exponentially growing solution gives rise to an instability similar to
those known in the treatment of reflection of waves from the surface of an absorbing medium
(Dudarev, 1997).

To solve equations (1), we define a new function II(z) = Daca(z,t) and the spatial
distribution of sink strengths Q%(z) = Z,p(z,t) + 47 .j v(z,7)a(z,t,7)dr. Function II(z)

satisfies equation

d2

—51l(z) - Q(2)l(z) = - K. (3)

In the case K = 0 this equation has two linearly independent solutions II, (z) and II_(z)

satisfying asymptotic conditions II.(z) ~ exp(FQt), where {lo = lim |2(z)|. Solution
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I, (z) is regular in the limit £ — oo and II_(z) diverges in this limit. The Wronskian
W(z) = II_(z)[dIl.(z)/dz] — II.(z)[dIl_(z)/dz] of these two solutions is a quantity that
is independent of z for any continuous distribution of sink strengths Q%(z). Indeed, by
differentiating W(z) we arrive at the equation

%w(x) = [%H.,.(z)] 0_(z) — [di;-n_(sc)} I (z)

= 0 ()11 (2)1-(z) — Q*(2)1_(2) T4 (z) = O,

which proves that W (z) = const for any continuous function Q%(z).
Let us now look for a solution of the inhomogeneous equation (3). Using the above
property of the Wronskian, we observe that the following combination of solutions IT, ()

and II_(z) of the homogeneous equation (3)

()
1= "1,

IL, (z) [ 1L (z')dz’ + IL, () f II_(z')dz’ + II_(z) f I, (z)dz!,  (4)
0 0 T

satisfies the necessary boundary condition fI(O) = 0. Furthermore, by substituting this
solution into (3) we find that d2II(z)/dz?® —Q2(z)[(z) = W(z). Taking into account the fact
that W (z) = const we see that equation (3) can be satisfied if we choose the normalisation
of functions I, (z) and II_(z) in such a way that W(z) = —K.

The two solutions IT, (z) and II_(z) of the homogeneous equation (3) that are required
in order to construct (4) can be found using the R-matrix algorithm (Dudarev, 1997), the
details of which are given in Appendix A. This completes the mathematical procedure that
we now apply to finding profiles of concentration of interstitial atoms and vacancies in the
vicinity of a grain boundary in the presence of inhomogeneously distributed dislocations.

Figures 1 and 2 show profiles of concentration calculated using the method described
above for a step-like (Fig.1) and for an arbitrary continuous (Fig.2) distribution of the
density of dislocations. These figures show that changes in the shape of the profile of density
of dislocations p(x) have a substantial effect on the form of solutions of equations (1). In
the case of a step-like function p(z) shown in Fig.1 the net flux of vacancies to voids varies

linearly as a function of z in the dislocation-free zone. This agrees fully with the analytical
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solution of the problem given in Appendix B. On the other hand, in the case where p(z) is
described by a smooth function of variable z (see Fig.2), the shape of the net vacancy flux
profile depends on the distribution of the density of dislocations in a more complex way that
is difficult to describe using analytical approximations.

Further study of kinetics of inhomogeneous swelling requires introducing a model de-
scribing the nucleation and growth of voids. Experimental data discussed in previous publi-
cations by Foreman et al (1987), Dudarev (2000), Dudarev (2001b) correspond to relatively
low irradiation doses where voids continue to nucleate over the entire period of observations.
The data described by Foreman et al (1987) show that the concentration of voids increases
nearly linearly with the irradiation dose. This suggests that in the interval of irradiation
doses investigated by Foreman et al (1987) nucleation is almost unaffected by the presence of
existing voids. Moreover, since the observed nucleation rate remains relatively high over the
interval of doses studied experimentally, we can assume that thermal emission of vacancies
from voids does not significantly influence the nucleation process or, in other words, the
critical radius of voids remains small. In this case we may consider the process of nucleation
as Brownian motion of the population of voids in the void size space, where nucleation and
growth is driven by net flux of vacancies to voids Dyc, — D;c; competing against random
fluctuations of fluxes of vacancies and interstitials. Taking into account the fact that the
amplitude of fluctuations of fluxes of point defects is proportional to Dyc, + Djc; (see Se-
menov & Woo (1999) for more detail), we find that the rate of nucleation of voids is given

by (Semenov & Woo, 2002)

Ducv(x, t) = chz'(.'ﬂ, t)
Dye,(z,t) + Dici(z, t)’

vt} =REK (5)

where R is a rate factor that is assumed to remain constant over the interval of irradiation
doses studied experimentally.

We now investigate self-consistent solutions of equations (1), (2), (4) and (5) and study
the evolution of the spatially inhomogeneous distribution of voids nucleating and growing

in the vicinity of a grain boundary.
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III. RESULTS AND DISCUSSION

The purpose of this study of non-linear equations (1)-(5) is to find out whether or not
the rate theory can be applied to the treatment of the problem of inhomogeneous void
swelling near a grain boundary and whether a plausible theoretical argument can be put
forward within the rate theory in order to explain the key experimentally observed features
characterising the effect.

We start by summarising the experimental findings. There are several significant fea-
tures characterising the phenomenon of inhomogeneous swelling that a suitable theoretical
model should be able to address. They are (i) the relatively large spatial scale of profiles of
inhomogeneous void swelling, (ii) the occurrence of void denuded zones in the regions adja-
cent to grain boundaries (see Fig. 3 from the paper by Singh et al, 1982), (iii) the nearly
symmetric shape of void swelling peaks (this point is particularly difficult to address within
the existing theoretical approach, see Dudarev, 2001b) and (iv) the origin of unusually large
voids often observed close to grain boundaries in the void denuded zones (these large voids
can be clearly seen in Fig. 3 by Chen & Buttry,1981, and in Fig.3 by Singh et al, 1982). We
should also note that in some cases peaks of void swelling were not observed at all (Norris,
1971) and the spatial scale characterising the effect was fairly small.

We begin by arguing that the assumption that the density of dislocation lines can be
approximated by a function independent of the distance to the boundary does not necessarily
represent a good starting point for the treatment of the problem. Indeed, the presence of
image forces acting between a grain boundary and a dislocation (see, e.g. Bacon et al (1979)
for a comprehensive review of the subject) should inevitably lead to the formation of zones
denuded of dislocations in the vicinity of grain boundaries in well annealed materials (note
that experimental data reported by Foreman et al (1987) were obtained using well annealed
samples). It is therefore natural to treat the problem starting from a profile of the density
of dislocations p(z), where function p(z) vanishes at z = 0 in order to minimise the elastic

energy of interaction between the dislocations and the grain boundary, and where p(z)



reaches its asymptotic bulk value at a certain distance away from the grain boundary. It is
also reasonable to assume that the overall density of dislocation lines should increase under
irradiation and that dislocation climb would give rise to the propagation of dislocations from
the interior of the grain towards grain boundaries.

Following these arguments, we approximate the density of dislocation lines by a simple

analytical formula

espl ]
RS ey vy (6)

p(z,t) = po(t)
where pg(t) and z4(t) are slowly varying functions of irradiation time. The function given
by equation (G) vanishes rapidly in the limit z — 0 and reaches its bulk asymptotic value
p(z) — po(t) in the limit £ — co. The irradiation time ¢ is related to the dose ¢ via ¢ = Kt.

Figure 3 shows the distribution of the volume density of voids calculated for the three
values of irradiation dose for which experimentally observed values were reported by Foreman
et al (1987). The incubation dose corresponding to the onset of growth is assumed to be equal
to 0.08 dpa. Values of the density of voids at swelling peaks observed experimentally were
N($=013dpa) — 55 micron=3, N{$=0-264p2) — 16 micron—2 and N{¥=06%%%) = 30 micron~3.
These values agree reasonably well with the calculated values N{#=01%%%) = 3 micron?,
N{#=026dpa) — 10 micron~2 and N{¢=0%9P2) = 28 micron™> representing void densities at
distances corresponding to peaks of void swelling profiles shown in Figure 5 and discussed
below.

Profiles of the density of dislocations (6) are assumed to evolve with irradiation dose as
shown in Figure 4. The density of dislocations vanishes close to the grain boundary and this
makes it possible to avoid gaining a large contribution to the elastic energy of the system
associated with the interaction between dislocations and the grain boundary. The force

acting on a single straight dislocation situated at a distance z from the boundary varies

with the distance as (Bacon et al, 1979)



where E(®) is the energy of the dislocation in an infinite crystal and B!~ is the energy of
the same dislocation at the boundary between the two grains 1 and 2. The fact that formula
(7) diverges in the limit of small z shows that the formation of dislocation denuded zones
near grain boundaries is likely to occur irrespectively of whether the interaction is repulsive
or attractive.

Given the overall functional form of the dislocation density profile (6), the parameters
2o, w and the rate of increase of the asymptotic bulk density of dislocations py(¢) have been
chosen to reproduce the experimentally observed profiles of void swelling shown in Figure 5.
The comparison of calculated and observed profiles shows that using the present model it
is possible to achieve good agreement with experimental data both in terms of the shape of
the profiles and also in terms of the agreement between the calculated and observed values
of void swelling corresponding to the interior region of the grain. None of this was possible
within the framework of models considered previously (Dudarev, 2000, Dudarev, 2001b).

A particularly important feature characterising the effect of inhomogeneous void swelling
is the occurrence of unusually large voids in the void denuded zones adjacent to grain
boundaries. The rarely distributed large voids situated very close to grain boundaries can
be seen in electron microscope images obtained by Chen & Buttry (1981) and by Singh et al
(1982). So far none of the existing models was able to account for the fact that the rate of
growth of voids would be higher in the regions where the nucleation of voids is suppressed.
Figure 6 shows how this phenomenon can be explained using the model described above.
The average radius (a) of a void is a quantity that is related the local value of void swelling

S, and the local density of voids IV,, namely

8y = g'erﬂ((a))?’.

A comparison of profiles shown in Figures 3 and 5 shows that a substantial part of each
swelling peak is situated in the region where the density of voids is low. The fact that values
of local swelling still remain high where the density of voids is low shows that the average

size of voids in these regions can be several times greater than the size of voids growing in
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the interior of the grain. The occurrence of large voids in the vicinity of grain boundaries is
associated with the low density of sinks in the regions adjacent to the boundaries and the
resulting high local values of the net vacancy flux D,c, — D;c;. Figure 7 illustrates this point
in more detail.

It is interesting to compare results obtained in the present study with the investigation
of radiation damage in aluminium performed by Mazey et al (1976). The authors found that
the rate theory treatment was able to describe void swelling in pure aluminium over a large
interval of irradiation doses. The swelling rates were found to be sensitive to the purity of
the material, increasing dramatically for the purest samples. Still, even for the very pure
samples the swelling rates reported in by Mazey et al (1976) were significantly lower than
those described by Foreman et al (1987). For example, for the 99.9999% purity aluminium
the highest value of swelling found for the irradiation dose of 0.65 dpa was S, = 0.15%
(see Fig.6 by Mazey et al, 1976), while Foreman et al (1987) quotes a much higher value of
S, = 0.8% for the case of swelling in the interior region of the grain at the same irradiation
dose. Taking into account the presence of continuous nucleation that occurred in experiments
described by Foreman et al (1987), we find that significantly higher values of bias factors
(Z; — Z, =~ 22%) were required in order to reproduce the data given by Foreman et al (1987)
in comparison with the data given by Mazey et al (1976).

The model considered above makes it possible to comment on cases where the effect
of inhomogeneous void swelling near grain boundaries was not observed, see e.g. the work
by Norris (1971). We found above that the formation of dislocation denuded zones near
grain boundaries prior to irradiation is a necessary precondition that needs to be satisfied
in order to obtain a peak of void swelling situated at a certain distance away from the grain
boundary. It is known that the type of the dislocation network existing in a given material
depends entirely on the way the material is treated before irradiation. In the case where the
distribution of the density of dislocations is homogeneous across the grain, no peaks of void
swelling are expected to occur, and this may explain their absence in experiments performed

by Norris (1971).
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In summary, we would like to emphasise the phenomenological nature of the study de-
scribed in this paper. The model proves to be capable of describing the experimentally
observed phenomenon of inhomogeneous void swelling in a somewhat better and more com-
prehensive way than other models currently available in the literature. The model shows
that the effect of formation of profiles of spatially inhomogeneous void swelling may be as-
sociated with the inhomogeneity in the distribution of dislocations near a grain boundary.
This main result of the present paper clearly demonstrates that the spatial distribution of
the dislocation component of microstructure plays a determining part in the formation of
the distribution of voids. Without a proper investigation of the evolution of the dislocation
network it is difficult to draw conclusions about the real physical cause of the large-scale
spatial inhomogeneity of the void swelling profile in the vicinity of a grain boundary.

Here, no attempt has been made here to describe the observed effects by starting from
first principles and by considering elementary acts of formation of interstitial loops in colli-
sion cascades and the interaction of defects with the dislocation network. A more detailed
investigation of the problem would require using a multiscale approach linking simulations
that describe microstructural evolution on atomistic and mesoscopic scales. Methods re-

viewed recently by Odette et al (2001) may help in addressing this issue.
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V. APPENDIX A

In this appendix we describe a numerical approach to solving equations (3) and (4). We
assume that we need to find these solutions on an interval [0, L], where L is sufficiently
large, so that L2y, > 1. We split the entire interval of integration into N > 1 slices of
equal length [ = L/N. Within each slice function Q*(z) can be approximated by its value

corresponding to the middle of the slice, so that for z; < z < z;,; we have

d? 5
@H(m‘) — Q;(x) =0, (8)

where 2 = Q%([z; + zi41]/2) and zy = L. Function Q*(z) is now approximated by a
discontinuous set of step-like segments. The solution of equation (8) is a function that
is continuous and differentiable everywhere on the interval [0, L]. Values of the derivative

dIl/dx and the solution II(z) at both sides of every slice [2;, z;41] are related via

dll() = cosh(£2;! dll(z) + €; sinh (Q;1)1(z;.44
dr lz: r lzina +
sinh(2;1) dIT
M(z;) = %d_x .., cosh () (zi41). (9)

Introducing the R-matrix by the relation R; = dIn[II(z)]/ dscL' and using equation (9), we
find

cosh(Ql) R; + Q; sinh(;1)

1 = ) 10
1T cosh(Qul) + Q; T sinh (1) R; (10)

or, vice versa,

cosh(Q1)R; 41 — ©; sinh(£2;0)

e ; 11
cosh(§41) — Q7" sinh(Q:1) Ritq (11)

In the limit £ — co we retain only the solution that falls off exponentially as a function of

coordinate . This corresponds to the boundary condition
Ry = Qoo (12)

Using this boundary condition and equation (11), we find values Ry_;, Ry—2 ... Rg. Solution

IT, (z) that remains regular in the limit z — oo can now be found recursively as
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I (zi1) = [cosh(%l) — Q7 sinh (1) Ry ) ™ML (). (13)

Boundary condition for II, (z) at z = 0 is I, (0) = 1.

Finding solution II_(z) is somewhat more difficult. We choose the boundary condition
on the derivative of II_(z) at z = 0 in the form dIn[II_(z)]/ dx‘zzo = —Ry, where R, equals
the boundary value of the R-matrix found previously from equations (11) and (12). We now
impose the requirement following from equation (4) that the Wronskian of solutions II_(z)

and I, (z) must be equal to —K. We write

NOLL

dll (z)
—E—L _,=-K (14)

I1_(0)

Taking into account that IT;(0) = 1, from (14) we obtain the boundary condition on II_(z)
-1
[(0) = K [dIn[I-(=)]/de|,_ — dIn[lL;(e))/da| |~ (15)

Now values IT_(z1), II_(z2),...,]lI_(zy) can be found using equation (13). Finally, we write

solution (4) in the form

(z) = — g 28§H+($ /H+(m’)dx + I (z)I1_ () (f T ( d:t:'+m ?Ii((x)) ) (16)

that contains no exponentially divergent terms and provides a convenient numerical repre-

sentation of function II(z).

VI. APPENDIX B

In the case of a step-like distribution of the density of dislocations equation (3) has the
form

dz H(a:) + K — pZIl(z)0(z — x) = 0. (17)

In the interval 0 < z < =z, this equation has solution Il(z) = —Kz%/2+ Az + B. For £ > z,
the solution is II(z) = (K/Zp) + C exp(—+/pZz). Using the boundary condition II(0) =

we find that B = 0. Conditions of continuity of the solution and its first derivative at z = x4
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give rise to two more equations, using which it is possible to find constants A and C. By

carrying out calculations, we arrive at

z? 2 7 -
e =S 5[50 2) « (51-32) (o) ] 00

To

for 0 < z < xy, and

Ifz) = p£Z + (K;g _ 5,(2.) (1 + Ig\/}E) - exp [—\/;E(fc - xo)] , (19)

for z > zp. In the case shown in Figure 1 this solution is indistinguishable from the solution

found using the numerical algorithm described in Appendix A.
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FIG. 1. Solutions of equations (1) found numerically using the R-matrix method described in
Appendix A for a step-like distribution of the density of dislocations p(z). The profile of net flux of
vacancies to voids Dyc,(z) — D;ci(z) shown in this figure is indistinguishable from that found by an
analytical calculation described in Appendix B. Bias factors used in the calculation are Z; = 1.22

and Z, = 1.0. The dose rate K equals 5 dpa/year.
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FIG. 2. Solutions of equations (1) found numerically using the R-matrix method described in
Appendix A for a smooth but otherwise arbitrarily chosen distribution of the density of dislocations
p(z). The asymptotic bulk value of the density of dislocation lines, the bias factors and the dose
rate remain the same as those shown in Figure 1. Note that the maximum value of function
Dyc, — Djc; shown in this figure is greater than the maximum value of the same function calculated

for a step-like distribution of the density of dislocations shown in Figure 1.
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FIG. 3. Density of voids evaluated self-consistently using equations (1), (4) and (5) for R = 10°
micron—2dpa~!. Profiles shown in this figure were calculated for the three values of the irradiation
dose corresponding to experimental data given by Foreman et al (1987). The density of voids drops
by more than an order of magnitude in the region adjacent to the grain boundary resulting in the
formation of a void denuded zone. Dislocation bias parameters used in calculations are Z; = 1.22

and Z, = 1.0
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FIG. 4. Snapshots of profiles of the density of dislocation lines used in the study of solutions

of equations (1). The profiles are described by the analytical expression (6), where the width of
the transition region w, the distance between the centre of the transition region xg and the grain

boundary, and the asymptotic bullk value of the dislocation density pg were assumed to vary slowly

as a function of the irradiation dose.
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FIG. 5. Profiles of void swelling calculated numerically using self-consistent equations (1)-(5)
for the three values of the total irradiation dose where experimental data are available (Foreman
et al, 1987), and also for a somewhat larger value of the dose illustrating the absence of the
immediate saturation of void swelling exhibited by the model. Bias factors used in the calculations

are Z; = 1.22 and Z, = 1.0.
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FIG. 6. Profiles illustrating the evolution of the average radius of growing voids considered as
a function of the distance to the grain boundary. The average radius of the void {a) is defined
as (a) = (3S,/4mN,)/3, where S, represents the local void swelling and N, is the local volume
density of voids. By comparing results shown in this figure with those shown in Fig. 3 we find
that the density of voids in the region immediately adjacent to the grain boundary is substantially
lower than that in the interior of the grain. At the same time the average size of voids growing
near the boundary exceeds significantly the average size of voids growing in the interior region of

the grain.
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FIG. 7. This figure shows how the net vacancy flux to voids Dyc, — Djc; varies as a function
of distance x to the grain boundary and as a function of irradiation dose. The peak of function
Dycy(x) — Dici(z) in the vicinity of the grain boundary is associated with low total density of sinks
in that region. The gradual drift of the peak of the void size profile towards the grain boundary

visible in Figure 6 is related to the evolution of the profile of net vacancy flux shown in this figure.
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