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Cosmic Plasmas, Physics 418

Lecture 1: Elements

Summary

Definition of a plasma; distinction from neutrel ges. Debye length, plasma parameter;
concept of shielding and quasi neutrality. Two types of description: particle kinetic
vs continuum. Self-consistent field concept. Continuum equations for a neutral (ideal)
gas. Continuum equations of motion for an ideal, quasi neutral plasma.

N.B. These Lecture Notes are intended to provide a self-contained account of the mate-
rial. Some topics are included for completeness and may be omitted on a first reading.
They are so indicated, where appropriate.

I.1 Introduction

Matter exists in the Universe in roughly four common forms: solids, liquids, neutral
gases and ionized plasmas. The word “plasma” was coined by Irving Langmuir,
who noticed that ionized gases (as opposed to neutral ones) have very peculiar proper-
ties which are reminiscent of blood plasma (a very sticky and curious non-Newtonian
fluid). It is an interesting fact, that from the point of view of sheer abundance, most
of the matter in the Universe exists in the plasma state. Some very common forms
of matter are in fact plasmas. For example, the conduction electrons in a metal form
a “quantum plasma”. Dilute electrolytes, liquid metals, gas discharges, and lightning
are other familiar plasma phenomena. In astrophysics, plasmas occur extensively and
are of fundamental importance. All modern approaches to controlled thermonuclear
fusion power involve a deep and systematic study of fully ionized plasmas at very high
temperatures (of the order of 10°K) confined by magnetic fields or their inertia (as
in a hydrogen bomb). In stars and in the cosmos, plasmas are ubiquitous and their
interactions in gravitational and magnetic fields is the subject of intense study.

Unlike neutral gases, plasmas are strongly influenced by electromagnetic fields. Indeed,
plasma physics (especially in relation to very high temperature, gaseous plasmas) is
fundamentally a study of the electrodynamics of a classical, many-body system of
charged particles and their interactions. “Exotic” plasmas also exist. An example is
provided by the “quark-gluon plasma” found in nucleii and in the early Universe and
possibly also in collapsed stars. Recently, pure electron plasmas (no ions!) have also



been the subject of beautiful theoretical and experimental studies. “Dusty plasmas”
are currently of intense experimental and theoretical study, as are many technologically
important, low-temperature plasmas. Plasma chemistry is also of interest and may have
applications in the future in environmentally friendly industrial technologies. Quantum
plasma behaviour is of great importance in condensed matter physics and may also be
of relevance in astrophysics in relation to the equation of state of stellar material. This
very partial list should give you some idea of the depth and width of plasma physics
which straddles the whole body of classical and quantum many-body phenomena with
deep connections to classical mechanics, fluid turbulence, wave propagation theory,
astrophysics and many other areas.

1.2 Collective plasma behaviour and quasi neutrality: what is a plasma?

In this first Lecture, I will introduce the concept of a (classical) plasma and some basic
properties which characterize it. Let us begin with a thought experiment. Consider a
box (say unit cube) which contains hydrogen gas at room temperature and atmospheric
pressure. The H; molecules are weakly bonded hydrogen atoms. We assume, as with
all idealizations, that the walls of the box are “perfect” in that the particles collide
with them and are reflected perfectly elastically but do not chemically interact with
them. This neutral gas is well understood and approximately obeys the perfect gas
equation of state. Maxwell-Boltzmann statistics and kinetics apply to it, and we may
even describe the fluid dynamics of it using the standard Navier-Stokes equations of
neutral gas dynamics. If we now heat the gas, at constant pressure (by increasing the
volume of the box, as necessary), at a well-defined temperature, the bonds of H, are
broken and we obtain a gas of hydrogen atoms. This is still a neutral gas and is largely
uninfluenced by magnetic fields and continues to obey the perfect gas law even better
than before, as the temperature rises due to heating. Remember that temperature
is directly proportional in this case to the mean translational kinetic energy of the
particles making up the gas. If we continue heating at constant pressure, the number
of atoms per cubic metre falls whilst the atoms move about with much greater random
velocities. At a high enough temperature (of the order of 10° K), the atoms are all
“ionized”. Thus the electrons are literally knocked out from their “shells” in the atoms
and it is energetically favourable for them and the protons to exist as two separate,
electrically charged fluids. We have arrived at the pure, hydrogen plasma state. For
every proton there is an electron (after all we started from the neutral gas!). What is
much less trivial is that in every small volume of the box, the number densities, n. and
n; of the two charged species will be found to be very nearly equal. This state is called
a “quasi neutral, fully ionized electron-ion plasma”.



Let us try to understand why this should be so and the caveats attached to this
statement. Firstly, it is clear that in this state the electrons are not “bound” to the
protons as in the neutral gas, but are “free”. This because their kinetic energy is
much larger than the electrostatic binding energy of 13eV~ 2 x 107*%joules. Bear
in mind the relation, 1 eV, or electron volt is the work done in moving an electron
through a potential difference of 1 volt. It is a unit of energy much used in atomic
and plasma physics and corresponds to a temperature of 1.16 x 10*K and is equal to
1.6 x 10~joules.

Secondly, if the difference, An = n; — n, is comparable to n., the Poisson equation of

electrostatics :
—V2¢ = e(n; — ne)/eo (1)

can be used to show that an enormous electric field would be created. Here e is the
elementary charge on the proton (= 1.6 x 107'® coulombs), € is a constant appearing
in Maxwell’s equations(= 8.85 x 10™'%coulombs/metre/volt) and ¢ is the electrostatic
potential in volts, with E = —V¢. Electrons would be accelerated by such a field and
and would rush in to “equalize” the charge imbalance (bearing in mind that they are
2000 times lighter than the protons which would hardly move!). We see therefore that
a plasma “does not like” large electric fields and tends to keep n; ~ n. to reduce this
field to “reasonable” values. But, one may ask, what is “reasonable”? The answer
turns out to depend upon the temperature, 7', of the system.

Following Debye, we ask the following question: suppose we bring in to our box con-
taining a proton-electron plasma, a “test charge” of magnitude e at the centre of the
box. We assume that the electrons and protons satisfy Maxwell-Boltzmann equilibrium
statistics at a temperature 7" which we measure in joules.

If the potential due to the test charge is denoted by ¢, it is clear that

ne = nexp(ed/T),n; = fiexp(—ed/T), where, 72 is the common number density of the
electrons and ions very far from the test charge. If we assume that the temperature is
high enough, Eq.(1) can be linearized (by expanding the exponentials in power series).
After substituting for n; ., we obtain the Debye shielding equation,

V= ()6 (2)

Several things can be learned from this equation. Since the constant, Apepye = ( 2%91%)1/ =
clearly has the dimension of a length (show this!), it is clear that the scale over which
the potential ¢ of the test charge varies must be determined by Apenye- Note also its



variation with temperature and density. The equation must be solved with the condi-
tion that the potential due to the test charge vanishes at infinity. For this purpose, we
assume that the walls of the box are “at infinity” (why is this a reasonable assump-
tion?) The solution is remarkably simple: thus, ¢ = Treer €XP(—7/ADebye), Where 7 is
the radial distance from the test charge (verify, or prove otherwise!).

It is clear that close to the test charge, within a fraction of a Debye length, we have the
usual Coulomb potential, but further out, the charge is “shielded” by the free electrons
and ions of the plasma and dies out exponentially like the Yukawa potential of nuclear
physics. Thus, in a quasi neutral plasma, the photon, which carries the Coulomb force
appears to have acquired a finite mass, proportional to the Debye length! This will also
be seen when we consider the propagation of light in a plasma.

We can now formulate a criterion for true, “plasma” behaviour and quasi neutrality.
Observe that the “plasma parameter”, Npepye = ne)\%ebye represents the number of
electrons within a Debye cube. This must be large for the system to behave like a
truly many-body system characterized by collective dynamics (as opposed to a swarm
of nearly noninteracting, individual charged particles). To see this, recall that the
average distance d between electrons is measured by 1/nl/®. Therefore, the plasma
dynamics will be governed largely by “collective effects” if Apenye > d. This implies
that Npebye > 1. Furthermore, for length-scales much larger than Apepye, 1; ~ n.. We
shall also encounter a time-scale criterion associated with quasi neutrality a little later.

A very important source of confusion in students (and many text-books!) is this: if
it is true that n; >~ n. in a plasma, is it true to say that E = 07 If not, how can we
reconcile the Maxwell equation (also called “Gauss’ Law”), ¢, V.E = e(n; — n.) with
quasi neutrality? The short answer is, in a quasi neutral plasma, E (at least on spatial
scales large compared with Apepye) s not determined by Gauss’ Law, and is definitely
not strictly zero in general. Instead, it is obtained from the equations of motion of the
charged particles making up the plasma and the other Maxwell equations! After we
have found E, we can, if we so wish, use Gauss’ Law to determine the charge density
p = e(n; — n.), by differentiation. It will turn out that typical electrostatic fields in
a quasi neutral plasma on length scales (L) large compared with Apeyye are of order
< T/eL, and consequently, the failure of quasi neutrality on these scales is measured
by, (ADebye/L)?, namely, we have the ordering, |n; — ne|/n; =~ (Apebye/L)? < 1 .

As the development of the subject proceeds you will see how the key concept of quasi
neutrality enters the correct physical description of plasmas. For the present, regard
quasi neutrality as an important simplification in the treatment of collective plasma



effects. When it applies, bear in mind that other Maxwell equations must also be
consistently approximated. We will find that for quasi neutral plasmas, we can safely
neglect the famous “displacement current term” in Maxwell’s equations (remember that
Maxwell introduced this term to achieve consistency between charge conservation and
Ampere’s Law relating currents and magnetic fields). We shall learn to understand
those physical processes for which it is correct to invoke quasi neutrality and when
it is essentially violated and the full set of Maxwell equations are required to give a
consistent dynamical description of the electromagnetic field in a plasma. When quasi
neutrality applies, we may use the “pre-Maxwell” form of Ampere’s Law,

eV xB =] (3)

where j is the (quasi neutral) electric current due to the motion of ions and electrons
and B is the magnetic field. Charge conservation requires that V.j = 0. This implies
that the quasi neutrality approximation is a quasi static one, and is unlikely to be valid
for “fast” processes like electromagnetic waves.

1.3 Modes of description of fluids and plasmas: kinetic and continuum rep-
resentations

A fluid or a plasma (ie., an ionized gas) is an assembly of a very large number (10%
or more particles per cubic metre) of molecules, ions or atoms. In principle, there
exists (classically) an “exact” description of such systems in terms of the Newtonian
(or Einsteinian, if relativistic) equations of motion of all the particles supplemented by
Maxwell’s equations for the electromagnetic fields. This description of the exact clas-
sical dynamics is called “Liouville” or I'-space description. Unfortunately it is largely
useless for two reasons: firstly, it involves an unimaginably complicated system of non-
linear equations, and secondly, it is “too detailed” to be of practical use. Indeed, to
solve the equations of motion in this description with the most powerful computers
(even for relatively short times like 1 second) would take about 10! years, assuming
a time-step of 107'° seconds and a computer which performs about 10'° operations
per second. Furthermore, even if we could do such calculations, it would require gar-
gantuan amounts of data processing to obtain experimentally measurable parameters.
Recall however that despite our manifest inability to perform such calculations, some
general “macroscopic laws” like the perfect gas equation of state do apply! In equilib-
rium statistical mechanics we simply cut through this mass of indigestible dynamical
equations and use the Boltzman-Maxwell- Gibbs distribution to obtain the thermody-
namic (ie., average) properties of gases. In the same spirit, two methods have been
devised to “reduce” the many-body problem to manageable proportions in nonequilib-
rium situations. It should, however be borne in mind, that the Liouville description



is often useful in proving general theorems about the systems under study and has a
definite theoretical (though not practical) role in plasma physics.

You will encounter in these lectures both types of “reduced” approaches. The con-
ceptually simpler approach is the “phase-space” or “kinetic” model. We consider a
collection of structureless particles i = 1,..., N (N is very large) each of which has, at
any instant %, a position vector r; and a velocity vector, v;. We consider a 6-dimensional
“phase space” called p-space (the p stands for “molecular” )with coordinates r, v (this
is not to be confused with Liouville’s phase space of 6V dimensions called I-space!).
We then introduce a distribution function, F(r,v,t) in this u-space, analogous to the
distibution functions of equilibrium statistical mechanics like the Maxwell-Boltzmann
function. The significance of F' is this: if d2 = drdv = dz.dy.dz.dv,dv,.dv, represents
a reasonably small “volume element” in p-space, F'd} gives the probability of finding a
particle in the region surrounding the phase point, (r,v) of (phase) volume dQ. Thus
F'is a probability density function. By its very definition, it is a “statistical” object.
As such, NF(r,v,t)dQ represents the expected number of particles in the small re-
gion surrounding the phase point. A kinetic description of the system is said to be
complete, if we can prescribe an equation of evolution for F' and specify initial and
boundary conditions for it.

Now consider our perfect gas of noninteracting particles in a box with perfectly re-
flecting walls. For practical purposes, neutrinos with a small mass are excellent for
thinking; they can be assumed to be “confined” in a finite volume of space by a grav-
itational well, instead of a box, if necessary. The Newtonian equations of motion in
this instance are extremely simple: the velocity of a particle remains unchanged except
when it hits a wall which simply reverses it. Forgetting the walls for the moment, we
may write,

dVi

a =0
dl'i —_—
a

for i = 1,..,N. If we consider a group of particles in a small phase volume centred
at (r,v), after a small time ¢ they would occupy the same volume around the point,
(r+vdt,v). It then follows that F(r,v,t) = F(r+vdt,v,t+dt). From this we deduce
(show this!) that F' must satisfy the “kinetic” equation,

oF oF

More “formal” and careful proofs of this exist and can be found in the literature.



This is the simplest of all kinetic equations and says that the distribution function of
the system stays constant if one “moves” with the flow of particles in p-space. You
will encounter many such equations with more complicated terms. For example, the
particles may move in given external force fields (eg. neutrinos in the gravitational field
of a black hole, say), or they may interact amongst themselves via “long range” forces
of electromagnetic/gravitational origin and/or experience “short range” collisions. The
case of external forces f in the absence of collisions is particularly simple: we now have
the rule, F(r,v,t) = F(r + vdt,v + fdt/m,t + dt), modifying Eq.(4) to,

oF oF £ OF

o Ve Tmav T
In the particular case of charged particles with charge ¢ and mass m moving in electric
and magnetic fields, E(r,t) and B(r,t), respectively, we have, f = ¢(E+ v x B).
This important equation is called “Vlasov’s equation”. We shall shortly see how E, B
themselves can be related to the particle distribution functions of the charged species
present in the system.

0 (5)

All these cases can, and have been, approximately described by kinetic equations like
the above. Collectively, such equations are called by various names like “Master equa-
tion”, Boltzmann’s kinetic equation, Landau-Fokker-Planck equation etc. In this course
you will encounter several simple cases of such equations and learn some properties of
their solutions in physically interesting situations.

If F can be obtained by solving kinetic equations such as the one above, many familiar
properties of the sytem can be calculated. In principle, all experimentally measurable
quantities relating to our system are expressible as suitable averages over the distribu-
tion function. For example, the number density n(r,?) of the particles is clearly given
by the integral (show this from the definitions!),

n(r,t) = N / F(r,v,t)dv (6)
v
where the integral is over the three dimensional velocity space (the p space is obvi-
ously the Cartesian product of ordinary position (r) , and velocity (v) spaces). Since
the combination, NF(r,v,t) occurs very frequently, it is convenient to give a special
name for it: we thus define the particle distribution function, f(r,v,t) = NF(r,v,t).
Evidently, integrating f over all of velocity space gives the particle number density at
the location r at time ¢. It should be carefully noted that strictly speaking the kinetic
equation for free particles does not describe the motion in a box, since the velocities
of the particles change discontinuously at the walls. However, for many purposes, it
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is sufficient to imagine that f is simply a periodic function of the spatial coordinate r
with some macroscopic “periodicity length”, L (analogous to the box size).

We can define the macroscopic or average velocity of the gas/plasma, denoted by
u(r,t), in the following obvious manner:

ufz il = %fvvf(r, v, t)dv (7)

This vector is also called, for obvious reasons, the fluid velocity at r,¢. It must not be
confused with v which represents the random velocity of the individual particles making
up the fluid. Sometimes you will find in the literature, the term peculiar velocity for
the difference, ¢ = v — u. Plainly, a knowledge of f allows us to calculate the wvelocity

moments, n,u at any (r,t).

We need not stop here! Bearing in mind the fundamental fact that (1/2)mv? represents
the kinetic energy of a particle (here, m is the mass of the particle), we may define the
mean total kinetic energy per unit volume at (r,t) by the obvious formula:

B(r,t) = / (1/2)mv.v f(x, v, t)dv (®)
It is a simple exercise to show from the definitions that,

B(r,t) = (1/2)mnu?® + f (1/2)me.cf(r,c +u,t)dc (9)

We clearly recognize the quantity, mn(r,t) = pn(r,t) as the mass density of the gas.
Then the first term on the RHS of the above equation is nothing but the local kinetic
energy per unit volume of the fluid flow, (1/2)pmu®. The second term may be familiar
from statistical mechanics as the internal energy per unit volume of the gas, denoted
by U(r,t). It is the kinetic energy of random motions of the particles, as opposed
to the first term which represents the kinetic energy of the average or bulk motions.
Clearly, since this is what we mean by “thermal” or heat energy in kinetic theory, it
is conventional to define the temperature, T(r,t) and the pressure p(r,t) of the gas by
the formulae,

Ulr,t)] = L(1/2)mc.cf(r, ¢+ u,t)dc
= (3/2)n(r,2)T (¥, %)
p = m¥ (10)



These definitions embody the perfect gas equation, which applies whenever the trans-
lational kinetic energy of random motions is much larger than any other form of energy
of the particles. Note that T as defined here has the units of energy (joules) and rep-
resents the translational kinetic energy per particle per degree of freedom of particles.
Each particle carries on the average, 7'/2 joules for each of its three degrees of free-
dom. Pressure is usually expressed in N.m ™2, but can also be thought of as Jm=%. The
conversion factor which expresses the temperature T in kelvins is a universal constant
named Boltzmann’s constant, and is conventionally denoted by k. It has the value,
k= 1.3807 x 1072JK~!. Thus, 1K corresponds to k joules. From the formula for
pressure, we see that if p is the mean molar weight (ie., mass of 1 mole of gas hav-
ing N4 = 6.0221 x 10% molecules, so that m = /N4, pm = mn), we may write the
equation of state for the pressure in the form,

p = nkT(K)

R
P - 2
Pm G

R = kN4

where R is the “universal gas constant” (= 8.3145JK~'mol~'). Here, T(K) is the
temperature in kelvins, whilst, of course, kT'(K) is the temperature in joules.

We have thus far defined two scalar moments (these can be taken to be n,T" without
loss of generality) and a vector moment (u) of the distribution function. These are the
most important observable properties of the gas, though a few higher moments also
occur frequently. Note that when we have several species of particles which need to be
considered (eg. ions and electrons in a fully ionized plasma) we can analogously define
distribution functions for each separate species. In general, if the different species
interact with each other, we shall have to derive kinetic equations for each distribution
function. These equations will contain nonlinear “interaction” terms in general, and
must all be simultaneously solved subject to suitable initial and boundary conditions
in both position and velocity space. This has only been done in some very special
cases, of which the familiar equilibrium statistical mechanics is one.

We conclude this brief introduction to the key ideas underlying the classical, non-
equilibrium kinetic description of many-body problems by making an important remark
about electron-ion plasmas, where Z;e is the charge on the ions. The “charge number”,
Z; accommodates the fact that ions can be nuclei of atoms, and can consequently
have higher charge states than a proton; in these cases, the mass of the ion, m; =
A;my, where m,, is the proton mass and A; is the “isotopic mass number” of the ion
in question. As stated above, we introduce f.(r,v,t), fi(r,v,t). It follows from the

9



preceding discussion, that the local number densities, n,.;(r,,t) can be obtained by
integrating these functions over the velocities. We immediately note that the local
average charge density, p = e(Z;n; — n.) is obtained as the moment,

ot =e [ [Zifi— fildv (1)
It also follows that the local average current density, j is given by,
j(r,t) = eZinju; —enqu,
= e fv v[Zifi — f.]dv (12)

It can be shown without difficulty that in all cases, the evolution of f.; is constrained
by the Law of Conservation of Charge,

90 . rr
'-8-;+V._] = 0 (13)

This means that we can, if we wish, self-consistently calculate electromagnetic fields,
E, B due to these charges and currents, according to Maxwell’s equations, in all their

glory:

EQV.E = p (14)
B = 0 (15)

JB
c’VxB = j+ Eg%—? (17)

where ¢ = 2.99 x 10®m.s™!, is the speed of light in vacuo, and ¢ = 8.85 x 107%(SI
unit: coulombs/volt/metre). Sometimes another “fundamental” vacuum constant,
po = 1/(eoc?) is introduced. I prefer to stick with ¢ and ¢ (for more essential in-
formation on units, see the Supplements to Lecture 1).

You can readily check that the Law of Conservation of Charge is necessary and suf-
ficient for these equations to be consistent. Note also the interesting fact that if, at
t = 0 we ¢mpose Eq.(15) as an initial condition on B, Eq.(16) (“Faraday’s Law of
electromagnetic induction”) implies the validity of Eq.(15) for all time! This remark
will have implications later.

The fields E, B determined in this manner from Maxwell’s equations using the averaged
charge and current densities, p, j obtained from the plasma distribution functions, f,;
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are called self-consistent or “smoothed out” fields. The point is that whilst they
are determined by the plasma, they, in turn influence the plasma dynamics via the
kinetic equations satisfied by the distribution functions (eg. Eq.(5)). We shall leave
the kinetic description of fluids and plasmas and consider the “continuum” or fluid
description next.

I.4 Continuum description of neutral gases and ideal plasmas

Before we go on to considering plasmas, let us look briefly at the mathematical de-
scription of neutral gases. We consider a perfect gas with mass density pn(r,t) (m is
the mass of a gas molecule) at every point in space, with position vector, r at a time t.
At each such point, we may associate a pressure field p(r,t) and a temperature, T'(r, t)
(for convenience we measure 7" in joules). We know that the equation of state is,

p=puT/m (18)

The flow of the gas is described by specifying the instantaneous velocity field at every
point r at time ¢t. We denote this vector field by u(r, t).

We now wish to set up the equations of motion which govern the variables, p,,, T’ u.
Obviously, if pm, 7" are known, the equation of state, Eq.(18) gives p. Consider an
arbitrary (but fixed!) closed surface S bounding a volume V within the body of the
gas. Clearly the total mass of gas enclosed by V is given by the integral,

My (t) = /‘ pmdV (19)

It is easy to see that the net mass flowing out of the volume V per second is given
by a surface integral of the mass “flux” (in the absence of sources or sinks within the
volume -show this!),

_dMy )dt = f omudS (20)
S
Here, n denotes the unit outward drawn normal to S at the element dS. Applying

Gauss’ divergence theorem to the volume V, we obtain the integral equation of conti-
nuity, also called the Law of Conservation of Mass for the volume V:

O0pm
dMy /dt = 24V
v/ v ot

= — f‘ V.(pmu)dV (21)

Now we make use of the fact that we set up this integral equation for an arbifrary
volume V. Assuming that various functions involved are smooth, the satisfaction of

11



the integral equation requires the following partial differential equation at each point
within the gas:

Om V.pmu) = 0 (22)

ot

Note that this differential equation is in fact less general than the integral equation,
which may hold even when p,, u are discontinuous, as for example, at shocks and vortex
sheets or free surfaces. In effect, if u is known (say we measure it), the equation can be
used to compute py, given suitable initial and boundary conditions. A very important
special case of this equation occurs when the gas flows rather slowly compared to the
speed of sound in it and the density p, can be taken to be nearly constant. We see
that u must then be divergence-free to conserve mass. Fields satisfying V.u = 0 are
called “incompressible flows”. The flow of many ordinary liquids, including water at
speeds much below the sound speed are incompressible to a very good approximation.

We might guess that the Law of Conservation of Momentum (or, more generally New-
ton’s Second Law of force balance) would lead to the equation governing the evolution
of the velocity vector. Clearly, from the definition of p, and u, the momentum of the
gas per unit volume is pyu. Hence the total momentum of the fluid contained in an
arbitrary volume V is given by,

P, = / podV
Vv

Now, let f(r, t) be any external force per unit volume acting on the fluid within V(this
could, for example, be gravity). The time rate of change of P, by Newton’s Second
Law must be equal to the net flow of momentum into V, plus the force exerted by the
pressure of the surrounding gas on the fluid within V, plus the increase in momentum
due to the accelerations caused by the body force f. This is true if the flow is “fric-
tionless” and the only internal fluid forces are due to pressure. This can be expressed
mathematically as an integral equation:

dPy/dt = fv a’;“;“dv

e fg peitL.0dS — [S pndS + /V £4V

Transforming the surface integrals using Gauss’ divergence theorem in the usual man-
ner, we obtain the integral fluid momentum balance equation for the volume V:

dpmu B
/V[ = —I—V.(Pmuu)—I—Vp—f] v = 0 (23)

12



If all the fields are assumed sufficiently smooth, we may derive from this integral equa-
tion the vector partial differential equation of motion (or Momentum balance relation),

dpnu
ot

This is Euler’s celebrated equation of motion for a compressible, ideal, frictionless gas.
Note that it can also be written in the equivalent form,

%—?—I—u.Vn = (-Vp+f)/pm (25)
upon making use of the equation of continuity. Note that we have derived effectively
fourindependent evolution equations for the five unknowns, pm, p, v (T can be obtained
in principle from py,, p using the equation of state). The system is still not closed in
general. Gases in which it is reasonable to assume that the pressure is a known function
of the density alone are called barotropic. In such cases, we have in addition to the
four equations derived, a barotropic equation of state, of the form, p = F(pn). For
barotropic fluid motions, the above Eulerian system is indeed closed and may be solved
in many important special cases. A physically important class of barotropic motions
arises when the gas moves in an isentropic manner. In this case, for a perfect gas,
we have, p/p* = (pu/pl,)7, where, p*, pi, are “equilibrium values” and 7 is the ratio
of the specific heats at constant pressure and constant volume obtained from kinetic
considerations (y = 5/3 = 1.67 for monatomic gases with only three translational
degrees of freedom). It is also called the “adiabatic exponent” and the relation itself
is called the adiabatic equation. In many cases, p;,p* are constants, but in principle,
they could depend upon position, especially in the presence of conservative external
fields like gravity. Non adiabatic flows also occur frequently in practice. To treat them,
it is necessary to take the First and Second Laws of Thermodynamics into account and
formulate an internal energy balance equation. This will be done at a later stage.

+V.(pguu) = —Vp+f (24)

Finally, I indicate an informal, nonrigorous derivation of the equations of motion sat-
isfied by an “ideal”, quasi neutral plasma. We consider a perfect, fully ionized gas in
which all dissipative effects like thermal conduction, viscosity and electrical resistivity
are negligible (it is a “perfect” conductor, not a “super conductor” which is a quantum
system!). We assume that it is quasi neutral and described by the mass density pp,
local velocity, u, which are functions of position and time. Since it is ideal in this
sense, it makes sense to assume that the pressure p is isentropically related to the mass
density pn,. The only additional information we require of the plasma relates to its be-
haviour under electromagnetic fields. If we consider good conductors of electricity (say
liquid metals), it is known from experiment that there is a definite relation between
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the electric field and the current, called Ohm’s Law. In a simple, isotropic conductor
at rest, with resistivity #, this takes the general form,

E =nj (26)

This is what is called a “constitutive relation”, rather like the laws of Snell and Hooke.
It describes a property (here electrical resistance) of matter. The quantity, 1 need
not be a constant, but can vary with position and time. Note that in a “perfect”
conductor, the resistivity is negligibly small, and we can state that E = 0. Ohm’s
Law has been generalized in many ways. If there is a magnetic field, B present, for
instance, and the conductor moves with a velocity u, the effective electric field “felt”
by the current carriers is, approximately (from Special Relativity), E + u x B. Ohm’s
law then becomes, for a conducting fluid,

E+uxB=nj (27)
Our “ideal” fluid (in which 7 = 0) must therefore obey the “ideal” Ohm’s Law,
E+uxB=0 (28)

We need one more piece of information from Special Relativity: when a current carrying
conductor moves in a magnetic field, the electromagnetic force, f., per unit volume
is given by Lorentz’ well-known formula, f.,, = j x B. In addition to this “Lorentz
force”, there may be other “body forces” or sources of momentum within the system.
The most important of these for an ideal fluid which flows frictionlessly, is of course,
the gravity force, g = pm VK, where K(r,t) is the total gravitational potential due
to external masses and the fluid’s own self-gravity. This can be assumed known, or
calculated by solving an appropriate Poisson equation if all the sources are given.

We can now state the equations of motion for a, quasi neutral, compressible, isentropic,
perfectly conducting (ie., “ideal”) plasma:

0pm

W-I—V.(,omu) =0 (29)
% +V.(pmuu) = —Vp+jxB+pnVK (30)
p/p" = (pm/pm)” (31)
eV xB = j (32)

0B
E = —uxB (34)
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If you are wondering what has happened to the other two Maxwell equations, ¢V.E =
0, V.B = 0, use the following two hints to answer your own query. Fact 1: we have
stated that our ideal plasma is quasi neutral. Fact 2: if we assume the initial condition,
V.B = 0, what do the above equations, in particular, Faraday’s Law, say about V.B
for later times?

Note carefully that the last three equations may be used to eliminate the vector fields
j, E from the equations of motion which involve only u(r, t), B(r, t) and the single, pos-
itive scalar field, pm(r,t) (pressure having been eliminated using the adiabatic equation
of state). Although in many respects, this is a highly simplified reduced description
of a perfectly conducting , dissipationless, quasi neutral plasma, this ideal magne-
tohydrodynamic (or “Ideal MHD” for short) approach is surprisingly powerful and
extremely widely used as the simplest of all plasma theories. It provides a key bench
mark against which all other models of plasma dynamics must be compared and con-
trasted. Certainly, it is the most systematically explored set of equations in plasma
physics and possesses many remarkable and nontrivial properties, some of which will
be the subject of later lectures and many applications.
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Supplements to Lecture 1

NOTE ON UNITS

We have used SI units. You should be aware that many textbooks and much literature
uses another, closely related set of units called Gaussian CGS units. In order to be
able to read the literature and use these valuable study materials, it is important to be
familiar with Gaussian units, especially as regards the forms which Maxwell’s equations
take in the two systems.

Here is a summary of the essential information regarding the two widely used systems
of units. :

Length: 1 metre (SI)= 100 centimetres (Gaussian)
Time: 1 second(SI)=1 second (Gaussian)

Mass: 1 kilogram(SI)=1000 grams(Gaussian)

Force: 1 newton(SI)=10° dynes(Gaussian)

Energy: 1 joule(SI)= 107 ergs (Gaussian)

Power: 1 watt(SI)=107 erg.s™! (Gaussian)

Charge: 1 coulomb(SI)=3 x 10° statcoulombs(Gaussian)
Current:1 ampere(SI)=3 x 10° statamperes(Gaussian)
Emf: 1 volt(SI)=(1/3) x 102 statvolts(Gaussian)
Magnetic field: 1 tesla(SI)=10* gauss(Gaussian)
Electric field: 1 volt/metre(SI)=(1/3) x 10~* statvolts/cm(Gaussian)

Number density:particles.m™3(SI)=10"% particles.cm~3(Gaussian)

We consider the forms of Maxwell equations in the two systems:
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They are written as follows in SI units:

YB =1
EOV.E = p
0B
— = -VxE
ot 8
oE
2 B = . =
goc"V X jteo e
In Gaussian (ecgsu) units they take the form:
VB = 0
V.E = dmp
19B
LB = -VXE
c Ot
47 10E
B = g
¥ & > c Ot

The particle equation of motion in SI:

dp

= e(E+v x B)
whilst in Gaussian units, we have,

d

d—‘t’ = e(E+v x B/c)

By the same token, in SI units, £/B has the dimensions of a velocity, whereas in
Gaussian units, £/B is dimensionless. The Lorentz force (newtons/cu.metre) in SI is,
j x B, where as in Gaussian units (dynes/cu.cm) it is, j x B/c, where ¢ = 3 x 10%

cm.s™ L.

The translation from SI to Gaussian units is very easy: replace ¢ in the SI formulae
by 1/4m and B by B/c; you will obtain the Gaussian formulae! For instance, egc? B?/2
is the magnetic field energy density in SI. It is B%/8r in Gaussian.

The Larmor frequency, Q. = eB/M in SI and eB/Mc in Gaussian.

For a list of useful formulae and values of the fundamental constants, it is recommended
that you consult: The NRL Plasma Formulary by David. L. Book and published by
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the US Office of Naval Research. Alternatively, Francis Chen’s text book, “Intro-
duction to Plasma Physics and Controlled Fusion”, Volume I, Second Edition (1983),
Plenum Press, has, in Appendix A, an excellent and useful set of data relating to units
and plasma parameters. This text also has an excellent and accessible coverage of
many topics dealt with in the present course, and as such, is a very useful background

reference.
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Plasma Physics

Lecture 2: Particle orbit theory

Summary

Particle motions, orbit equations. Simple exact solutions in electromagnetic fields with
known symmetries. Drifts and Larmor gyrations in homogeneous and inhomogeneous
fields. Exact and adiabatic invariants. Trapping of particles. Examples

II.1 Newtonian and Lagrangian equations of motion of charged particles

We now take a step back from the many body problem discussed in the previous
Lecture and look in detail at how charged particles move under the action of electric
and magnetic fields. Let us consider a single, charged particle, with mass M and charge
e. Here e does not necessarily represent the charge on a proton, but can, in principle
be any value, as can M. Within Newtonian mechanics and classical electrodynamics,
the equations of motion of this particle are:

dr

=V (1)
MZ—I = e¢(E+vxB)+f (2)

Here, E(r,t),B(r,t) are assumed to be known electromagnetic fields and f(r,t) rep-
resents all forces not involving electromagnetism. For example, if the gravitational
potential is K (r,t), f = MVK. Sometimes we may consider other forces like friction
or radiation reaction and the like. If velocities comparable to the speed of light, ¢, are
involved, we must modify the equation. We then replace Eq.(2) with,

80 _ JEiexB)iE (3)
dt
v ~1/3
b = mv(l- ) ()

where m now represents the rest mass of the particle and we take into account the Ein-
steinian mass variation with the speed of the particle in accordance with Special Rela-
tivity Theory. These equations are deceptively simple-looking! Although they describe
completely the classical motions of individual charged particles in prescribed electro-
magnetic fields, we must approach them by systematically building up our knowledge
of their properties.



Although the equations of motion given above are exact, they can be put in a more
general form which is helpful in many circumstances. As you know, a Newtonian
particle with “generalized coordinates” ¢; (i = 1,2,3), moving in a force-field with a
potential energy function, V(g;) can be associated with a “kinetic energy” T(g,q;) and
a Lagrangian function, 7" — V. Here, we use Newton’s notation, g, = dt & for brevity.
Lagrange showed that the particle satisfies the equations of motion (entirely equivalent
to Newton’s Laws and equations),

d 0L oL

(8% 69’z =0 (5)

The beauty of these equations lies in the fact that they take exactly the same form
whatever transformations we subject the generalized coordinates to! In Cartesian co-
ordinates, we obviously have, T = (1/2)Mv?. It is easy to verify that Lagrange’s
equations reduce to Newton’s in this standard case. It was further shown by Hamilton
that Lagrange’s equations are the result of extremizing the “action integral”, [ Ldt, by
simultaneous variations of the ¢; and ¢;. After this brief recapitulation of Lagrangian
mechanics, it is of interest to note that we can write a Lagrangian down for charged
particles which will yield the equations, Eq.(1,2).

To construct such a Lagrangian, we first recall some basic facts from electrodynamics.
Observe that V.B = 0 is exactly satisfied if we introduce a new vector field, A such
that, B = V x A. Such a field, you may remember, is called the vector potential. Now
Faraday’s Law can be completely “solved” by writing, E = —-- — V@, where the new
scalar function @ is called the scalar electrostatic potential. By introducing ®, A we
have managed to “solve” two of Maxwell’s equations for E, B exactly! However, instead
of six independent functions, we now have four independent functions to determine.
Bearing in mind the Law of Conservation of Charge, we only have three independent
Maxwell equations left to do this. This means that we may, without loss of generality,
impose one constraint on the four functions (ie., three components of A and ®) to
provide as many equations as there are unknowns. This additional equation is called a
“gauge condition”. It is common to take this condition to be V.A = 0, although other
choices which respect relativistic invariance better are also often used. This particular
gauge is called the “Coulomb gauge”. Let us remember though that within classical
physics, only E and B are “physical” fields which can be measured. The potentials are
merely mathematical tricks and all physical properties must be “gauge invariant” in
the sense that they must be the same whatever gauge one chooses. Quantum mechanics
does give a much more fundamental role to the potentials, but we do not need these
finer points here.



With this preamble, we can state the nonrelativistic Lagrangian for charged particle
motion. Let us choose Cartesian coordinates, r for the g;. Then, v = r, and the
nonrelativistic Lagrangian takes the remarkably simple form:

Loonrelativistic = (1/2)]\/[‘,2 - E(P(r, t) + EA(I', t).V (6)

It is definitely not obvious that if we now write down Lagrange’s equations, we will
necessarily get Eqgs.(1,2)! However, it is an interesting exercise in vector analysis to
show this, using the relations, B=V x A,E = -2 — V.

Incidentally, no one has succeeded in writing down a Lagrangian for charged particles
which is explicitly expressible only in terms of E, B and does not involve the potentials
A, ® in a hidden way. This is a very deep fact about electrodynamics, and may suggest
that even within classical Lagrangian dynamics, the potentials are “more fundamental”
fields than E, B!

It is also equally easy to write down the relativistic Lagrangian for a charged particle.
It is,

Lielativistic = ““mcz(l = V2/52)1/2 — G(I)(I‘, f) R eA(r, f).V (7)

where, as usual, m denotes the rest mass of the particle. Again it is a simple exercise to
show that Eqs(3,4) follow, with f = 0. It is also elementary to verify that Lieativistic —
Luonrelativissic when v?/¢? — 0, ie., in the nonrelativistic limit (apart, of course from
an “inessential” constant rest energy, mc?). I use the notation m for rest mass and
M for the relativistic mass parameter. In general, M = m/(1 — v?/c®)/? (and we
have, M — m in the nonrelativistic limit). While m is a relativistic invariant, M is a
measure of the “mass energy” in a particular frame.

Lagrange’s equations reveal some very important facts about the system. Suppose we
have a Lagrangian which is independent of one of the generalized coordinates, g,. Such
a coordinate is called a cyclic coordinate. Clearly if we transform ¢, — ¢ + a where a
is an arbitrary constant, L does not change. This “translation” of the cyclic coordinate
is an example of a “symmetry transformation” of the Lagrangian which is left invariant
by it. Now let us look at Lagrange’s equation involving derivatives with respect to g,
our cyclic coordinate. We have, % = 0 by definition of cyclicity or symmetry. But
Lagrange’s equation says that we must have,

aoL, o
dt*dq.’ O
-0 (8)



We see that cyclicity of g, implies that the function, % is a constant of the motion!

Thus a symmetry of the Lagrangian is related to the existence of a constant of motion
for the system. This profound connection and its considerable ramifications goes under
the name, Noether’s theorem and is of fundamental importance in modern physics. We
have but seen a very tiny illustration of it. The function, g—; is given a special name:
it is denoted by p; and is called the generalized momentum conjugate to the coordinate

g;- Evidently, it is a function of all the coordinates g and their time derivatives, g.
We have just derived an important theorem of Lagrangian dynamics.

Theorem: If a system has a Lagrangian L(g;, ¢;,t) and a particular g is cyclic, ie.,
gTI; = 0, its conjugate momentum, p, = % is a constant of the motion, ie, %ﬁ =0.

Suppose now that L(g;, g;, t) itself has the property that it is independent of ¢. In carte-
sian coordinates, for instance, this can happen if m,e, ®, A do not depend explicitly
upon the time. Then, we have, %—Ig = 0. Can we find the “generalized momentum”

conjugate to the time? The answer is “Yes!”

Firstly note that with Lyepagivistic,

g—i = mv(l —v3/?) 2 L eA
= Mv+eA
P (9)

defines the so-called canonical momentum, P conjugate to r. If the Lagrangian does
not depend upon z, say, F; will be conserved!

Consider the new function, H defined by,

H = vP-L
= mc(1—1%/P) V2 4 ed (10)
We now show that,
dH . 0L oL oL
— = v.P Pe-e—v—-— (==
i = VEAvPogvog v (=0
= 0

Thus, the function H (this is called the “Hamiltonian function” of the system, in hon-
our of Sir William Rowan Hamilton who first introduced it, and, as you may know
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played a key role in the development of classical and quantum mechanics) is a con-
stant of the motion when the fields are steady and consequently the Lagrangian does
not depend explicitly upon the time, ¢. In this sense, H, which clearly represents the
sum of the mechanical and electrostatic energies, is conjugate to ¢ and its constancy
is a consequence of time-translational invariance of the Lagrangian (hence the general
principle, “if the Lagrangian of a system is invariant under time translation, the en-
ergy/Hamiltonian of the system is a constant of the motion”). You may remember
that in special relativity, (£, p) is a four-vector “conjugate to” the event four-vector,
(¢,r). Hence these relationships are much deeper than seems at first sight.

Armed with these powerful general principles we are ready to tackle the equations
of motion for charged particles under physically interesting conditions and enunciate
physically useful sets of approximations.

II.2 Simple cases of charged particle motions

We begin with the simplest of all cases: that of uniform electric fields. Consider a
uniform, steady electric field along the z-axis. We then have for force balance,
dp
dt
It follows immediately that py,p, are constants of the motion. In the z-direction, the
integral is, p, = p,(0) + eE,t. I leave it as an interesting exercise for you to obtain
T, Y, 2 as explicit functions of ¢ in both relativistic and nonrelativistic cases.

= el,e; (11)

Consider next a steady but nonuniform electric field. Evidently, such a field must be
electrostatic, since we have from Faraday’s Law under steady contions, E = —V®,
where the electrostatic potential can depend on position but not on time. Newton’s
equations of motion are, in this case,

Z—I: = —eVa(r) (12)
b = mIT(1-/e) (13)

As already noticed, the energy, H = mc*(1—v?/c?)~}/?+e® is a constant of the motion.
In general, there are no others, and the equations can only be integrated numerically.
In special cases when ® has a particularly simple structure or symmetries, the solution
can be found in terms of known functions. Some examples will be given in the exercises.

Next let us consider the interesting case of motion in steady magnetic fields. First,
let us look at a uniform, constant field, B. The equation of motion under relativistic



conditions is Eqs(3,4),with E,f = 0:

2—1; = e(v x B) (14)
p = mv(l-=) (15)

Note that B.%lz— = 0. Since the field is uniform and steady, this says that the momentum
component parallel to the field direction is a constant of the motion. By taking the
dot product of Eq.(14) with p and noting that p is always parallel to v = & we
find that p.p is a constant of the motion. Consequently, v?> and the kinetic energy,
E = mc?/(1 — v?/c?)Y/? are also constants of the motion. This fact has already been
established for arbitrary (not necessarily uniform) steady magnetic fields. To represent
the motion more clearly, we can, without loss of generality, choose the magnetic field
along the z-axis; B = Be,. It follows from the preceding that p, and v, are constants
of the motion. The particle therefore moves steadily along the z-axis with the velocity,
v,. The mass of the particle in the “laboratory frame” is M = m/(1 — v?/®)/2. We
have just seen that this is a constant of the motion. This enables us to write the

remaining two components of the equation of motion in the form:

dvy

ol (eB/M)v, X e, (16)

Here, v, = ( fl—f, %’f, 0), the component of velocity perpendicular to the magnetic field.
Note that the combination, e B/M has the dimension of a frequency. As we have already
noticed, vi = v? — v? must be a constant of the motion. It is now easy to solve the
equation for v, by separating it into the two components, for example. The solution
is, vi = ¢y [egcos(C) + ey sin(¢)], ((t) = —Kt + (o, where 2. = eB/M, and { is an
initial phase angle determined by the initial values of v, v,. This solution demonstrates
that the vector, v rotates uniformly round the z-axis in the  — y plane at a constant
angular frequency of §2,.(rads/s) and maintains its length, ¢, . Consequently, the motion
of the particle in the plane perpendicular to the field is circular with radius, 7. = ¢, /Q,
and angular frequency, £2.. This motion is called gyromotion of a charged particle
around a uniform magnetic field, or Larmor precession. The frequency Q, = eB/M
is often called the gyro frequency or Larmor frequency and the radius r, of the
particle is called the gyro radius or Larmor radius. The angle, ((t) = (=t + (o),
is called the gyro-phase for obvious reasons. Note that the mass involved here is M
and is a measure of the particle’s total energy. The overall motion of the particle is, of
course, a helix winding around the field (for positive charges, ¢ rotates clockwise for

increasing time, looking down the field).



It is obviously the case that if we have in addition to a uniform magnetic field B, an
electrostatic field, E, uniform and parallel to b = B/B, p; = mvy /(1 —v?/c*)!/? and
p satisfy,

(S_tl = (eB/M)(pL xb) (17)
% = EE”b (18)

Note that M = m/(1—2v%/c?)"/? is not a constant in this case since pj; is not. However,
we see that, p? is indeed a constant of the motion. We can solve Eq.(18) and get,
— : 9. 3 r 2 2y _ 2 2 p2iin? i :
p(t) = py(0) + eEyt. Since, c*p?/(p* + (mc)?) = v*, and p* = pj + p1, it is a simple

matter to determine the exact relativistic trajectory in this case.

A new and interesting case arises when the E and B fields are perpendicular to each
other, E.B = 0. Again we start with uniform fields. We see immediately that p is a
constant of the motion. Note that we must then have (with M = (m? + p%/c?)'/?)),

% = e(E+pLxB/M) (19)
We can solve this equation as follows: consider the vector, u = E x B/B% By
virtue of the fact that E.B = 0, by construction, we see that u satisfies the equation,
E +u x B = 0. It follows that p; = Mu is a particular exact solution of Eq.(19). In
fact, to complete this solution, we must substitute pj (obtained from initial data) and
the expression for p, in the definition of M:

M? = m?+ (pﬁ + M*u?)/c?
= (m®+pj/?)/(1-u®/c) (20)

Further discussion of this is taken up in the problems.

Let us consider now what happens when an “external” force field f; acts on the particle,
transverse to the magnetic field. This external field is assumed to be of “nonelectro-
dynamic” nature, like the gravitational field. For a change, let us restrict ourselves to
the nonrelativistic case, in this instance. The equation of motion reads,

dv

M
dt

= [GV x B+ fJ_] (21)

Plainly, v is a constant. As before, we can find a steady particular solution, vji = fi-;—zB.
We again have a drift perpendicular to both the magnetic field and f, . However, unlike
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the E x B drift, this one does depend on the charge. Indeed, if f; is of “gravitational”
origin, it can be written in the form, f;, = Mg, , since this is after all, Galileo’s
famous observation that all “masses fall with the same acceleration”. In this case, the
drift,v9 = ﬂ;g‘%B, depends upon the mass-to-charge ratio, M/e of the particle.

Note also that the charge dependence distinguishes the sign as well as the magnitude.
Thus, in a gravitational field perpendicular to a magnetic field, not only do electrons
and protons move differently, but so do electrons and positrons, whereas a crossed
electric field cannot detect any changes! This has many important implications, par-
ticularly when we consider the behaviour of, not individual charges, as here, but of lots
of them, as we did in Lecture 1.

Let us summarise briefly the non relativistic behaviour of a charged particle ( mass M,
charge e) under the combined action of uniform and steady B = Bb, E, and f fields,
as governed by the equation:

J\/fd—v = e(E+vxB)+f
dt
We may decompose the vector, v as follows:
v = yb+ (Exb/B)+ (f xb/eB)+c ({(t)) (22)
where the quantities, v, ¢, satisfy,
v = 'U”(O) +t[eE+f].b/M (23)
c; = ci[ncos(¢)+ dsin(¢)] (24)
(@) = —Qt+¢(0) (25)

where Q. = eB/M, c, is the intial “gyro speed”, ((0), the initial gyro phase and n,d
are unit vectors orthogonal to b = B/B =n x d. It is left as an (important!) exercise
to verify that this is indeed the solution, obtain the spatial coordinates r by integration,
interpret the motion geometrically and generalize to the case of relativistic particles
(the last part is somewhat “advanced” and may be attempted with the additional
assumption that E, f have no components parallel to B).

A key observation based on this exact solution is that in the expression for the velocity
components only the gyro phase, ((¢) varies with time, and it does so at the gyro
frequency, . = eB/M. The particle position vector, r(t) of course depends on ¢ via
the drifts (uniform motions) and via the Larmor precession of ¢, at the gyro frequency.



II.3 Charged particle motions in inhomogeneous fields: drift orbit theory
for homogeneous magnetic fields

For arbitrary fields, the equations of motion cannot be integrated in “closed” form (but
can be, numerically, in every case. Thus we have Richard Feynman’s famous remark,
“the only really gemeral methods for integrating equations in Physics are numerical
methods!”).

In practice, in most applications of charged particle orbit theory we will encounter, a
very happy circumstance occurs which enables us to go a long way towards solving the
equations of motion analytically. If the force fields concerned vary slowly in space and
time, in a sense to be clarified shortly, it turns out that the integration of the orbit
equations can be greatly simplified.

We have identified a typical time scale associated with the “ambient” B, viz, the gyro
period, 27 /€. Let us take the gyration speed, |c (0)| to represent a typical velocity
scale for the particle. It leads to the gyro radius, rp = ¢ (0)|/€2 as a typical spatial
scale of the gyromotion. If the time rates of change of B, E, f are all small relative to
the gyro frequency, it seems natural to say the fields are slowly varying.

This can be formally expressed by the ordering relations:
. 27 1 0E 1 0B, 1 of
i= (e i G e 5
< 1 (26)

Evidently, the same idea can be extended to spatial variations. Thus the fields vary
slowly in space if the ordering relations,

1 1
V@ISV @) VO

< 1 (27)

p: = ?‘Lﬂfal' |:|

This simply means that the typical scale lengths of variation of these fields are long
compared to the Larmor/gyro radius, 7 of the particle.

If we now assume that the fields are slowly varying in both senses, it is reasonable to
define the parameter, p* = Maz(p%, p;) and require the drift ordering,

Pt 1 (28)



to hold uniformly in the region of interest.

Now that we can quite precisely define what we mean by “slowly varying” fields, let
us tackle the problem of integrating orbits in the presence of such fields. We use the
oldest trick in applied mathematics called “perturbation theory”. This simply says, “if
you know a solution to an equation in some case, it should be possible to calculate the
solution to a nearby case.”

In addition to the small parameter p* introduced above, we also assume that the
electric and external fields are such that, Maz(|E|/B, |f|/eB)/|cL| < p*. This says
that the “drift speeds” are small in comparison with the gyro velocity of the particle.
In practical cases, the gyro motions proceed at the “thermal speed”, ¢, ~ (T/M)'/?,
whereas the drift speeds are at the more sedate pace of, E/B ~ T/(eLB) ~ p*c;.

Now consider the equation of motion for the following special case first. We take the
B field to be uniform and constant but allow E, f to vary “slowly” in the above sense:
dv

ME = eE(r,t)+eBv x b+ 1{(r,t) : (29)
Dividing this by eB, we see that every term on the right except the v X b term is of
order p* < 1, by assumption. Suppose we wish to write the motion of the particle in
terms of a guiding centre which experiences only the slow variations and superpose on
it a fast Larmor gyration, we may set, v = vy + ¢ ,r = ry + r. Ultimately, we are
interested in the guiding centre motion, since the Larmor gyration is a simple locally
circular motion about the magnetic field line. Evidently, we have, in highest order
(“zeroth order in a power series in p*”),

d
= = (eB/M)eLxb (30)
Here, r,. is a constant on the “fast” times scale set by eB/M. The equation is easily
solved and gives, ¢; = ¢, [ncos(¢) + dsin(¢)], with, %‘;: = —Q, = —eB/M. This
can be integrated with respect to ¢ once more to get, ry = 7 [—nsin(¢) + d cos(¢)];
T = CJ_/Ich.

We have determined the Larmor motion on the field line. What of v,.? In highest
relevant order, this must satisfy Eq.(29). Substituting, we see that we must solve,

I vy

o d (E/B) +vg x b+ (f/eB) (31)
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Since the dominant term is clearly v, x b, the equation is re-written as,

1 dvye
Q. dt

Ve Xxb = —(E/B)—(f/eB) + (32)
We want to solve this equation for v,., which, if you remember is a slowly varying,
“guiding centre” velocity. Note that the left side vanishes identially upon taking a dot
product with b. Hence, for a consistent solution to exist, the RHS must also vanish
when dotted with b. This consistency condition now reads,

fdbﬂ
q/ — E 3-
4 m eLy) + i'|| ( 3)

where use has been made of the fact that, vy = v,..b and similar expressions for the
forces. Returning to Eq.(32) we see that it is solved in highest order by,

Vge = ’Unb-l-(EXb/B)-i-(be/eB) (34)

The “undetermined” function, v is of course to be obtained from Eq.(33). The last
two terms are the now familiar perpendicular drifts of the guiding centre (ie., vj‘c =
E xb/B +f x b/(eB)). Using this expression on the RHS of Eq.(31) gives the next
order correction to vg.. We therefore have the expression,

dr
3 = Ve
d

= ub+(Ex b/B) +(fx b/eB) + o () [By+£./e/B  (33)

Every term in this is slowly varying. The last term is smaller than the first three terms
by p*. It arises from the inertia of the charged particles and is often called the “inertial
drift” of the charged particles. Since ion masses are much larger than electron masses,
for given electric fields, this drift is much more important for the former.

Is this then the whole story? As it happens, we did not carry out the “perturbation
expansion” of the basic equation completely consistently. What we have done so far
applies strictly only to variations in E, f and not in B. In the next section we consider
the new drifts which arise when the magnetic field itself is inhomogeneous. This also
naturally leads to the concept of adiabatic invariants.

II.4 Charged particle motions in inhomogeneous fields: drift orbit theory
for general magnetic fields

It can be anticipated that inhomogeneous magnetic fields might cause new drifts by
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just considering the terms that arise in higher order (in p*) from the v x B term in
the general equations of motion. To consider this effect, we are going to adopt a very
elegant and efficient technique called the “method of averaged Lagrangians” pioneered
by G.B. Whitham and used specifically in the present context by Per Helander
who will be one of the lecturers in this course. Of course, all the results derived can
be obtained by more traditional, and sometimes more intuitively understandable per-
turbation methods. However, they are algebraically messy and sometimes unedifying.
You can find several such treatments in the literature and in the problems.

For clarity, I shall only consider nonrelativistic motions, and omit all fields except the
magnetic. Recall that the Lagrangian is,

Lnonrefativistic = (I/Z)MV2 + BA(I', t) v (36)

Now suppose we have determined an approzimate periodic solution to the Lagrange’s
equation derived from this equation. This will involve a fast time-scale. However, we
may be interested in constructing a solution on a much longer “slower” time-scale over
which the terms in the Lagrangian might change. Whitham’s idea is to substitute the
form of the solution and average over the fast time-scale, deriving a new “averaged
Lagrangian” with respect to the slowly changing variables. Let us see how this works
in our case.

We have seen that the equation of motion can be solved for gyro motions:

dV'L

MW = gy, %X B (37)
v = ci(¢(?)) (38)
where, ¢, is given by,
c1(¢) = ci[ncos(¢)+dsin(C)] (39)
% - g (40)
r;(¢) = rp[-nsin(¢) + dcos(¢)] (41)

and c; denotes the Larmor gyration speed, ¢, the “gyro phase” and 2, = eB/M, with
the previously stated notation. The velocity can also be written in the form,

ci(¢) = —rz¢[ncos(¢) + dsin(¢)] (42)

Now suppose we seek a solution in the slow variables and write, v = d—;-;i + 1 (¢),
r = rg +r5(¢). Note that in the velocity, [d—;;ﬂl ~ p*|c.({)], whilst, in the position
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vectors, |r(¢)| =~ p*|rye|. Furthermore, we know that the gyro phase varies on the
“fast” time with a characteristic frequency, {).. The latter may now depend on the
local B, itself a function of the guiding centre position, re.. Let us substitute this form
into the Lagrangian. Consider the kinetic energy first:

1 = (/) |52+ cuo)

= (M/2) [d;?

. 2
_rallnealy sin(o)]

We average this over a complete gyro period by applying the averaging operator, <>=
% 02 " d¢. The average over the first term is trivial since it is a constant, as far as the
gyro phase is concerned. In the second term, 7z is similarly independent, as are the
vectors n,d. Remember that B itself only varies on the slow scale! It then follows
from the properties of trigonometric functions that,

. 1 2w
<L > (eveelt) = 5 /0 LTd¢

M | . drge.o 9
&+ iy

The following derivation of Eq.(43) is not required material for this course and may be
omitted on a first reading, although it only involves quite simple ideas and elemeniary
algebra.

[So far so good! Now we must tackle the term, L2 = eA.v which involves the magnetic
field. Observe that we can express this as, eA(ry + rz(() (-d—rJ—“— + ¢, (¢)). It is clear
that we can expand the vector potential in a Taylor series about the guiding centre
position. Thus we have,

eAv = e[A(ry,t) +1.(Q).VA(ry,t )]( —rLg'[ncos(g)+ds1n(g)])

Averaging the above expression over a gyro period gives,

« L2 % (rgc,vgc,(_:', t) = eA(ry,t). vy +
er?{ < [msin(¢) — d cos(¢)] - [ncos(¢) + dsin(¢)] > .VA(rye, t))
= eA(ry,t).vge + (er2/2)¢ [nd — dn] .VA(r,, t))

Now choosing a locally cartesian coordinate system with n = x,d =y, b = 2z, and ob-
serving that B =V x A = Bb, it is easily seen that [nd — dn].VA(r,,t)) = B]
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This identity enables us to write,

eBri . .

r T)C

< Lf > (rgc;vgc:é7t) = eA-(rgc:: t)-vgc'f'(

Consequently, the “averaged” Lagrangian becomes,

eBri . .

LN

M |, dr :
< Liﬂr -+ Lf; > = ? [(ﬁ)z + (TL()z} + EA(rgc:- t)'vgc —+ (
Note that it depends upon the “fast” variable, ¢ but not on ¢! Correspondingly, it is a
function of rz but not explicitly with respect to its slow rate of change. If we “vary”
this Lagrangian with respect to rj, we obtain,

L . .
O<Lu> _ pyy?ieBrié
37‘L

=0 (44)

The solution of this, is of course, { = —eB/M = —Q,(r4,t). Thus, for the averaged
Lagrangian to be truly variational, the gyro phase must be an integral with respect to
time of the slowly varying gyro frequency!

This is a characteristic result of Whitham theory (ie, the dependence of the fast periodic
variable on the slowly varying frequency). Note also that the averaged Lagrangian is
independent of the gyro phase (this should not be too surprising as, after all, we actually
averaged it out!). This means that we can employ the theorem that the generalized
“canonical momentum” conjugate to { must be a constant of the motion.

Thus, we have,

d,0<Ly> d, .. sz €Brl
g ‘—az‘—) = E(AJTLC'i' g
. Oy B
= 5
= 1 (45)

Now substituting for ¢, we see that, %(—eBr%/Z) = 0. We have thus proved that
the quantity defined by, p = (1/2)Mc? /B is a constant of the motion. This has
several simple interpretations. The quantity, M%), is the angular momentum of the
gyromotion about the field line. This is clearly an invariant as the averaged Lagrangian
is independent of the gyro phase and thus has rotational symmetry. The gyro period
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is T, = 2n/Q.. As the charge revolves, it creates a current equal to, [, = ¢/T =
eQ./2m. From electrodynamics, this current threading an area, 7r? is equivalent to a
magnetic moment, I.wri = (1/2)(Mc3 /B) = p. This also yields the relation, uB =
(1/2)(Mc3) = (1/2)r2eBQ,. This result is of fundamental importance.

The derivation given here of Egs.(48-50) is advanced material and is given here for
completeness. However, the equations themselves and the terms appearing in them are
very important and the student should be able to apply them.

[We shall next proceed to derive the magnetic drifts. Using Eq.(45), we see that, the
term, eBrj /2 = p; — Mr}(, where p; is a constant. It follows that we can eliminate
(eBr?/2)¢ from the averaged Lagrangian (any total time derivative can be dropped
from a Lagrangian!) to obtain the full (ie., including the electrostatic term) averaged
Lagrangian in the form:

ol = e (1/'2)]';/Ivgc + eA(rye, t).voe — pB(rye, t) — e®(ry, t) (46)
dr,. -
d?? = Wi (47)

Varying this Lagrangian with respect to rg, ryc leads to,

o< Ly, >

d |[0<Ly>| _
- dry,

dt Ovge

It is convenient to write, vy, = v”(t)b+vj-c and note the identity, % = % +Vge.V. The
equation becomes],

d b 9A dv
M%b - —ﬂdr‘t'“(% +V5e.Vb) = V8 — pV B — e S + V4o VA) + €V (A.vy0) - M%

Since Iy, Ve are to be independently varied, we have,

eV(vge.A) = eve VA +evy x (VxA)
= evge.VA+ev, xB

Using the facts that E = —%—‘: — V& and b.b =1 so that, b.% = (0, we may take the

parallel component and obtain,

d
M—l = eBj—pvB (48)
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[The perpendicular component becomes, upon re-arranging slightly,

i dvy, db
e[E+vixB|] = uViB+M 2% + Moy (5 + Ve Vb)

= uViB+ Mujb.Vb

The remaining terms are one order smaller in p* (it is a good exercise to show this
explicitly!) with respect to the terms retained.]

It is useful to introduce the geometrical “curvature vector” of the field line. It is defined
by,

k = b.¥Vb
= (Wxh)xhb (49)
We are now able to express v,
E 7 ’Uﬁ
W, = (E x b) + (E)(b x VInB) + (Q—c)(b x k) (50)

This completes the derivation of the “drifts” experienced by the charged particle.

In summary, we find that, 4 = (1/2)Mc3 /B is an adiabatic invariant; the parallel
speed, v)(t) varies according to Eq.(48) and v, is given by Eq.(50). The first term
on the RHS is the “electric drift”, the second is called the “grad-B” drift (by conven-
tion) and the last term is the so-called, “curvature drift”, sometimes also known as
the “centrifugal drift”. There are smaller, “inertial” drifts which provide next order
corrections. In general, the drift equations must be integrated numerically, but have
many fascinating properties.

The most important deduction we will make is the concept of particle “trapping”
contained in Eq.(48). If ® does not vary with time, we obtain the Energy Conservation
Law, E = (1/2)M vﬁ + uB + e® is a constant along each field line. Now suppose that
® = 0 and we have an inhomogeneous field. As the particle moves from a region of low
to high field, since p is a constant fixed by its initial conditions, the uB-perpendicular
energy term rises. This must mean that the parallel energy and v must decrease. The
term responsible for this effect is an averaged form of the Lorentz force and is called
the “mirror force”, since a suitably shaped, inhomogeneous magnetic field can act like
a magnetic mirror and confine particles. This happens for instance to charged particles
in the Barth’s dipole field which increases strongly towards the magnetic poles. If the
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to a potential force field K are:

0pm _
S +V.(pmun) = 0 (1)
a‘;“;“ FV.(pmuu) = —Vp+ puVE (2)

I

p/p" = (pm/om)” (3)

There are many possibilities for solving such equations, although in most cases, a
numerical approach is required.

Let us first consider a neutral gas filling a region A. We assume that the walls of the
domain are “impermeable” and apply the condition u.n = 0, where n(S) is the unit
outer normal to the wall (S) at each point of it. By integrating Eq.(1) over A, we
see that the total mass of the gas, Ma = [, pmdV is a constant of the motion. This
should not be too surprising, as we derived this differential equation from the Law of
Conservation of Mass! Let us now take the dot product of the momentum balance
equation with u and integrate the resulting scalar equation over A:

[dl/[

Making use of the equation of continuity (and Gauss’ divergence theorem), we see that,

] - /A dVu. [-Vp + pmVEK]

/Aqu. [6pa’zu+v.(pmuu)] = de [pm 5 + (pmu.V(u )]

— [ dv(1/2) [8pm“ —I—V.(pmuuz))}

Pmu
e Vi /
dt fA V= (4)

In a similar fashion, we can transform the RHS to write,

/A AV [-Vp+ pnVV] = fA dV [pV.u — KV.(pmu)]

From Eq.(1,3), we obtain the identities,

dp
a—l—uV’p = —ypV.u

ap
= —(v—1)pV.
%V (up) (y—1)pV.u

[BV]



It follows that (we assume of course that the external potential, K depends explicitly
only on position and not on t):

d p
4 sl ol
/ dV [pV.u] 7 ( l)d[/

d
[A dV [-KV.(pmu)] = — fA AV pmK

Putting all these transformations together, we see that the total energy, Ex defined
by,

Ba = [av]E35+(Ep- (raE)| 6)

is a constant of the motion. The first term represents the fluid kinetic energy (per unit
volume), the second, the internal energy (of this isentropic fluid) and the last is the
potential energy in the external field. It is of course the case that the entropy of the
fluid o o In(pp;,7) is also constant during the motion. This last statement applies only
so long as the motion is continuous. There really is no guarantee that this should be
so for all times since “shocks” can form in the system!

It is useful to introduce some conventional terminology here. Relations like the equation
of continuity tell us that the “local” time rate of something (here pp, is expressed as
the divergence of some “flux” ,—pmu, which, in this case is the mass flux). Such
relations are called local conservation laws. When such relations are integrated
over a domain, they lead, in general to corresponding global conservation laws.

We can obtain the local conservation law of energy as follows. It is useful, first to state
a very important and useful vector identity and its immediate corollary:

V(AB) = Ax(VxB)+Bx(VxA)+AVB+BVA (6)

()V(AA) = Ax(VxA)+AVA (7)

Writing the equation of motion in the form,

du 1
Fn +uVu = (—p—m)Vp + VK
du _ v oy p
E{-{-(qu)xu = —Vl:7+m('5n—l)—-K (8)



we are in a position to make two important deductions. First, take the curl of the last
equation. Noticing that the curl of a gradient is zero and introducing the new vector,
W =V x u, we obtain the remarkable equation,

oW

at

This is ezactly the same equation satisfied by B in ideal MHD (see lecture 1)! However,
here the vector, W is the curl of the fluid velocity, u whilst B is not simply related

to u or its derivatives. We will return to this result later. Taking the dot product of
Eq.(8) with u, we obtain the equation:

= Vx(uxW) 9)

) = —uV [“;Jr%(:#m)—ff] (10)

o u®

ot 2
Multiplying this equation by pn and making use of the equations of continuity and
isentropy, we obtain the “local” energy conservation law,

2

%(”mzu)ﬂvfl)—(pmff)] = -v. [u(%ntﬁp—ffpm)] (11)

Let us return to Eq.(9) and expand the RHS using the vector identity,
Vx(AxB) = AVB-BV.A+BVA-BVA (12)

Since, V.W = 0, by definition, we obtain,

%—‘%u.vw = —-WV.u+W.Vu

The equation of continuity and some simple algebra shows that the potential vortic-

ity vector, W* = %, satisfies the equation,
oW*
5 +u.VW* = W' Vu (13)

This is sometimes called Helmholtz’ equation for the potential vorticity. Its meaning
is not yvet apparent, but will shortly be illustrated. Vector fields like W* which satisfy
this equation will be termed Helmholtz fields.

II1.2 Kinematics of fluid flows: Eulerian and Lagrangian pictures

In order to understand the vectors, W, W* better, let us look a bit more closely at the
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kinematics of the flow. The fluid velocity, u(r, t) represents the velocity of the fluid at
a particular position r, at time ¢. It is called the Eulerian velocity. Alternatively one
could imagine a very light “marker” in the fluid which is “carried along” with the flow
(like a small leaf or twig in a flowing stream) and measure its velocity. This motion is
called “advection”. Time rates of change of quantities can be of two kinds: we could
envisage a function f(r,¢) changing at a particlular location. This is what we mean by
the local time derivative, [%H , showing explicitly that we hold r fized when evaluating
this rate of change. Consider what happens when we are “advected” with the flow
and look at the rate of change of f. Obviously, f changes with time and also with the
change in r as the fluid moves about. What is kept fixed here is the initial position of
the fluid particle. It is easily seen that this “advective time derivative” must be given

by the formula,

d _ Df
. -5
_ of
= E+u.Vf (14)

Plainly, we have the obvious rule, % = u(R, t), where the R on the left refers to the
position vector, R of a “fluid particle” or marker which happens to be at time ¢ at the
point where the Eulerian fluid velocity is u! What this means is the following. If we
imagine we know u for all r, {, we may solve the first order ode’s,

dR

dt
with the initial conditions, R = ry at ¢t = 0. The solutions, are of course functions of
t as well as the initial data, ry. We may thus write, R = R(rg,¢). Thus the markers
placed initially at ry faithfully “track” the fluid motions as time progresses. Consider
now a function, F(r) of position. At ¢t = 0, it has the value, F'(ry) at any initial point.
At a later time ¢, as the fluid moves, it changes to F(R(ro,t)). Its time rate of change
following the fluid is obviously, 2X = 4R VF = w.VF. If F varies with ¢ explicitly as
well, we obtain the general formula, Eq.(14). The coordinates rq are called “Lagrangian
positions” and time derivatives of functions holding these “initial” positions constant
(ie., moving with the fluid) are called “Lagrangian derivatives”. They basically tell us
that a particle at R at time ¢ “came from” ry at the initial instant.

= u(R,t)

A surface S composed of fluid particles is called a “material surface”, and moves with
the fluid. If it has the equation, F'(ry) = const, at the initial instant, evidently, at
time t, it is represented by, by the equation, F(R(ro,t)) = const. As the particles



composing the surface move with the fluid, we must have, [%—ﬂ = 0. Hence, the
ro

Eulerian condition for a material surface is,

oF] _ DF
o), Dt
oF
= E‘{‘FU.VF
=0

We are now going to prove an important formula known as Reynolds’ Transport The-
orem. Let A(t) now represent a “material volume” in a fluid bounded by a material
surface S composed of fluid markers in the above sense. As the fluid moves, A changes
with time, but its boundary is always a material surface. Let G(r,t) be an arbitrary
function of position. Let us consider the integral,

Lao(©@)@) = [, G0V (15)

Let us remark that at ¢ = 0, R(rg,0) = rg, by definition. We are therefore at liberty
to change variables to the initial coordinates, ry! Hence we may write,

Ing(G,t) = [A o OtV

A(z,y, 2)

= G(R(ry,t),t dVi
/;\(0) ( (0 ) )3(330,!!0,20) ‘

: : I . s ,
Now consider the time derivative, —3*. We observe that the “initial”or Lagrangian

coordinates rq, and material surfaces are independent of t. We can thus “commute” the
time-derivative with the integral and obtain (setting, J = % for the Jacobian

relating the Eulerian and the Lagrangian coordinates),

ding oGJ|
dt L(O)[ at OdIO

DG DJ
= —JdV; —dW
/A(o) [ Dt Ja% +GDt 0]

DG 1DJ
- hally ) V4 =
/A(i) Dt e [L\.(t)(J Dt JGay 16}

We now do a simple but extremely illuminating calculation which relates Lagrangian
and Eulerian derivatives (here the Lagrangian time derivative is denoted by a dot for
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brevity):
Dy _ 2] O(z,y,2)
Dt |at],, 8(zo,Y0,2)

a(‘rﬂ y? Z) a(‘T’.J y! Z) a(I, y! ‘é) (17)
3(%,1!0520) 3(370,?,’0,20) Ao, Yo, %)

J

Dividing this equation by J and using the well-known properties of Jacobian determi-
nants, we get the identity,

1DJ ot dy 0z

JDf " [a—x”(@” a)]

= .4 (18)
remembering the relation, ¥ = u.

Substituting in Eq.(16), we obtain the final form of Reynolds’ Transport Theorem:

dIA(t) /' DG
—= = —dV GV.udV 19
dt aw) Dt * A(t) " (19)

Comparing Eq.(18) with the equation of continuity in the form,

1 Do

Dt —V.u (20)

we can “integrate” the Lagrangian continuity equation thus:
pm(r, ) J(r,70) = pm(ro) (21)
The equations of motion in the Lagrangian coordinates take the form,

D?r dp oK
Pmm = = (22)

or T Pmgn

These are very complicated despite an appearance of deceptive simplicity and resem-
blance to the equations of particle dynamics. This is because p, and p are very
complicated functions of the r via the continuity equation and the equation of state.
This dependence is part of the solution and is not known beforehand! Lagrangian
coordinates do however, enable us to “integrate” the equations of potential vorticity
(first done by Cauchy). The derivation given here is quick but somewhat artificial; it
effectively involves verifying an ansatz.



Cauchy’s Transport Theorem

Let Zo = (Z§) (i = 1,2,3) be an arbitrary vector function of ry = (r§). Consider the
vector defined by,

Jr

7 = Zy.—

081‘0

_ o
i k ;
Zi = Zo—aTg (23)

using the standard “summation convention” . Note that Z depends linearly on Zg(ro),
and on t via r(rg,t). We see that Z in fact, satisfies the differential equations,

DZ o7
ke Gl R
Dt o TV

= Z.Vu (24)

N.B. The proof of Cauchy’s Transport Theorem is included for completeness. It may
be omitted on a first reading. Of course, the Theorem itself is important and illustrates
the concept of “matertal derivative”.

[Proof:

We differentiate Eq.(23) with respect to ¢, keeping ry fixed (ie., form the Lagrangian
derivative) and obtain,
art

A Zgér—g (25)
We also have the “inverse” formula,
: ort
ZD g arg (26)
Substituting in Eq.(24), we find,
7t = q%_aji
ore ark
ot
= F¥
are
Ou’
— 79
ore
. du
Z = Z.—
or
DZ
— = Z.
Di Vu



This completes the proof.]

An immediate application is to Eq.(13) for the potential vorticity vector, W*. We
see that Cauchy’s Transport Theorem enables us to “integrate” this equation and
write, W* = W;.;T’ﬂ, Hence, if the initial potential vorticity distribution, Wy is
known and the transformation matrix g—r‘; is calculated, the current distribution of
vorticity is predicted! Note the resemblance of this formula to that for o,, = pl: viz.,
() = J = I35I-

A profound and interesting corollary of Cauchy’s integral is Lagrange’s Theorem
on the permanence of vorticity. Suppose we have an ideal fluid and we start off
the motion with zero vorticity. What can we say about the generation of vorticity?
Since W; = 0, Cauchy’s transport theorem says, “it must stay zero for all time!”.
Lagranges’s theorem says that if at some instant, the entire flow is vorticity free or
irrotational, it must be so for all times. However, if at ¢ = 0 there is a tiny amount
of vorticity, it can certainly be amplified enormously by ideal fluid motions. Vorticity
plays a fundamental role in fluid flows, especially in turbulent flows and in the presence
of rotation and magnetic fields. We shall simply touch upon some of the key principles

involved.

There is another, interesting interpretation to Cauchy’s Transport Theorem. This is
called the “frozen-in” field concept. To understand this, consider two neighbouring
“initial points”, ro,rp, with drg = ro — r;. We know that the ideal motion at some
later time t takes these points to, r(re,t) and r(rj,t) respectively. It is plain that if
0rg is an “infinitesimal” displacement, at least for short times, we must have,

r(ro,?) — r(rpt) = or
or

= ory. ar, (27)
The equation is exactly that satisfied by the potential vorticity. This means that
the fluid particles marking a “vortex line” advect it along during their motion. Thus a
vortex line is said to be “frozen-in” to the motion of an ideal fluid. Since, in ideal MHD,
the B field satisfies the same kinematic equation as vorticity, we see that magnetic field
lines must also be frozen into the fluid! Note however that in ideal MHD, vorticity does
not satisfy the frozen-in condition due to the presence of Lorentz force in the equation

of motion.

Lord Kelvin established a very important property of vorticity. This is contained in
the following circulation theorem.



Kelvin’s Circulation Theorem:

Let L be a closed “material contour” in an ideal fluid. The integral, K = [y u.dlis a
constant of the motion.

Proof: As in Reynolds’ transport theorem, we refer the integral to Lagrangian coordi-
nates, ry. Then,

K, = / uidz'
L
o .
= fuiikdmé (28)

We can now safely differentiate with respect to time under the integral sign, since the
Lagrangian coordinates are independent of time.
dI(L D‘U,i 533’; k 8u1- k
dt Ls D Ozf "o +ut3$’5‘ ?
1 8p OK ox a ]
= —— 4 ——)——dal + —(u?/2)dxt
/Lg( P OT 8:51)5:1:’5 J 6:55“( iy

= 0 (29)

The last follows from the fact that p is a function of pn,; hence all three terms on the
RHS are seen to be perfect differentials, which when integrated round a closed contour
L give zero. Thus Kelvin’s theorem is established.

The integral, K is called the “circulation” of the flow taken around the material con-
tour, L. It is obviously equal to, [¢(V x u).dS. However much closed material contours
may get entangled, they must keep the same circulations. This “permanence” of vortic-
ity has many applications in fluid mechanics, condensed matter physics and elsewhere.
Note, however that the theorem is not valid when the pressure is not a function of
density or the external field is not derivable from a potential. Non isentropic processes
can, and do, create/destroy vorticity.

IT1.3 Special cases of ideal flows

Let us consider some special solutions of the equations we have developed. An im-
portant class of flows are steady flows in which the external forces and the boundary
conditions do no depend upon time and the flow variables depend only upon position.
The equations simplify considerably and admit some interesting types of solutions.
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Consider the steady equation of momentum for example:

2

(Vxu)xu = -V u?-i-%lpﬁ“) K (30)

Taking the dot product with u, we derive the result that the quantity, H = L =k
i—(_p,_,) K is constant on each “streamline”, defined by the equations, 2 = u/ [ul.
This is called Bernoulli’s principle for steady flows. It says roughly that as one
moves along a stream line, the flow is fastest where the pressure is least and vice versa.

It is at the bottom of why aircraft actually fly!

A less well-known result is that H is also constant along “vortex lines” defined by, the
equations, ¥ = W /|W|. Vortex lines and stream lines become parallel for special
flows called “Beltrami flows”. Otherwise they do not align. In these general cases, we
see that A must actually be constant on surfaces spanned by the vortex and stream
lines (ie., the surface normal, n at each point of the surface satisfies, n. W x u = 0).

We can look upon the Bernoulli relation in the following way: it is, in fact necessary
and sufficient for Eq.(30) to be solved for W consistently, given the RHS. Thus it is a
solubility condition! The solution gives W . The parallel vorticity must be obtained
by imposing the condition, V.W = 0. Furthermore, there is a powerful mathematical
analogy between the Bernoulli relation and the equilibrium MHD momentum equa-
tion! This can be used in all sorts of problems by employing the famous Feynman
Principle: “ same equations have same solutions!”

Three dimensional exact solutions to the Euler equations, even under steady flow con-
ditions are very hard to construct. However, a very simple exact solution is the state
of rest! Thus we have, u = 0. The pressure, density and the external potential K must
satisfy the laws of hydrostatics:

YE _ oR

Pm
S £) = K + const.
Y—1 pm

In the absence of an external force field, a simple, thermodynamic equilibrium with
Pm = Po,P = Po, constant, uniform values is a valid solution. Obviously, the state of
uniform motion must also be a solution! While this seems to be a pretty uninteresting
solution of “fluid flow”, we can find quite exciting solutions “close” to these boring so-
lutions. Such “neighbouring solutions” can be obtained by a very general and powerful
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procedure known as “linearization” which has many applications elsewhere, but is best
illustrated here in deriving sound waves in an ideal fluid.

Let us represent pm = po + p,p = po + P, u = U, where the tilde quantities are “small”.
This clearly means, ;‘% <1, 5% & 1. Exactly how small 1 is supposed to be will become
plain in a moment. Next we substitute into the continuity equation:

%+V.(poﬁ) = —V.(50)
3 p . P
5(5)+V.u = —V. (E)H] (31)

Note that the term on the RHS is of “second order” of smallness, as can be seen
by inspection. Linearization means “neglect all terms of second and higher order of
smallness”. This equation therefore relates the rate of change of the density fluctuation,
£ to the divergence of the velocity perturbation. Next we consider the equation of
momentum balance:
du 1
— = —(—)Vp—-uVu 32
o ( po) D (32)
The isentropic equation of state is, ( p%) = %)"f . This is immediately linearized to
give,
P p
o i (33)
Po Po
Substitution in the momentum equation gives, after dropping the second order (ie.,
nonlinear) term,
B - (@yyL (34)
ot Po - Po
Denoting the relative density, J% = o, and eliminating 0 in the linearized continu-
ity equation, we obtain D’Alembert’s famous linear Wave Equation governing the
evolution of &:

%o ¥p
sz = (Vo (35)

The positive quantity, (1;%0) is a characteristic property of the equilibrium state and
has the dimensions of velocity squared. From the theory of the wave equation, it is
casily demonstrated that the speed, C, defined by, C? = %, is the propagation
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velocity of the sound waves. It is clear from kinetic theory of the perfect gas that
C is of the same order as the thermal speed of the molecules of the gas. Note that
the momentum equation says that the velocity fluctuations, u associated with a sound
wave are irrotational: ie., have zero vorticity. We can also see that the linearization, to
be valid, requires the velocity fluctuations associated with the sound wave to be small
compared with C,. To demonstrate this fact, we construct the general solution to the
wave equation in unbounded domains.

Let us consider a harmonic wave, of the form, o ~ exp(ik.x — iwt), where the vector
k (the “wave vector”) and the frequency w are constant parameters, to be chosen to
satisfy the equation. It is reasonable to consider imaginary exponentials, since we may
always consider real parts afterwards. The equation is linear, so this causes no trouble!

When we substitute this harmonic form in the equation, we find that k,w cannot be
arbitrary, but must satisfy the dispersion relation,

w? = C2K? (36)

but the amplitude can be arbitrary. Thus, for each k two possible values of w can be
found to satisfy the dispersion relation. These correspond to outgoing and incoming
sound waves. Since the equation is linear, the Principle of Superposition applies,
and we may write the general solution as an integral,

" % dk
o(x,t) = / [E4 (k) exp(ik.x — iw(k)t) + E_ (k) exp(ik x + itw(K)t)] @y 6
m
The theory of Fourier integrals tells us that the functions, ¥, Zf_(k) are uniquely
determined from the initial conditions set on @, %:- at the initial instant, ¢ = 0. The
solution also states that @t ~ Cyo in order of magnitude. Thus the velocity fluctuations
associated with a sound wave are “small” compared to the speed of sound.

We have seen that flows without vorticity occur naturally in sound waves. Let us take a
moment to consider general lows with zero vorticity everywhere. Such flows are called
irrotational. It is quite reasonable to consider such flows, since Lagrange’s theorem
says that if initially a flow had no vorticity, none will develop later in ideal flow.

Since, V x u = 0, we may introduce the velocity potential function ¢ by requiring,
u = V¢. Let us reinstate an external force-field derivable from a potential, K. The
continuity equation now reads,

0pm _
2 T VeaVg) = 0 (38)
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We can use the equation of momentum balance derived earlier in the form Eq.(8) and
simply substitute.

96, (V¢ v . p
2 s L
99  (Vo)* T Py k= BE (39)

at 2 v —1"pm

where H(t) is an arbitrary function of £. Since ¢ itself does not really determine the
flows (only its derivatives), there is a “gauge invariance” here. By redefining ¢, we can
even choose H to be zero!. The resultant equation is called Bernoulli’s Equation
for compressible ideal irrotational fluids. It is at once more and less general than
the steady Bernoulli’s equation derived from Eq.(31). The present equation is valid for
time-dependent, irrotational/potential flows, whereas the steady Bernoulli equation is
valid for rotational flows with arbitrary vorticity, on each stream line. The coupled
Eqs.(38,39) can be used to solve all sorts of interesting problems, including nonlinear,
exact treatment of soundwaves, aerodynamics, internal waves in planetary and stellar
atmospheres etc.

We shall move on to a technically important special case which occurs whenever the
velocities in the problem are “small” compared with C;. Denote a typical speed in
the flow by U. The nondimensional ratio, U/Cs = Ma is called the Mach number
of the flow. We are going to consider the simplifications that occur when the flow is
“subsonic”, ie., when Ma < 1. The following argument applies to both rotational
and irrotational flows. It is convenient to present the argument in the absence of an
external potential, K. Once it is grasped, it is extended, with some modifications to
the general case.

N.B. The derivation of the equations of incompressible hydrodynamics from the com-
pressible Euler equations given below is an instructive one, but is somewhat beyond the
scope of the present course. It is given here for completeness and may be omitted on a
first reading.

[Let us write, u = CsMau*, where u* is a nondimensional velocity. This merely states
that for very low Mach numbers, the flow speed is much smaller than the sound speed,
Cs. Let us now compare the terms, V.(pnpuu) and —Vp in the general equation of
momentum balance, Eq.(2). Writing p = po, pm = po,u* = 1, we see that, Ma® ~
(p—po)/po. This says in effect that the pressure variations about the “ambient value”,
po must be small like Ma?. Otherwise, the pressure gradient term cannot be balanced
by inertia! This simple estimate suggests, along with the adiabatic equation of state
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which relates pressure variations with density variations, that when Ma < 1 we should
expand the variables as follows:

u = C,[Mau; + (Ma)uy + .. (40)
P = po [1+(Ma)2p2+...] (41)
pm = po[L+(Ma)py+ .. (42)

Note carefully that all coefficients of the power series in Ma within the square brackets
are nondimensional, O(1) quantities.

Substitution in the momentum balance equation gives in leading order the “hydrostatic
balance”:

Vpg =0 (43)

which implies that the pressure in the state of rest is uniform. It follows that py is also
uniform. From the O(1) expansion of the equation of continuity, we see that % =0
as well.

We may therefore take, pg,po to be the “equilibrium values”, p¥ , p* used in the isen-
tropic equation of state. The momentum balance in the order, (Ma)? gives:

du 1
3—;+V.(u1u1) - —(;)Vpg (44)

Note that we have also adopted a “slow time” relative to the typical sound time scale,
L/C,. Thus, t — tL/(MaC,), where L is a typical length-scale of variation of u;. This
means that 5‘% ~ |u|/L, ie., time rates of change occur on an “advection time-scale”.

The same expansion in the adiabatic equation gives:

P2 = P2 (45)
Putting this in the above equation, the leading order subsonic momentum balance
equation reads,

d
-5‘%1+v.(u1u1) = —Vp, (46)

The equation of continuity gives in the O(Ma) order, the “incompressibility condition”
of subsonic flow: :

V.ll] =0 (47)
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Having derived these equations for the four nondimensional dependent variables, uy, ps,
let us put them in their traditional “dimensional” forms.]

We simply set, u = CiMauy,p = py + P, pm = po and obtain the standard Euler
equations of incompressible hydrodynamics,

Vau = 0 (48)
%—? +u.Vu = —V(%) (49)
g—? +Wxu = -V [(fg) En UQ/Q} (50)

Incompressible flow is peculiar in that the pressure, p is determined, not by the equation
of state, but in fact, by the incompressibility constraint on u. This is analogous to the
electric field in quasi neutral plasmas being determined by equations of motion rather
than Gauss’ Law. Note that in steady state, we have the Bernoulli relation,

2

B +5 = P (51)

where P, is a constant on each stream line. It is called the “stagnation pressure”.
It is evident that pressure variations, p are of order gou® in incompressible flows in
general. These variations are sometimes called “dynamic” pressures induced by the
flows satisfying the incompressibility condition. Of course, they are much smaller (by
Ma? in fact) than the “ambient thermodynamic pressure”, py. The latter is constant
and plays no role in the motion of the fluid. Once p is determined, the density variations
can be calculated, from the equation of state, if desired. These induce higher order
flows which are generally not of interest.

Note also that we can consider, incompressible, irrotational flows. Then, we set,
u = V¢. Substituting in the momentum equation, we obtain the irrotational Bernoulli
relation (the very original one derived by Bernoulli himself?),

2
02_?_,_%(2@ = (52)

Even more remarkably, we get a closed equation for ¢ (ie., not involving p) when we
substitute in the continuity equation!

Vi¢ = 0 (53)
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This, of course is Laplace’s equation and is linear in ¢. This means that ideal, irro-
tational, incompressible flow can be solved using the theory of Laplace’s equation! In
general, however, the boundary conditions (especially free-boundary conditions) can
be nonlinear. However, an enormous literature exists on these “potential flows”.

It is useful to notice some facts about two-dimensional incompressible (not necessarily
irrotational) flows. In two dimensions, the continuity equation becomes, in Cartesian
coordinates,

Ou, Ou
+ _y = 0 54
Oz Ay (54)
If we introduce a new function ¥ such that, u, = §%,u, = —2%, the equation of
iy T

continuity is identically satisfied. The function, ¥ is called the stream function.
If the flow is steady, the contour lines of constant ¥ are “stream lines”, or lines of
flow. We also see that the vorticity vector is always perpendicular to the plane of
flow: W = V x u = —zV?¥ = &z, where we use the two-dimensional Laplacian.
Substituting in Eq.(50) and taking the curl to eliminate the pressure term, we obtain
the remarkably simple “vorticity equation” of two-dimensional incompressible flow:

w N D&
E‘E‘ +uVo = ﬁ
= 0
ow  9@,%)
ot + oz,y) 0 ()
o = -V (56)

N.B. The following remarks may be omitted on a first reading.

[Observe that if the flow is irrotational, in addition, @ = 0. This entails, V¥ = 0.
It may be shown from definitions that ¢ and ¥ are conjugate functions in the sense
of Cauchy and Riemann and the theory of functions of the complex variable, s =
z + 1y becomes immediately available for solving problems in two-dimensional, ideal,
incompressible, potential flow theory! This powerful tool has been used with great
success in aerodynamics and elsewhere.|

In the problem set associated with this lecture we explore several interesting applica-
tions of the above general principles. We now conclude our brief excusrion into the

world of neutral fluid flows.
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Plasma Physics

Lecture 11: Collisions, two-fluid theory and
qualitative ideas of plasma turbulence

Summary

Basic concepts of two-fluid theory (“extended MHD”); qualitative aspects of Coulomb
collisions. Elements of electrostatic drift wave instability. Qualitative account of the
genesis and consequences of low frequency plasma turbulence.

XI.1 Coulomb collisions in plasmas

This lecture will be more descriptive than earlier ones and some later discussions. The
idea is to introduce you to the concept of “non-ideal” or “dissipative” processes in
quasi-neutral plasmas. You know that in ideal MHD there is no dissipation. Typically
the electrons and ions “know” about each other only through the electromagnetic
fields produced, and these too are “smoothed out” ones. However, it is clear, that if
two charged particles are very close, they will, in general, “feel” the Coulomb force (at
the very least!) between them. This is called a short-range “collision” and one can
calculate the famous Rutherford scattering formula using classical mechanics. This
formula says that two colliding charged particles will scatter each other due to their
mutual electrostatic interaction in well-defined ways. In general, this scattering means
that the distribution function, f(r,v,t) will change due to such a collision, apart from
changes attributable to previously discussed “smoothed out” electric and magnetic
fields.

Boltzmann and Maxwell were the first to systematically study collisions and their
effects on the kinetic equations in neutral gases. Their work has been extended by
many workers for the case of the Coulomb interaction between charged particles, and
versions of Boltzmann’s equation with “collisional terms” are available for plasmas.
This topic is a very extensive one (if you wish to study this thoroughly, there is no
better place than Lifshitz and Pitaevski’s Physical Kinetics. An accessible treatment
of collisions and the subtleties which are specific to plasmas may be found in the book
Plasma Physics by Goldston and Rutherford), and well outside the scope of this course.
I shall merely introduce you to some the main ideas which are relatively easy to grasp
in a qualitative fashion.



The principal effects of collisions can be summarized thus: 1. collisions between parti-
cles, charged or not, destroy the “memory” the particles have of their initial conditions.
Thus, after a collision, the colliding particles will, in general, be “scattered” in random
directions with random velocities. 2. Having said this, simple inter-particle forces (like
the Coulomb force, for example) do conserve certain properties like the total energy of
the two-colliding particles, their momentum etc. This means in practice that the colli-
sions, although introducing a non-trivial “decorrelation” or “memory loss”, do conserve
the total number/mass, kinetic energy and momentum of the system, as a whole. This
fact assigns a special status to the first 5 velocity moments of the distribution function.
3. Collisions “drive” the system towards thermodynamic equilibrium. Indeed, Boltz-
mann showed that his famous collisional equation, which he derived by an ingeneous
mixture of dynamical and statistical arguments, implies that in a “closed” system, a
certain integral involving the distribution function (in fact, — [ fIn fdrdv) continually
increases, and can be regarded as the “kinetic definition” of entropy. This quantity
reaches a maximum value in thermodynamic (and mechanical) equilibrium, when f
is given by the Maxwell-Boltzmann distribution. 4. Collisions induce the particles in
the system to execute “random walks”. As Einstein, Langevin and others showed,
such random walks result in “diffusion” which is an extremely common and well-known
macroscopic, irreversible phenomenon. This diffusive behaviour is “irreversible” in time
and occurs both in velocity and position spaces.

Let us try to understand diffusion of particles. Suppose, for instance we consider a
small blob of helium gas released in the atmosphere. The helium atoms collide with
the air molecules (which are at some fixed temperature, and have a zero mean velocity
say) and exchange energy and momentum with them. Let us suppose that that the air
molecules exert a collisional “drag” on the helium and tend to lower the average speed
of the helium to zero. We remember that the helium has a partial pressure, p = ng.T,
the constant (and uniform) temperature 7 is in joules and ng, is the number density
of the helium. Provided the drag is large enough compared with inertia (this is always
true of diffusive transport!) the equation of motion for the blob of helium atoms is,

vnHeT = —MHeNHeVVHe (1)

where, my, is the mass of a helium atom, and vy, the fluid velocity. The quantity v
has the dimensions of a frequency, and can be called the “momentum relaxation rate”.
Note that if we write, c%, = T/mye, where cg, is the “thermal velocity” of the helium
atoms, the particle flux (ie., number density times velocity), is given by Fick’s Law
of Diffusion,

2
G
NHeVHe = “‘"‘I{j‘gvnHe (2)



where, Dy, = 5:%}&, is called the “diffusivity” or diffusion coefficient for helium in air.
This says physically that the flux of helium will be from regions of higher to lower
concentrations-a physically reasonable result!

Using the “particle continuity” equation for helium, we derive the “diffusion equation”,
which describes the spread of the helium atoms in air.

8?1}13
at
The same equation was derived by Einstein for “Brownian dust particles” (far larger
than the helium atoms!) and the quantity v was related by him to the viscous drag on
the particles.

= Dy.V?ng. (3)

In an apparently completely different field, Fourier suggested that heat (ie., thermal
energy) is transported diffusively in many simple materials. In a solid like copper, for
instance, if we let Cy be the specific heat at constant volume (supposed constant),
the transport of heat by thermal conduction is described by the energy conservation
equation,

Cv-'-"'- = —V.q (4)

Here, q is the heat flur vector. Fourier postulated that temperature gradients “drive”
the heat flux (ie., heat always flows down the temperature gradient and thereby tends
to equalize temperatures and increase entropy) and, at least for reasonable gradients,
q = — K¢ VT, where the constant K is called the thermal conductivity of copper. This
relation is called Fourier’s Law of Heat Conduction. It is just Fick’s law, but now
applied to temperature. It follows immediately, that 7" satisfies (in the absence of heat
sources and sinks), Fourier’s equation of heat conduction:

ar

ot
where, ¥ = K7 /Cy is the thermal diffusivity of copper. It is plain that diffusion always
results whenever the “flux” of some quantity which is described by a conservation
equation is proportional to the negative gradient of that quantity. It is also plain that
if a quantity is “freely diffusing” in a bounded region from which it cannot escape, as
time goes on, it is “irreversibly” spread out over all of the domain uniformly.

= ¥WV°T (5)

You should not think that only scalars like concentration or temperature can diffuse.
Vector quantities like momentum, vorticity and magnetic fields can also diffuse! Es-
sentially the process is similar in that collisions cause “momentum transfer” and tend
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to equalize the speeds of adjacent layers of flow. For example, in a conductor (at rest,
like a copper bar), Ohm’s Law says that the electric field E at a point, r, £, and the
current density, j are related by,

E = 75j (6)

where 7, like, Ky is characteristic of copper (strictly calculable only by quantum
theory!) and is called its resistivity. Assuming that all fields change slowly (ie., the
displacement current is negligible), we have from Maxwell’s equations,

€’V xB = j
0B
E = —-VxE
= DpV’B (7)

where the “magnetic diffusivity”, Dp = nepc?. We have used Ohm’s Law and the
vector identity, V x (V x A) = V(V.A) — V2A. Thus, in a resistive medium at rest,
the magnetic field (and the current density j!) diffuse at a rate proportional to the
resistivity of the medium.

Remember that Ohm’s Law in a moving medium with a finite, isotropic resistivity
takes the form (as in MHD),

E+uxB = nj (8)

This results in the resistive MHD, advection-diffusion equation,

B
= -VxE
= V x (uxB)+DpV’B (9)
%]-?-—I—u.VB = B.Vu+ DpV’B (10)

The last equation applies to incompressible resistive MHD, where we may take, V.u =
0. This equation is virtually ezactly mirrored by the equation satisfied by incompress-
ible, viscous flow of a neutral fluid. It was shown by Navier and Stokes that viscosity
of a fluid diffuses the vorticity, W = V X u according to,
W

8—(%— +u.VW = W.Vu+ VW (11)
where the constant, »* has the dimensions of a diffusivity (ie., L?/T") and is called the
kinematic viscosity of an incompressible fluid. Maxwell derived a famous formula for
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Pml* = u, the viscosity of the fluid from kinetic considerations involving the binary
collision frequency, 1/7con of the molecules of the gas.

One can show easily the following result: let a “particle” move on the average, a
distance [ between scattering events which, occur with a frequency, v = 1/7n. In one
dimension, we could simply assume that that the particle moves to the right or left with
a velocity ¢ = £l/7on between the “collisions”. On the average, the particle has an
equal chance of going to the right or left. Hence if we consider a very large ensemble
of (noninteracting!) particles, their average location is the origin, asuming that at
t = 0 they all started there. However, if we consider their RMS distance from the
origin, (< (Az)? >)Y/2, we will find that < (Axz)? >= [*t/27qy. Thus, the “spread”
of the particles is a “diffusive” process with diffusivity, D = {*/27,n! This is the
fundamental connection between “molecular” collisions and quantities like [ and 7eon
and macroscopic coefficients like D which can be determined by experiments involving
“phenomenological” laws like those of Fick and Fourier.

It turns out that a complete analysis of charged particle collisions leads to electron-
electron, electron-ion and ion-ion collision frequencies. These rates are functions of the
ion charge, mass ratios and energies of the colliding particles. The generalization of the
Vlasov kinetic equations for charged particles is called the “Fokker-Planck equation”
with the “Landau collision term”. If the collision frequencies are sufficiently high, it is
possible to solve this approximately and derive general “dissipative” relations for parti-
cle and thermal diffusivities and viscosities. This restricted theory is very similar to the
Maxwell-Boltzmann kinetic theory for neutral gases and goes by the name, “Braginskii
Theory”. A generalization of it which is far-reaching in that it considers low colli-
sionality (ie., the collisions are a “weak” effect on a basically collisionless system) and
particle trapping is called the “neo-classical” theory. We cannot go into even an outline
of these theories here. The basic differences can be stated, however. If an electron-ion
plasma is immersed in a magnetic field and the diffusivity is sought in the direction
parallel to the field, Braginskii ’s theory leads to the result that Dy ~ ¢ 7eon, where,
the mean-free-path, A =~ eyn7eon <€ L. Here, ¢y, is the typical thermal velocity of the
particle in question and 7.y is Braginskii’s appropriate “collision time” for the parti-
cle (essentially a function of its temperature), and L is a typical length-scale over which
the fields, temperatures and the densities vary. In the direction perpendicular to the
field however, the collisions enhance the transport and D ~ 7% /7,on. This strongly
suggests that in the parallel direction, the mean-free-path, A is the appropriate “step-
length” whilst in the perpendicular direction, the Larmor radius, 7, = ¢ /€. plays
the role of step length. We are discussing strongly magnetized plasmas wherein,
QeTeon > 1. It is then evident that such plasmas are extremely anisotropic as regards



diffusion and viscosity. Thus D, =~ Dy/(Q7eon)?. This is precisely why magnetic
configurations with closed field lines are chosen for confinement devices like tokamaks.

Experimentally, these “classical” or Braginskii diffusion of particles, energy and mo-
mentum are never found! The observed rates are often many orders of magnitude
higher, although, of course, they are still far slower than equilibration rates parallel to
the field. A partial explanation, largely valid for ions, is given by the neoclassical theory
which asserts that while 7 is indeed relevant for collisions between particles which
are not trapped by the spatially varying magnetic fields, the “trapped” particles must
execute much larger drift motions and experience de-trapping collisions which consider-
ably enhance their diffusion rates over the “classical” Braginskii estimate, 7% /7. The
step-lengths relate to the radial widths of the trapped particles’ complicated orbits and
the higher collision rates correspond to greater impact of certain types of “small angle”
collisions. It turns out however, that for electrons, the observed diffusion rates are far
higher than even the neoclassical ones. The explanation of this so-called “anomalous
transport” is one of the outstanding (and tantalizing!) problems of modern plasma
physics. It is believed, and there is a large body of evidence to directly support this
belief, that plasma “turbulence” is responsible for enhancing the transport rates far
above classical or even neoclassical values by changing both the effective “step-lengths”
and the “collision times” responsible for the diffusion.

XI.3 Two-fluid equilibria

Let us consider a very simple but illustrative example. Suppose we have a uniform
magnetic field, B = Bye, along the z-axis. We consider the steady, quasi-neutral equi-
librium of an electron-proton (for simplicity, extensions to other fully ionized atoms is
obvious) plasma, where we assume that the ions are at rest in the “laboratory frame”
and are “cold” (ie., their temperature is small compared to the electrons). We further
assume that all equilibrium quantities vary only with r, the radial coordinate measured
from the origin of a cylindrical coordinate system (r, 8, z). In short, nothing varies with
t,8 or z. Although this can be generalized, we will assume that the only non-zero com-
ponent of the magnetic field is the z-component, which reduces to By in the absence
of the plasma. We adopt a fluid description, a much simplified version of Braginskii’s
continuum equations for a fully ionized, electron-proton plasma. While the ions are
cold, the electrons will be taken to be at a uniform temperature, T, measured in joules,
and charge on an electron is —e.

Let us write down the equations of momentum balance for ions, noting that quasi-



neutrality implies, n; ~ n,:
Du;
mpne-—D—tz = en.(E+u; x B)+ R, (12)

where, by assumption, we may take u; = 0 and R;, = m,n.v;(u, — u;) represents the
frictional drag due to collisions with electrons which have a “fluid velocity”, u.. Note
that we have used the fact that T; ~ 0 (“cold ions”) and have dropped the pressure
term and several other “viscosity terms” as well (that is why this is a simplified model!).

Note that quasi-neutrality says that V.j = 0. From this and the fact that things vary
only with r, we see that, j. = ene(uiy — ter) = 0. Therefore, in the r direction, the
above equation reduces to,

0 = en.k, (13)

This says we can take E, = 0, and of course, we may take, E = 0. Let us turn to the
corresponding electron momentum balance equation. The electrons do have a pressure,
pe = n.T,, which can vary with r, since n, can vary with r. The electrons have low
mass and their inertia can be neglected as a first approximation (we can justify this
after the fact, if necessary). The “radial” electron momentum equation becomes,

dne
d_?:' - eneueﬁBz (14)
where B, (r) is the z-component of the magnetic field which reduces to By in the absence

of the plasma. We see that an electron pressure/density gradient is allowed, so long

0 = —T,

as a current, jp = —en.u is allowed to flow. The above equation says, the radial
equilibrium of the electron fluid depends upon, j5 = %f;%‘a. Let us now remember that

Ampére’s Law says (defining po by the relation, eypg = 1/¢?, as is conventional),

1.dB;

_(#.o) dr Jo(r)
. Edne
B, dr
T.n Jr(L)B2 = (i)B2 (15)
o 2" * 210 0

This equation relates the radial variation of the number density, n.(r) and that of
B,. We assume that at some radius, 7 = a, the plasma has become so tenuous that
B, = By. Note a very important fact: the magnetic field within the plasma, ie., B;(r),
for r < ais always smaller than By, the “vacuum” field. Thus, a classical plasma with a
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pressure gradient (ie which is not in strict thermodynamic equilibrium) is diamagnetic
and tends to “expel” magnetic field, in this simple geometry. For this reason, the
current, j,(r) is called the diamagnetic electron current. Since it is only a funtion of
r, we continue to preserve quasi-neutrality. The electron equation of motion in the z
direction is identically satisfied, as can be readily checked. What of the & component?
Clearly, we must have,

0 = encyB; + menevs(—ue)

= eNele B, + %ijg (16)

We can solve for the “radial electron flux”, I'.(r) = n.u., in terms of the other quan-
tities, substituting, jp = Z= %= and obtain the remarkable relation,

Z
me T, dn,

_Bze2”f§z?

This can be made more transparent by setting, T, = 3mec},, and observing that,
———%1/ L= =3 ip2vy = D, Thus, we have derived, upon substltutlon into the continuity
equatlon the electron particle diffusion equation,

Ine 10 on,

— = ——(rDj.— : 18
ot T‘@T‘(T o 31") 2
we see that this Braginskii two-fluid model results in the “classical” particle diffusivity
Dy. = 1p2vs; pe = cn/Se across the magnetic field (making allowance for the radial
variation of D, .!). This is closely related to the intuitive “random-walk” argument with
pe as the step length and 1/v; as the “time-step”. Note that, Braginskii calculates

1/2 4 . ]
that, v ~ 1-2-—3%“”6—{‘;3%3,2, where A is the so-called “Coulomb logarithm”, and has a
73/2elm, T,

value 10-20. There is a corresponding formula for ions which will not be needed here.

(17)

NeUer

You can easily check that using the ion momentum equation leads to the same value for
the ion particle flux. This is because the “friction force”, R;, does not change the total
momentum of the two species, but depends only on the current (ie., difference of the
two flows). However, you might find it disturbing that we started with the assumption
of steady state and yet end up with a transient diffusion equation. The answer is a
very general one: in a dissipative system, it is necessary to have ezternal sources in
order to maintain the system away from thermodynamic equilibrium. Thus, to have a
true steady state with a general n, profile, we must have a source of particles! Thus
the particle contiuity equation must really be,

1d dne

(TDJ_ed )+ Sp(r) = (19)



where Sp(r) is an appropriate particle source. This must balance the steady losses
due to classical radial diffusion to maintain the n.(r) profile. This equation and the
equation for B,, Eq.(15) must be simultaneously solved to determine the n., B;, js
profiles.

It is of interest to note that having u;.(r) = ue.(r) = U(r), with arbitrary U is
also an allowed solution in this model! Such flows do not disturb the equilibrium
determined. However, a deeper examination of the Braginskii equations reveals that
unless there are momentum sources within the plasma, U can only be a constant,
amounting to a simple Galilean transformation along the direction of the magnetic
field. This simple configuration corresponds to an infinite “straight” system and early
plasma devices called “Q-machines” had a similar structure. They exhibit the basic
features of “confinement”, and diffusion across field. The fact that electrons and ions
are transported at exactly the same rate and quasi-neutrality is maintained is called
ambipolarity of particle diffusion.

An important generalization is obtained by having a constant, uniform electric field, E,
applied by external means. Now the equation of motion in the z direction is no longer
trivial (Nb. We disregard a minor complication of Braginskii theory which says that
the “collision rate” v; must be nonisotropic, ie., is different parallel and perpendicular
to the field). The electron and ion equations are:
0 = —en.E, + menevy(s; — Ue:)
0 = en.E, + menevs(te; — Uiz)

Thus, they reduce to the single equation,

E, = (20)
myf
mo= n:e2 (21)

Furthermore, the fact that j, is now non-zero means that we have also to introduce,
By(r) by Ampere’s Law. Indeed, unless E, is particularly small, we have to solve the
equlibrium problem of determining n., B,, By self-consistently, given T,, v¢, E,, S,, By.
This is not difficult, and leads to an equilibrium configuration called the “classical
screw pinch”. Indeed, given the full Braginskii equations, the sources and boundary
conditions, one can construct (if necessary, by numerical integration) the self-consistent
classical equilibrium, even including the energy transport equation! I mention this sim-
ply to show that the Braginskii theory is “complete” and leads to definite equilibria
if sources and boundary conditions are specified. Unfortunately, the theory has only



extremely limited validity, even if its basic premises that Qg.7eon > 1, pefl—lgr—"ﬁ = gl
are satisfied. When the field varies along its length (as it must do in any toroidal con-
finement configuration in general), the Braginskii theory must be extended to include
neoclassical “trapped particle effects” which are very significant. More importantly,
experiments conclusively show that the values of D, . etc obtained in reality are far
larger than the above classical estimates.

We shall leave the subject of two-fluid equilibria with this illustrative but very simple
example and turn our attention to low frequency waves and stability of such equilibria.

XI.4 Drift waves

It is rarely sufficient in plasma physics to construct an equilibrium. The stability of
equilibria is of paramount importance. We are going to consider the simple two-fluid
equilibrium constructed in the last section and study low frequency wave motions.
The equilibrium is characterized by a uniform magnetic field, B = Be,. Of course,
we have already seen that the equilibrium diamagnetic electric current will modify
the field slightly within the plasma. This “non-uniformity” of B, is small, provided
the plasma pressure, ng7, is small compared to the magnetic field energy, B?/2,, as
can be inferred from Eq.(15). Indeed, the smallness of the nondimensional pressure,
B = 3‘“";+°n < 1, is required for the fluctuations to be purely electrostatic. This
condition is not always met in astrophysics, though in typical modern tokamak plasmas,
B8 < 0.1, although in many experiments (including MAST at Culham), this value has
been exceeded!

The ions are at rest and are taken to be “cold”. The electrons are at a uniform
temperature within a cylinder, r < a. The equilibrium electron density profile is
assumed to be, ny(r). Let us now consider “small oscillations” about this equilibrium.
Let A(r, 8, 2,t) be the “perturbed” density (in both electrons and ions; we are going to
consider quasi-neutral dynamics!). Denote the perturbed ion velocity by, ;. The ion
continuity equation, retaining only first order perturbed quantities is,

of

E{ + V.(Heoui) =0
on - dneo - N
T + Tir—— +n,Va; = 0 (22)

The electron momentum balance equation is considered next. Written in full, it takes
the form,

Du,
Dt

Men —V(nTe) — en(E + ue x B) + menvy(u; — u,) (23)
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It can be shown that in many circumstances, the electric field is dominated by electro-
static fluctuations. It is usually a good approximation to neglect electron inertia terms
in Eq.(23) (if we wish, we can always come back to it later!). Retaining only first order
quantities, and dropping the collisional term (we will reinstate this later!) we find the
equation becomes,

—T. Vi + engV® — engiie x B = 0 (24)

where we have set, E = —V®, in accordance with electrostatics. Note that in this
equation, T}, is a constant and n.(r) is a given profile (in the range, 0 < r < a), and
B = Be.. Taking the dot product with B, we derive the relation,

d B s
— [~Teii + enee®] = 0
i) ed

2 e e 25)
Te Te (
This relation between electron density fluctuations and electrostatic potential fluctua-
tions is often called the Boltzmann relation or the adiabaticity relation. Whilst it is
seen here to be a consequence of parallel electron momentum balance under certain as-
sumptions, it is also the expression one gets from the Maxwell-Boltzmann distribution
relating density and potential. This is all that we need from the electron physics!

Let us turn our attention to the ion dynamics. The ion momentum balance equation,
when linearized similarly, bearing in mind that the ion temperature is assumed to be
zero yields,
on; - -
minegg — —enegV(I) + eNgol; X ezB (26)

Suppose we are interested in frequencies small compared with Q.; = eB/m;. It can be
seen that the first approximation to the above equation is obtained by setting,

s 1 =

u = —e, X V.,.d (27)

B
where V; =V — e;;;—z. This is none other than the statement that neglecting inertia,
the ion fluid moves under the electrostatic perturbation according to the E x B drift!
Having obtained 1;, let us substitute this into the ion continuity equation, Eq.(22):
on

T oo xvid) = 0 e

11



It is now actually convenient to use scalar components. Note that in the (r,0,2)
cylindrical coordinates, V1 ® = (4%, 122 0). This leads to,

1 8%

Uyp = — E % (29)
_ 10®
Uzp = EE (30)

It is easy to verify from the uniformity of B that the fluctuating ion velocity, ; as
given by the above equation, is divergence-free, viz., V.Qi; = %%(rﬁ#) + %%“;ﬂ- =

Using this result, it is immediately seen that the equation of continuity, Eq.(28) sim-
plifies to,

on - dﬂeg
E + Uir—dr =0
O 1 0bdna _
ot DBrdf dr
We may eliminate the density fluctuation, 7 using the adiabatic relation, Eq.(25),
n’:*ﬂ = %, to get a single “wave equation” (ie., a first-order hyperbolic p.d.e) for the

nondimensional electrostatic potential fluctuation, g,—‘i’:

8,ed,  T. 1 dng 9 ed
at Te) " eBrmng dr SB(Te) 3

This equation is easily solved, subject to the obvious condition that the potential must
be periodic in 6. In fact, let us look for “harmonically varying solutions” (this is
possible since the coefficients of this equation are at most functions of r and not of
8,t). In fact, let us set, % = f(z,7)exp [mf — wt], where m is an integer (non zero!)
and w is a frequency “eigenvalue” to be determined. Substitution in Eq.(31) gives,

w = w,
e Ldncﬂ)(ﬂ)
eB 'neg dr "' r

(32)
There are several things to be noted about this result. First of all, we see that the
frequency, w,, called the electron drift frequency, is proportional to the density
gradient of the equilibrium profile, neo(r). Furthermore, it is also proportional to the
azimuthal wave number, ks = m/r. It is directly proportional to the electron
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temperature and inversely proportional to the magnetic field. To understand this
dependence a bit better, let us introduce the “thermal speed” of the ions, defined by
the rule, C* = T,/m;. We also introduce the “effective ion Larmor radius” (the actual
one is zero, since the ions are cold!), p, = C,/Qy = C/(eB/m;). This is correct
for hydrogen, deuterium and tritium, but will require obvious modifications for other
nuclei. Let us also note that the “scale-length” for the variation of the equilibrium
density is given by, L,(r) = (|;5-%z2|)~". Typical density profiles will have negative
density gradients. It follows that w, is positive for positive kg.

Using the definitions of Cj, ps, we see that Eq.(32) may be written as,

%) kaps) (33)
1’3‘.
The frequency Cs/L, is roughly like the time a sound wave in the plasma will take
to travel the length, L,. The nondimensional wave number, (kgps) determines the
angular frequency, w, of the wave at each radius r. From Eq.(14) we know that this
is the direction of the equilibrium electron drift, u.p = %ps. Indeed, we see that,
Wy = Uepka(r), at each radius. Thus the phase velocity of the disturbance at each radius,
is 70 = Uey. The disturbance moves with the electron diamagnetic drift velocity! For
this reason, these waves are called electron drift waves.

we = (

You will have noted (I hope!) some odd features: while we have determined that
these waves are obviously stable (ie., periodic in time), they only propagate in the
f-direction, (transverse to the magnetic field). Since we always require that p, =
ps/Ln < 1, the phase velocity is always much smaller than the thermal velocity, C
of the ions. It is also clear that w, < £}, since we shall only be interested in wave
lengths long compared with ps, so that kgps < 1, or at least is not very great compared

to unity. We have also no information about propagation in the z-direction, parallel
to the ambient magnetic field.

Let us try to remedy some of these defects. We start with the ion momentum equation,
Eq.(26). Taking the z-component, we find that,

mMiMeo 5t = ETen 9z
aﬁiz _ 26 Eé
5 - Csa_z(Te) (34)

upon making use of the definitions above. As was stated earlier, Eq.(27) is a first
approzimation to the solution of Eq.(26) in the perpendicular direction to the field.

13



To get the next approximation, we simply substitute this first approximation on the
LHS of Eq.(26) and calculate the next approximation (this is called the method of
successive approximations or iterations).

i = (Copes x Valg) - AV (E) (39
where the simple relation, p, = Cs/Q; has been used. You can check the dimensions
of each term, and also the fact that the last term corresponds to the “inertial drift” of
the ions in the time-dependent fluctuating electrostatic field. Note that we have still
not included dissipation. We now substitute into the ion continuity equation, Eq.(22)
using the adiabaticity relation, Eq.(25), as before and eliminate the density fluctuation
in favour of the electric potential fluctuations to obtain,

, 0 ed

2 ed T, 1 dﬂeoi(é) 9 e
T, L8N T

at(ﬁ ~ eBrng dr 80

o .
= “5(““) + 0V ) (36)
We have to solve this equation along with Eq.(34). To get an idea of what this system
might give, we make the so-called local approximation. Thus we assume that the
wave-lengths of the disturbance are small compared to the scale-length L,, which may
be treated as a constant. We assume the “harmonic” approximation, and set,

BTE = A(r,m, k;,w) exp [imf + ik,z — iwt] (37)
€
2 = Brym, k., w) exp[imd + i,z — iw] (38)

where A, B are non-dimensional amplitudes, m, k, are wave numbers and w is the
frequency to be determined.

Evidently, Eq.(34) gives,

B =2 (39)
whilst, Eq.(36) leads to,
- 1d, dA M., ~ C.k? .
_ — 2| = ey N2 R
(w—w,)A Wy ’fdﬂ"(r d"r) (T) Al + " A (40)

This is now a second-order ODE which can be solved subject to the boundary condition
that A vanishes for r = 0 and r = a, for example. Given m, k., n.y, we can determine
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the “eigenvalues” w. You can immediately see that we recover Eq.(32) when the terms
on the right due to the “inertial drift” and the “parallel” motion is neglected. Suppose
only the inertial term is neglected, and we consider m = 0. We then obtain, w = £Ck.,
which we have seen is typical of sound waves. Rather than attempting to solve this
equation generally (not trivial for general n profiles!) we assume that we are interested
in relatively short radial wavelengths compared with L, and write, r = ro(1 + z) and
specialize to the case when all equilibrium quantities are evaluated at ry, a reference
radius, and set, A = Cexp(iAz), where A is a nondimensional “radial” wave number.
Then, we have, [%%(r%ﬁ‘-) — (-’-’f)zﬁ] ~ —;13()\2 + m?)C. Tt is reasonable to define the
“perpendicular wave number”, k7 = (A* + m?)/ri.We now find that w satisfies the
“local”, quadratic, dispersion relation,

CZkZ
MQ_[_W—*]w_4 =0 (41)
1+ p2k% 1+ p2k%

where all equilibrium quantities (including w,) are evaluated at 9. The solution of the
quadratic gives,
1
W = ———— |w, £ (w2 + 40222 42

showing immediately that these “electrostatic” drift waves are really modified sound
waves, capable of propagating both parallel to and perpendicular to the magnetic field.
Note the complicated dependence on the wave numbers. When k, = 0, we get a simple
result for the drift wave frequency, generalizing Eq.(33):

Cspikg

T 43
1+ p2k? (&)

where p, = ps/L,. On the other hand, if we consider purely parallel propagation
(ie., kL = 0), we simply get sound waves propagating parallel to the field with phase
velocity, Cs.

The formula shows that with the inclusion of the inertial drift, the drift waves can
propagate along the density gradient, as well as in the azimuthal direction. Note
however that within the assumptions of this “dissipationless” model, drift waves are
completely stable, as the frequencies are real for all possible choices of wave numbers!

Other effects such as collisions and ion or electron temperature (strictly entropy gra-

dients) do, in fact lead to instabilities. These instabilities are extremely important,
as they are very widely observed in many plasma devices and are thought to be the

15



basis of drift wave turbulence in quasi-neutral plasmas. We look at this vast subject
briefly.

XIL.5 Qualitative notions of drift wave turbulence in plasmas

The simplest way to understand one possible mechanism of drift wave instability is to
consider the “generalized Ohm’s Law”, Eq.(24). If we include a resistive drag term,
this equation becomes, upon taking the z component,

0 - ~ _ -
8_Z(Ten = ene()@) = meneﬂyei(uzi == uze)
d , n ed Melei . -
@(E - ?) = %(un‘ — ilzg) (44)
e e e

We observe that neglecting electron inertia (and dissipation!), the perpendicular elec-
tron velocity from the electron momentum equation is,

- e C
e = Cops, X Vi — s

T B e, xVin (45)

Note that quasi-neutrality requires, V. [ne(uw; — u.)] = 0. From Egs.(35,44,45), we
obtain the relation,

(— = (46)

eCIJ) ) NeoTe o?
mcyezaz Ten e

0
—Pﬁa( l:neOvJ_( T,

Denoting the amplitude for the density fluctuations, ig by C, and making the same
“local” approximations as before (taking p; < L,k)ps ~ 1), we find, from Eq.(46),
% T, ].,2 5 "
e 2
- k1A — C—-4) =0

P WR) 7neVem( )
It follows that the adiabaticity relation between density and potential fluctuations,
Eq.(25) is modified by collisions to,

¢ = Afl—iA) (47)
_ Plumerekl

A= T.k2
o Me Wl _’_V"_J;z
= EHEE (48)

This says that there is a phase shift between the density and potential fluctuations
introduced by electron-ion drag. This a very widely observed “generic” feature of
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collisional effects and is also similar in character to that due to collisionless phase-
mixing effects such as Landau damping. The instability is sensitive to this phase-
shift, as will shortly appear.

Substituting from Eqgs.(34,35,47,48) into the ion continuity equation yields,

0 i p— ed T, 8 ,ed 1 dn, Ot
71 |G’ ”SVL(TG)] [eBraH Te)} s e e
; 5 . C22 .
—iw(C+ Pk A) +iw, A+iEE2A = 0
w
2k2
w?(1 B et Lk _ (49)

_H+ﬁﬁ Lﬁ+@ﬁ 1+ p2k2

This dispersion relation generalizes Eq.(41) to the case when there is a finite resistivity.
Typically, one has Csk, < w,; k2 < k. You can see that the latter is really necessary
to get reasonable values of A. Under these circumstances, a first approximation to
the solution is, wye =~ ﬁ{, which is the “dissipationless” result. It is immediately
seen that the next approximation including the A term gives an imaginary part to the
frequency:

Wim __Alwre)
Wre B 1+p§k‘i
E Wrel/ei kJ_ 2 1
mi)( QZ )(kz) 1+ p2k3 (50)

It is clear that a positive wye, implies that wi, > 0, and this corresponds to growth,
since —iwt =~ wiy,t for large t. The drift waves are linearly unstable in the presence
of electron-ion collisions causing momentum transfer between the species. Note that
the analysis does not apply, as it stands when &, = 0!

What happens next? The growing “modes” don’t simply go on growing. Rather,
many nonlinear terms which are neglected in the analysis tends to stop or “saturate”
the growth of the “sea” of modes produced by this drift instability from essentially
“thermal noise”. This sea of unstable drift waves is an example of “low frequency tur-
bulence” observed in tokamaks and many other plasmas.There are of course many ofher
instabilities than the very simple ones studied here. The net effect of this turbulence
can only be really assessed by fully electromagnetic, nonlinear calculations which take
not only the “microscale” structures around the size of p,, but also of “mesoscale”
fluctuations and the system-sized macroscale variations of density, temperature, fields
and current.



The problems involved are very complicated, not only because kinetic effects such as
Landau damping, and trapped particles play important roles, but also of the
enormous disparity in temporal and spatial scales involved. You must remember that
the “fluid” approach is strictly incorrect when the wave lengths of the disturbances
are comparable to the Larmor radius. The ions would certainly tend to “average” out
fluctuations finer in scale than their Larmor radii. Numerical simulations take fantastic
computing resources to do realistic calculations. However, as in fluid turbulence, many
models have been studied, both analytically and computationally. In recent years, the
enormous computing power available have indeed brought us close to solving these
tremendous challenges.

In essence, plasma turbulence due to drift and shear-Alfvén waves (which we have
not considered here at all!) is created by the “free-energy” available in the density,
temperature and current gradients due to the external sources (or fusion/gravitational
heating!). This turbulence produces stochastic magnetic fields and strong E x B drift
fluctuations which tend, as a rule, to transport energy, particles and momentum far
faster than the rates calculable from Coulomb collisions, even when trapping effects
are taken into account. The turbulence modifies the “profiles” and the latter influence
the former! There is a “modal ecology” where modes “eat” other modes, grow and
die according to the specific rules prescribed by plasma dynamics and Maxwell’s equa-
tions reduced to a quasi-neutral electrodynamic system. The plasma “organizes itself”
in ways which are not fully understood. Although “chaos” plays an important role,
plasma turbulence, like atmospheric turbulence is a fascinating mixture of coherent
and incoherent interactions among a very large number of degrees of freedom in driven
dissipative systems.

The challenge is not only to “understand” the main features of this nonlinear “dance”
of the plasma, but to calculate effectively all the measurable properties associated with
the transport and confinement and show that the results are in agreement with mea-
surements in experiments or astrophysical/technological observations. In this Lecture,
I have outlined the basic concepts involved and the challenges ahead.
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