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Cosmic Plasmas, Physics 418

Problem Set for Lecture 1: Elements

A. Thyagaraja

EURATOM/UKAEA Fusion Association, Culham Science
Centre, Abingdon, OX14 3DB, UK.

Note: The problems (in this set and those for Lectures 2,3) are designed to bring out
key points made in the lectures and clarify them through ezplicit ezamples. Hints for
their solutions are provided in some cases. Problems which are “hard” are starred;
they will be dealt with in the “problems class”, at least in outline. Solutions to the
problems will be handed out separately. Some additional problems are also provided
for entertainment for those who wish to go deeper into the subject. They are optional
extras and will not be required as a part of this course.

1. Calculate in joules the energy acquired by a deuterium nucleus (composed of a
proton and a neutron) when accelerated in a straight line by an electric field of 2
kV/m over a distance of 1 m. Assuming it started from rest, calculate its speed at this
point.

2. Find the spherically symmetric solution to Eq.(2) of the text which matches with
the Coulomb potential of a point charge e at the origin, ﬁ, as R — 0 and which
goes to zero at infinity. (Hint: You may find it useful to use the fact that for functions
f(R) with, R? = 22 + 42 + 2%, V*f = 5 L(R?L). Write, ¢ = f(R) = g/R. Solve the
equation which results for g, and apply the boundary conditions stated).

3. A uniform, infinite cylindrical plasma (radius a, cylinder oriented along the z-
axis) carries a steady current of I, MA. Calculate the magnetic field at any radius
r in magnitude and direction due to this current. You may assume that the current
density, j = (ﬂ%)z MA /m?, for r < a and vanishes for » > a. (Hint: Solve “Ampére’s
Law”, Eq.(3), for B, using the given values for €y, ¢). Calculate, using the results, the
magnetic field at 7 = a = 1m, when I, = 2MA. Generalise this result to obtain a
formula for the magnetic field in vacuum for r > a due to an arbitrary, cylindrically

symmetric distribution of the current density within the plasma (ie., when j, is an



arbitrary function of 7* = 2 + y?, but the total current flowing is still 7).

4*. Find the general solution of the 1-dimensional, collisionless, “free-particle” kinetic
equation for the distribution function f(z,v, 1),
of of

E-F'U% = 0

Using this solution, or otherwise prove the following results. Assume that the domain
in question is all of “velocity space” (ie., —0o < v < o0) and periodic position space,
(ie., f(z, v, 1) is a periodic function of z/L with period, 27, and L is a fixed, “periodicity
length”):

1. The integrals, I (t) = [ [ f"dzdv are constants of the motion for any n for which
the integrals exist at ¢t = 0; ie., %L = 0. Deduce that the evolution of f according
to this equation conserves the total number of particles, N = I;.

2. Show that if initially f is nonnegative (ie., f(z,v,0) > 0), the kinetic equation
preserves this positivity property for all times (both for ¢ > 0 and for ¢ < 0!).

3. Show that the integral, H(t) = [ [(fln f)dzdv (called Boltzmann’s u-space
entropy) is also a constant of the motion.

4. Assume that at t = 0 f(z,v,0) = C.ng(z) exp [-M (v — uo(z))?/2T], where, C is
a “normalization constant”, M represents the mass of the particles, and T'(joules)
represents the uniform “temperature” of the particles and ng(x),uo(z) are cer-
tain periodic functions of z, where ng(z) > 0. First, evaluate C in terms of
M,T, N given the condition that [T dv [ f(z, v, 0)% = N, assuming that the
function, no(z) satisfies the condition, [T n¢(z)% = N. Next, interpret phys-
ically the meaning of ny(z) and wug(z). Taking, no(z) = 22 _. vpcos(kz/L),
and ug(r) = 132 _, Uk cos(kz /L), where the Fourier coefficients are certain con-
stants characteristic of the initial conditions, find, using the general solution for
f, the expressions for the velocity moments, < f >= [®_ f(z,v,t)dv; < vf >=
12 vf(z,v,t)dv; < v f >= [ v?f(z,v,t)dv as functions of z, ¢.

5. Show that, as || — oo, these velocity moments tend to uniform and constant
values, in spite of the fact that f itself (considered as a function of z, ¢ for fixed v)
does not! (Hint: For this exercise, you will need to be able to evaluate “Gaussian
integrals” like [°0 z™exp(—[Bz%)dz, where 8 > 0,n are constants. For n = 0,
the value of the integral is, Iy(8) = (%)1/ 2, For odd n the integral vanishes by
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symmetry. For even n the values can be found by differentiation of I, repeatedly
with respect to j3).

The final result that the velocity moments of the solutions of the free particle
kinetic equations approach constant values as |t| — oo is called “phase mixing”
and is a crucial (but not the only) element in an important phenomenon called
“Landau” or “collisionless damping” which you will encounter many times.

5. Show that if at ¢t = 0 the Maxwell equation, V.B = 0 is satisfied, it will hold for all
t according to Faraday’s Law.

6. Use the equation of continuity, Eq.(22) to derive Eq.(25) from Eq.(24) explicitly.
7. Show that in ideal MHD plasmas, E.B = 0.
8. Derive the ideal MHD equations in a form where E, j do not appear explicitly.

9. Show that for any bounded volume V with boundary surface, S, [¢pndS =
Ji- VpdV. (Hint: let a be an arbitrary constant vector. Apply Gauss’ divergence
theorem to [;, a.VpdV and infer the result from the fact that a is arbitrary).

Additional (optional) problems for entertainment
and self-study

10. Solve the collisionless kinetic equation for particles of mass M moving in a conser-
vative, external force-field, F, = ‘fi—f with potential, K (z), a function of z in infinite x
space, assuming that the distribution function does not vary with time:

af 1 dKof

Ues T g Be

(Hint: Consider the particle energy, E(z,v) = %MUZ — K(z) and observe that the
equation can be written as, %(E”—f)) = (. Infer that if you can find a particular solution
to the above equation, an arbitrary function of it is also a solution! The same result can
also be obtained by the method of characteristics which can be used more generally).
If the system is known to be in thermodynamic equilibrium, determine the solution
completely in terms of the total number of particles and the temperature. Calculate
the number density as a function of z, assuming that K(z) = —Kyz? (ie., we have



harmonically bound particles). If K(z) does not grow unboundedly at infinity but
goes to a constant, is thermodynamic equilibrium strictly possible at any non-zero

temperature?

10*. Using the results of Problem 9, derive an equation for the time rate of change
of B2, Assuming the potential, K to depend only on position, obtain an equation for
the time rate of change of the kinetic energy per unit volume, (1/2)p,,u®. From these
two equations, obtain the local form of the law of conservation of energy for an ideal
isentropic plasma.

11*. An ideal plasma is confined within an azimuthally symmetric toroidal vessel with
an arbitrary cross section and a perfectly conducting, rigid wall. The electric field on
the wall satisfies, Eiangentias = n X (E x n) = 0, where n is the unit outward surface
normal at the wall. The plasma is assumed to be moving inside the vessel with arbitrary
velocities u which satisfy the boundary condition , un = 0. Given that the plasma
dynamics within this vessel is described by Eqgs.(29)-(34) (Nb. The plasma motion
is not assumed to be azimuthally symmetric or time independent!), demonstrate the
following results.

1. The plasma total mass, M, = fi, pmdV is a constant of the motion.

2. The toroidal magnetic fluz, x; = [y B.egdRdZ is a constant of the motion, where
the z-axis is the axis of symmetry of the toroidal vessel and cylindrical coordinates
(R, Z,¢) are used to locate an arbitrary point within the plasma. The “wall”
of the plasma is represented by a closed contour (does not vary with time),
U(R, Z) = const, and the integral is taken over the area enclosed by this contour
in the “poloidal plane” with ¢ = 0. The unit vector e4, = ez X eg.

3. The global helicity of the magnetic field is defined by the integral (taken over
the plasma volume bounded by the surface, ¥ = const), Ig(t) = [, A.BdV,
where B = V x AJE = __%% — V®. On the perfectly conducting wall, the
electrostatic potential ® may be taken to be zero. Then the vector potential A
may be assumed to satisfy the Coulomb gauge, V.A = 0 and A:angentias = 0 on
the wall. Show that Ip is a constant of the motion, and that B.n = 0.

4. From the local energy conservation equation, derive the global energy conservation
law for the system.
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Solutions to the problems for Lecture 1

A. Thyagaraja

EURATOM/UKAEA Fusion Association, Culham Science
Centre, Abingdon, OX14 3DB, UK.

Note: The suggested solutions here are essentially outlines or “sketches”. You should
check your own solutions against the suggestions made here and/or work through them
if you had difficulties the first time.

1. Calculate in joules the energy acquired by a deuterium nucleus (composed of a
proton and a neutron) when accelerated in a straight line by an electric field of 2
kV/m over a distance of 1 m. Assuming it started from rest, calculate its speed at this
point.

Solution: We neglect the energy radiated by the accelerating charge. The work done
by the field is clearly (since the charge on a deuterium nucleus is equal and opposite
to that of an electron) 2 keV= 3.2 x 10~'%]J. The mass, mp =~ 2m, = 3.35 x 10™*"kg.
Hence, v* = 9.6 x 10'%(m/s)?. Hence, v ~ 3.1 x 10°m/s. The non relativistic expression
is adequate since this speed is only a thousandth of c.

2. Find the spherically symmetric solution to Eq.(2) of the text which matches with
the Coulomb potential of a point charge e at the origin, ﬁ, as R — 0 and which
goes to zero at infinity. (Hint: You may find it useful to use the fact that for functions
f(R) with, R? = z% + y? + 22, Vif = R%E%(RQ%). Write, ¢ = f(R) = g/R. Solve the
equation which results for g, and apply the boundary conditions stated).

Solution: The spherically symmetric Debye equations is,

1 d do one?.
=7’ =5) = (—=)¢
R2dR‘ " dR T



Putting, ¢ = g/R, we see that g satisfies the equation,

i'“’g B (27162
dR2 B EUT

)g

The solution of this equation which goes to zero at infinity is clearly, g = C. exp(—R/Apebye),
where, Apenye = (525)/2, and C is a constant. Since we require the solution, ¢ = g/R
to tend to the Coulomb potential at the origin, we find that, C' =

4meg "

3. A uniform, infinite cylindrical plasma (radius a, cylinder oriented along the z-
axis) carries a steady current of I, MA. Calculate the magnetic field at any radius
r in magnitude and direction due to this current. You may assume that the current
density, j = (;‘;%)z MA/m?, for 7 < a and vanishes for 7 > a. (Hint: Solve “Ampére’s
Law”, Eq.(3), for B, using the given values for €, c). Calculate, using the results, the
magnetic field at » = a = 1m, when I, = 2MA. Generalise this result to obtain a
formula for the magnetic field in vacuum for 7 > a due to an arbitrary, cylindrically
symmetric distribution of the current density within the plasma (ie., when j, is an
arbitrary function of r? = 22 + y2, but the total current flowing is still L)

Solution: The only nontrivial component of Ampeére’s equation in cylindrical polar
coordinates (r, ¢, z) is:

1d I
Czﬁo;E(TBcﬁ) = (ﬁ—;), (r <a)
= D.(r2a)

We must find a solution for which the field vanishes at infinity and is non singular at
r = 0. Clearly, we have, for r < a,

I

By(r) = 2ma®ctey ’

as can be verified immediately by direct substitution. Evidently, in the region, r > a,
the equation is satisfied by, By, = C/r, where C is a constant to be determined. This
must match smoothly at r = a (if not there will be a discontinuity there which will
imply a “current sheet”, which by the conditions of the problem does not exist!). It
follows therefore that C' = ( 2—;;1';%) In the general case of the current distribution within
the cylinder being an arbitrary function of radius, we see that only the integral within
the cylinder is modified and the interior field distribution is changed. The constant C
depends only on the total current, I,, and hence the vacuum field, outside the plasma

is By = (ngz—e) This formula gives the field in teslas in the numerical example.
0
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4*. Find the general solution of the 1-dimensional, collisionless, “free-particle” kinetic
equation for the distribution function f(z,v,t),
of af

E)'E-i-'ua—m = 0

Using this solution, or otherwise prove the following results. Assume that the domain
in question is all of “velocity space” (ie., —00 < v < 0o} and periodic position space,
(ie., f(z,v,t) is a periodic function of /L with period, 27, and L is a fixed, “periodicity
length”):

1. The integrals, I,,(t) = [ [ f"dzdv are constants of the motion for any n for which
the integrals exist at ¢ = 0; ie., % = 0. Deduce that the evolution of f according
to this equation conserves the total number of particles, N = I.

[N

Show that if initially f is nonnegative (ie., f(z,v,0) > 0), the kinetic equation
preserves this positivity property for all times (both for ¢ > 0 and for ¢ < 0!).

3. Show that the integral, H(t) = [ [(fIn f)dzdv (called Boltzmann’s p-space
entropy) is also a constant of the motion.

4. Assume that at t = 0 f(z,v,0) = C.ng(z) exp [~ M (v — uy(z))?/2T], where, C is
a “normalization constant”, M represents the mass of the particles, and T'(joules)
represents the uniform “temperature” of the particles and ng(z), ug(z) are cer-
tain periodic functions of z, where ng(z) > 0. First, evaluate C' in terms of
M, T, N given the condition that [¥2°dv [7, f(z,v,0)% = N, assuming that the
function, ng(z) satisfies the condition, [*_ no(ac)df = N. Next, interpret phys-
ically the meaning of no(z) and ug(z). Taking, no(z) = Xpo_o vk cos(kx/L),
and ug(z) = £ _, Uk cos(kz /L), where the Fourier coefficients are certain con-
stants characteristic of the initial conditions, find, using the general solution for
f, the expressions for the velocity moments, < f >= [%, f(z,v,t)dv; < vf >=
2 vf(z, v, t)dv; < v f >= [ v?f(z,v,t)dv as functions of z, t.

5. Show that, as |t| — oo, these velocity moments tend to uniform and constant
values, in spite of the fact that f itself (considered as a function of z, t for fixed v)
does not! (Hint: For this exercise, you will need to be able to evaluate “Gaussian
integrals” like [* z™exp(—Bz?)dz, where 8 > 0,n are constants. For n = 0,
the value of the integral is, Io(8) = (Z)/2. For odd n the integral vanishes by
symmetry. For even n the values can be found by differentiation of I repeatedly
with respect to 3).



The final result that the wvelocity moments of the solutions of the free particle
kinetic equations approach constant values as |t| — oo is called “phase mixing”
and is a crucial (but not the only) element in an important phenomenon called
“Landau” or “collisionless damping” which you will encounter many times.

Solution: Either by the method of characteristics or just by inspection, we see that
the general solution to the given first order, linear pde. is, f(z,v,t) = F(x — vt,v),
where, F(a, 8) is an “arbitrary” function of its arguments, o = z — vt, 8 = v. From
the given conditions, we see that F' must be a periodic function of o/ L with period 2,
and at ¢ = 0, must be nonnegative for values of its arguments (since, by definition, it
represents a distribution function or a probability).

1. We can prove this in two ways: without even solving the equation, if we multiply
it by ™! and integrate over the x, v ranges stated, we see that,

dh, _ [ of
dt  Juw Ot
v fr
= - /m B2 dzdv
=0

The last following from the periodicity of f with respect to the space variable,
z. Alternatively, I, = [, F™(z — vt,v)dzdv = [, , F*(a,v)dadv. Clearly a
periodic function integrated over its period can be “shifted” by an arbitrary
amount without altering the value of the integral! Hence the time variable simply
disappears from I,, and the result follows! Since, for n = 1, the integral equals
the total number N of particles, the evolution equation clearly conserves this.

2. Nothing in the general solution says we have to take ¢ > 0. Since the initial
conditions dictate that F'(«, 8) > 0, we must have that, f(z,v,t) = F(z—vt,v) >
0 for all time.

3. Observe that if f(z,v,t) is a solution of the kinetic equation, and G(z) is an
arbitrary (sufficiently regular, of course) function of its argument, then, G(F) =
g(z,v,t) is also a solution! This is because,

oG 3G _ _,[8f . of
o Ve G[aﬁ%}
=0



where G' is the derivative with respect to its argument and we have used the
“chain rule” of calculus. It follows that G = fln f is also a solution, and from
the preceding result, the constancy in time of Boltzmann’s H follows.

4. From the given relation for the “Gaussian” integrals, we have
o 7

oo D

[+ exp [—M(’U — ug(x))Q/QT] dv = (M)l/2

—c0 M

irrespective of the function, ug(z). Since we are given the conditions that ng(z)
is periodic in z/L with period 27 and, [T, no(z)% = N, it is clear that C =
(#L)~1/2 in order to satisfy the normalization requirement. It is useful to think
of the position coordinate, z/L as an “angle”, 6, which varies from —7 to 7.
It is then easily seen that ng(@) is the number density (ie., number of particles
per radian) of the system at ¢t = 0. From the symmetry properties of Gaussian
integrals, we know that,

/ " exp [~M (v - uo(2))2/27] (v — wo(@))dv = 0

—0oa

It is clear therefore that,

Foo
/_ @0, 0dy = mofe)
/_ ™ feulivdy = ng(z)ulz)

It is then clear that ug(z) is the average “fluid velocity” of the particles at the
location z at ¢ = 0.

. 'We know from the general solution that f(z,v,t) = C.ng(z—vt) exp [—M (v — uo(z — vt))*/277,
where,it is clear that C = (%:)‘1/2. This solution is still periodic in @ = z/L

as before, but its v dependence is extremely complicated, as well as the time

dependence! We have the following relations for the lowest velocity moment:

/jw flz,v,t)dv = C/_+Do i vy cos(kz/L — kvt/L) exp [—M(v — ug(z — vt))2/2T] dv

0 p=—co

The general evaluation of such series is indeed hopeless, but we are only interested
in the behaviour of these averages in the limit, |t| = oo. Furthermore, to illustrate
the points with the minimum of algebraic complexity, we consider the special case
when |uo(z)| < (35)'/2. This simply says that the flow velocity is initially small
compared to the “random” or “thermal” velocity. With this approximation, we

b}



may expand the local Maxwellian about the zero mean flow one and use the
Fourier representation. We must discuss the long time behaviour of series like,

<F>» = /_+°0 i Dy (z) exp(—ikvt/L) exp [—Muz/2T] dv

k=—o00

where 73 (x) can be calculated from the given expressions for ny(z), ug(z). The
important thing is the form of this series. Now consider the integrals,

—+o0
J(t) = f exp(—ikvt/L) exp [~Mv? /2T dv
For k # 0, it is easily seen, either by explicit evaluation, or by the general
Riemann-Lebesgue lemma of Fourier integrals, that as |t| — oo, Ji(t) — 0.
For, setting Vin = (2£)%/2, we see that,

T(t) = Vi [ exp [-X — i(kVast/L)N)] dA

—00

= ()" *Viwexp [~ (kVint/2L)?]

from the known properties of Gaussian (complex!) integrals (consult almost any
book on applied mathematics, or even the Feynman Lectures!). Hence, in the
limit as [t| — oo, all the terms of the series for < f >, ezcept the k = 0 term
tend very rapidly to zero! Hence < f >— 1y = % The same proof can be
clearly extended, almost with no changes to all the velocity moments. Thus, all
of such moments “relax” to their spatial average values which would be the limit

of thermodynamic equlibrium!

The interesting thing is that this “approach” to equilibrium by the moments of
the distribution function takes place reversibly in time, and in the presence of
an infinity of constants of the motion! Furthermore, it is very easy to verify
that f(z,v,t) itself does not show this “Landau damping” behaviour, nor is any
particular “wave particle interaction” is necessary. The simplest of all possible
kineticequations thus exhibits “phase mixing” and demonstrates a very generic
way in which time reversible systems can show apparently irrecersible approach
to equilibrium of statistical averages over an infinite velocity space under certain
conditions (which are met in our example).

5. Show that if at t = 0 the Maxwell equation, V.B = 0 is satisfied, it will hold for all
t according to Faraday’s Law.



Solution: Take the divergence of Faraday’s Law and obtain, 2(V.B) = 0. The result
follows.

6. Use the equation of continuity, Eq.(22) to derive Eq.(25) from Eq.(24) explicitly.
Solution: Expand the terms using the product rule of differentiation.

7. Show that in ideal MHD plasmas, E.B = 0.

Solution: In ideal MHD, E = —v x B. Taking dot product with B gives the result.
8. Derive the ideal MHD equations in a form where E, j do not appear explicitly.
Solution: Triviall

9. Show that for any bounded volume V with boundary surface, S, [¢pndS =
Jy VpdV. (Hint: let a be an arbitrary constant vector. Apply Gauss’ divergence

theorem to f;,a.VpdV and infer the result from the fact that a is arbitrary).

Solution: Use the hint!
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Problem Set for Lecture 2: Particle orbit theory

A. Thyagaraja

EURATOM/UKAEA Fusion Association, Culham Science
Centre, Abingdon, OX14 3DB, UK.

Note: The problems are designed to bring out key points made in the lectures and
clarify them through ezplicit examples. Hints for their solutions are provided in some
cases. Problems which are “hard” are starred; they will be dealt with in the “problems
class”, at least in outline. Solutions to the problems will be handed out separately.
Some additional problems are also provided for entertainment for those who wish to go
deeper into the subject. They are optional extras and will not be required as a part of

this course.

1. Using the nonrelativistic Lagrangian given in Eq.(6), show that Lagrange’s equations
are the same as Newton’s equations in Cartesian coordinates.

2. Cylindrical coordinates, (R, ¢, Z) are related to Cartesian coordinates through the
transformation laws, t = Rcos¢,y = Rsing,z = Z. Show that the velocity compo-
nents, Vg, V4, Vz of a particle with coordinates, (R(z), ¢(t), Z(t)) can be expressed in
terms of 9% 98 dZ according to the formula,

dato di dt
IR
v = &
dt
dR L4z
= @Rt R RPTR

where epgy 7z are, respectively the unit vectors in the corresponding directions. In
cylindrical coordinates, the vector potential, A = Agper + Ases + A.ez and B =

VxA= (3% - %)eR +(%F — B#)es + (32 (RAg) — % B)es. If ® represents
the scalar potential, obtain the nonrelativistic Lagrangians for a charged particle with
mass M and charge e moving in the fields due to these potentials. (Hint: R = z(t)e, +

y(t)ey, + Z(t)ez,; express the unit vectors, eg(t), e4(t) in terms of e,,e,. Write down
the expression for the kinetic energy, T' = %M V.V, using the results of Pb. 1 and the

1



nonrelativistic Lagrangian in the Notes (see Eq.(6))).

3*. Using the nonrelativistic Lagrangian of the previous problem and Lagrange’s equa-
tions, obtain the forms for the Newton’s equations of motion of a charged particle in
cylindrical coordinates. If the potentials of Problem 3 are independent of ¢, the az-
imuthal angle, obtain the corresponding constant of motion. This constant is called
the “canonical angular momentum?” of the particle. Is the ordinary angular momentum
of the particle about the z-axis a constant of the motion in the presence of a magnetic
field, even if the Lagrangian has azimuthal symmetry? If, in addition, the potentials
are also independent of ¢, what can you say about the energy, H?

4. Estimate the gyroradius r; of an alpha particle (Helium 4 nucleus) with Mass
number A = 4, atomic number, Z = 2 and energy 4 MeV in the Earth’s magnetic field
(approx. 107*T). Given that the typical scale length of the field is of the order of 1000
km, calculate p* for this particle. Look up the data for the Sun’s average field near its
surface and for Jupiter and calculate the corresponding numbers.

5. Imagine a charged particle moving with a speed v, along a circular B-field line,
the radius of curvature R, is assumed much larger than the Larmor radius, rz of the
particle in the field of magnitude B. Treat the centrifugal force on the particle, M vﬁ /R
as an “external” force, f| (cf. Eq.(21)) and work out the resultant drift. Compare your
result in magnitude and direction with the last term of Eq.(50).

Additional (optional) problems for entertainment
and self-study

6. Taking b = e, and B = Be,,E = Fe,, where B, E are constants, integrate the
relativistic equations,

PoL _ (eB/M)(pr x e
dpy  _
i ele,

subject to the conditions, py(0) = 0,p1(0) = poe;. Determine the time variation of
M. Obtain the expressions for the velocities, v = p/M and solve for the trajectory of
the system, given that the particle starts from (z¢,0,0) at ¢ = 0. Determine the time
variation of the Larmor frequency and the Larmor radius in the laboratory frame.(Hint:



it is advantageous to introduce the new independent “gyrophase” variable, through,
% = —eB/M(t) and write the equations in component form in Cartesian coordinates).

7.* Solve the equations,

-C-;% = eFe;+ (eB/M)p x e, (1)
together with the trajectory equations, -‘};‘; = 47 in the relativistic case in complete
generality, assuming only that E, B are constants and M = (m? + p2/c?)!/?, where m
is the rest mass and e is the charge of the particle. In particular, consider arbitrary
initial data and all possible values of E/B. What happens to the “E x B” drift of a
charged particle when E/B > ¢?

8.* A uniform B field along the z-axis is represented by the vector potential, A =
(BE)e4. Consider the plane non relativistic motion (in the plane, Z = 0) of a charged
particle of mass M and charge e under the action of a central gravitational potential,
Gu/R where p is the mass of the central attracting body (neglect the reaction on this
body which can be assumed to be at rest at the origin). Set up the two-dimensional
equations of motion and solve them after obtaining the constants of the motion. In
particular, obtain the period and the trajectory of the particle’s motion in the plane.

9*. Reconsider the previous problem, assuming that %% = 0 for all time, but the motion
is relativistic (ignoring any radiation due to accelerations) due to the very large value
of the gravitational attraction, what happens to the motion? What happens if the
central force is a repulsive, electrostatic one?

10. Derive Eq.(43) of the text for the nonrelativistic averaged “drift” Lagrangian in
detail.

11. Using the previous result and the suggestion made in the text, derive Eq.(26) of
the text. Similarly show in detail that Eq.(48) follows by varying the drift Lagrangian
and taking the parallel component.

12. Justify the statement made in the text that the terms neglected in deriving Eq.(50)
are indeed smaller than the retained terms by at least p*.

13*. A “wiggler” magnetic field can be specified approximately in cylindrical coordi-

nates thus:

19¥
Br =~z



10T
Bz = maR
B¢, = O

where the function ¥(R, Z) = [Bo + B cos(%)] (%2), where By > B, are constants
and L is a scale length, much larger than the Larmor radius ry, of a particle with mass,
M and charge e moving nonrelativistically. Show that this field is indeed divergence
free and determine the components of the vector potential in terms of W.

Assume that there is no electric field in the system. Integrate the equation Eq.(48) and
find the conditions on the initial values of v, v, and location for the particles to be
“trapped” in the minima of the field and for them to be “passing” (ie., be “untrapped”).
Assume that the probability of finding a particle with a given set of initial velocities
is a Maxwellian at a constant temperature, calculate, at a radius Ry and location, Zj,
the probability of being trapped or passing. Apart from p and kinetic energy, what
other constants of motion exist in this case, and why?

14*. A purely azimuthal field in a vacuum is of the form, B = Byey; = By(2)e, =
-—%f@,. It is regular for R > 0 and Ry is a “reference radius” where the value of the
field is By. Assuming there are no electric fields and the magnetic field is stationary,
solve the exact relativistic (and nonrelativistic) equations of motion by finding the three
constants of the motion. Assume that at ¢t = 0 the particleis at R = Rjp,¢ = 0,2 =10
and v = vg(0)eg + v4(0)es + vz(0)ez. Obtain the geometrical characteristics of the
orbit. Generalize the solution to the case when there is an electrostatic potential, ®(R).

15*. Reconsider the above problem non relativistically, using the “drift” equations
derived for the guiding centre motion in leading order of p*. Calculate the drifts of
charged particles (positive and negative) in such a field, amd work out the guiding
centre orbit. How does this compare with the exact solution in the nonrelativistic case
obtained in the problem above?

16. Carry out the gyro averaging procedure directly on the nonrelativistic equations
of motion and derive the drift equations for the guiding centres. (Hint: Consult the
literature, particularly, Francis Chen’s book, Ch. 2).

17. Derive the expressions for V = % for a particle in terms of spherical coordinates,
r,0,¢ (where, = rsinfcos ¢,y = rsinfsing, z = rcosf), and using it, write down
the nonrelativistic Lagrangian for a charged particle of mass M and charge e in these
coordinates. Obtain the equations of motion from it in the presence of general E,B
fields (expressed as usual in terms of an electric potential, & and vector potential A in

4



spherical coordinates) and an external gravitational force field f = MVK.

18*. Discuss, using the nonrelativistic, Newtonian guiding centre equations, the motion
of a charged particle in the dipole magnetic field of a star of mass M,. Find all the
relevant constants of the motion of the exact system and reduce the equations as much
as possible towards obtaining a numerical solution (the latter is not expected!). You
may assume that the dipole is oriented along the spin axis of the star and the initial
position of the particle is in the equatorial plane, well away from the “edge” of the

star.
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Solutions to the problems for Lecture 2

A. Thyagaraja

EURATOM/UKAEA Fusion Association, Culham Science
Centre, Abingdon, OX14 3DB, UK.

Note: The suggested solutions here are essentially outlines or “sketches”. You should
check your own solutions against the suggestions made here and/or work through them
if you had difficulties the first time.

1. Using the nonrelativistic Lagrangian given in Eq.(6), show that Lagrange’s equations
are the same as Newton’s equations in Cartesian coordinates.
Solution: The Lagrangian is,

Ly = (1/2)Mv? —e®(r,t) + eA(r,t).v

Let r = (21,22, 23),v = (V1, Vo, V3) = (1, %2, T3), A = (A1, A, A3). Clearly, %%;f =

Ol _ _, 00 | ,04) 0421 o 01
MW, +eAy, G2 = e5 +e5tVi +e5i2Va + e Vs,

Substituting in Lagrange’s equation, & (%) = 9Loc, and using the facts that G =

%+ Vlg—i +%3—$+"%g—g, E= —%—‘f —V®,B =V xA, we obtain Newton’s equations.
2. Cylindrical coordinates, (R, @, Z) are related to Cartesian coordinates through the
transformation laws, £ = Rcos¢,y = Rsing, z = Z. Show that the velocity compo-
nents, Vg, Vi, Vz of a particle with coordinates, (R(t), #(t), Z(t)) can be expressed in

terms of %?, %, % according to the formula,
dR.
V = —
dt
_ AR, o, 42,
Toar e T A

where ey 7 are, respectively the unit vectors in the corresponding directions. In
cylindrical coordinates, the vector potential, A = Apep + Azey + A.ez and B =

i



VxA= (é%% %"*—)efg + (% — Hz)e, + (3 (RAy) — %6;; )ez. If @ represents
the scalar potential, obtain the nonrelativistic Lagrangians for a charged particle with
mass M and charge e moving in the fields due to these potentials. (Hint: R = z(t)e, +

y(t)ey + Z(t)ez,; express the unit vectors, eg(t), e4(t) in terms of e, e,. Write down
the expression for the kinetic energy, T'= 1 MV.V, using the results of Pb. 1 and the

nonrelativistic Lagrangian in the Notes (see Eq.(6))).

Solution: R = Rcosg¢e, + Rsinge, + Ze,. Differentiate w.r.t ¢, bearing in mind
that the basis vectors e, . are constants We obtam V = (Rcos¢ — Rsin ¢d)e, +
(Rsin ¢+ Rcos ¢dle, + Zez = “Lep + R%ey + %o, from the definitions of the unit
vectors in the cylindrical system

Using these results, we see that, Lnr(R, qﬂ, Z,R, 9,7, t) can be written as,

1 . . . . . )
Lu = M [R? + R?¢* + 2%] — e® + eRAR + eRpAy + eZ Az

3*. Using the nonrelativistic Lagrangian of the previous problem and Lagrange’s equa-
tions, obtain the forms for the Newton’s equations of motion of a charged particle in
cylindrical coordinates. If the potentials of Problem 3 are independent of ¢, the az-
imuthal angle, obtain the corresponding constant of motion. This constant is called
the “canonical angular momentum” of the particle. Is the ordinary angular momentum
of the particle about the z-axis a constant of the motion in the presence of a magnetic
field, even if the Lagrangian has azimuthal symmetry? If, in addition, the potentials
are also independent of ¢, what can you say about the energy, H?

Solution: Lagrange’s equations give the equations of motion in cylindrical coordinates.
The method is exactly similar to that used in Pb. 1 and will not be repeated. Note
however that they automatically include the “centrifugal” and Coriolis terms in the
radial and azimuthal directions.

If & and A are independent of the azimuthal angle, ¢, the cyclicity theorem says

that the “conjugate canonical momentum”, P; = %L is a constant of the motion. We

see easily that, Py = M Rzg'ﬁ +eRAy. If Ay is identically zero, we would indeed have,
Py=M R2¢5 = constant, and this implies the constancy of the mechanical angular
momentum. If Ay is a general function of R, Z,t, however, the mechanical angular
momentum s not constant! If ® and A are independent of ¢, the Notes give the proof
that the energy, H =T + e® is also a constant of the motion.



4. Estimate the gyroradius rp of an alpha particle (Helium 4 nucleus) with Mass
number A = 4, atomic number, Z = 2 and energy 4 MeV in the Earth’s magnetic field
(approx. 107*T). Given that the typical scale length of the field is of the order of 1000
km, calculate p* for this particle. Look up the data for the Sun’s average field near its
surface and for Jupiter and calculate the corresponding numbers.

Solution: The rest mass of the alpha is, Am, = 4 x 1.67 x 107*"kg. The charge is
Ze =2 x 1.6 x 1071°C. Now, 4 MeV corresponds to 6.4 x 107'3]. Since this is low
compared to the rest energy, we may use nonrelativistic formulae. We may assume that
the “perpendicular” energy, E |, of the particle is equal to its “parallel” energy, and take
the former to be 2MeV. Thus, ¢, = (2B, /M)Y? = (4x1.6x10713/4x1.67x10727)1/2 ~
107m/s. The gyro frequency, Q. = ZeB/Am, = 1074(2 x 1.6 x 107%%) /(4 x 1.67 x
10%") = 5000rads/s. Then, r;, = ¢, /Q. = 2km. Hence, p* ~ 2 x 1072, and the
particle is indeed “stuck” to the field line, in comparison with the length scale over
which the field varies. I leave the reference work on the Sun and Jupiter to you.

5. Imagine a charged particle moving with a speed v along a circular B-field line,
the radius of curvature R, is assumed much larger than the Larmor radius, ry of the
particle in the field of magnitude B. Treat the centrifugal force on the particle, M vﬁ i
as an “external” force, | (¢f. Eq.(21)) and work out the resultant drift. Compare your
result in magnitude and direction with the last term of Eq.(50).

Solution: The centrifugal force f = (M vﬁ /R.)er. From the drift formula, we see that
f x b/eB = (Mvjj/eBR.)ez = (v}/QRc)ez = (v}/Q%)b x k, since, k = —(z)er, for
a circle with centre at the origin and radius R,, at any point where the radius vector
is along eg(#). Furthermore, b is the unit tangent vector, = e4(¢), and we obviously
have, ez = b x k. This proves the result required. You should draw a diagram to
illustrate the relevant vectors in both magnitude and direction. Note incidentally that
this drift depends only upon the parallel kinetic energy of the particle and its charge.
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Problem Set for Lecture 3: Applications of the fluid
description

A. Thyagaraja

EURATOM/UKAEA Fusion Association, Culham Science
Centre, Abingdon, OX14 3DB, UK.

Note: The problems are designed to bring out key points made in the lectures and
clarify them through explicit ezamples. Hints for their solutions are provided in some
cases. Problems which are “hard” are starred; they will be dealt with in the “problems
class”, at least in outline. Solutions to the problems will be handed out separately.
Some additional problems are also provided for entertainment for those who wish to go
deeper into the subject. They are optional extras and will not be required as a part of
this course.

1. Show that Egs.(1-3) imply that the internal energy per unit volume, e = —7’—1, of a

perfect gas satisfies the equation,
de
5?; + V. (ue) +pVaua = 0

If m is the mass of a molecule, the number density of the gas is related to the mass
density pm through, n = £=. Given that in a perfect gas, with temperature measured
in joules, p = nT, find the equation satisfied by the temperature T

2. Find the equation satisfied by the entropy per particle, s = —Inp + —1— InT of a
perfect gas. Deduce the conservation equation satisfied by the entropy per umt volume,
Y =ns = pnps/m.

3. Show that Eq.(11) follows from Eq.(10).
4. Show that Eq.(13) follows from Eq.(9) and the equations of continuity, Eq.(1).
5. In deriving the wave equation for small amplitude sound waves, Eq.(35), we used

il



the isentropic relation between density and pressure. Newton assumed a perfect gas
and related pressure and density by treating the temperature (rather than the entropy,
as we and Laplace did) as a constant. Derive the analogue of Eq.(35) with Newton’s
isothermal relation. How could you experimentally distinguish between the theory of
sound waves due to Laplace (isentropic) and Newton (isothermal)?

6. If a source emits sound with a constant wavelength in vessels filled with hydrogen and
helium respectively at the same temperature, where would one hear a higher frequency
and why?

7. Show from Eq.(30) that W.VH = 0, in steady ideal flow. In Eq.(39) show why it
is permissible to set H(t) = 0.

8. Consider a steady, incompressible ideal flow through a convergent-divergent “nozzle”
formed by rotating a parabola (¥ = (Ymax—Ymin) (£)*+¥min) about the x-axis. Apply the
mass conservation and the Bernoulli equations to obtain the variation of the pressure
along the symmetry axis. Assume that the “inlet” is located at + = —L and the
centreline velocity there is ug. Calculate the difference in pressure between the inlet
and the point where the pressure is a minimum (where is this point?).

9. We have derived the sound wave equation in a gas at rest. If the gas were moving
with a uniform and constant velocity, uy with respect to an observer, what is the equa-
tion of satisfied by the density fluctuations in that frame? Derive the famous “Doppler
shift” formula from the corresponding dispersion equation (analogue of Eq.(36)).(Hint:
Observe that p, = po,p = Po,u = Ug is an exact solution of the Euler equations.
Discuss “small oscillations” about this state as has been done in the Notes about the
state of “rest” where, ug = 0.)

Additional (optional) problems for entertainment
and self-study

10. In deriving Eq.(29) (“Kelvin’s circulation theorem”), justify the statement that all
the terms on the right vanish. If p is not a function of py,, is the theorem true?

11. Show that, in incompressible flow, the pressure can always be “eliminated” by
solving the Poisson equation for it in terms of the velocity and vorticity.,

V% = —poV.(W xu) — pgVZ(u?/2)
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If we further assume that the flow is irrotational, what does the resultant equation
simplify to and how is it related to the Bernoulli relation, Eq.(52)7?

12. Show that in steady, two dimensional, incompressible, but rotational flow, the
vorticity @ is a function of the stream function, ¥.(Hint: If f, g are two functions of
(z,y) such that one is a function of the other, it is necessary and sufficient that, the

Jacobian, S44) 0, identically).

13.* (“Water waves”): Consider water filling an infinite (in the z,y plane) lake of
uniform depth —H, with uniform gravity acting downwards (ie., the gravitational ac-
celeration is, —gz). At rest, the water surface is taken to be the z = 0 plane, above
which we assume there is a gas at constant pressure, poo.

1. Solve for the hydrostatic pressure equilibrium within the lake, assuming the water
density to be uniform and constant at pq.

2. Next consider “small” oscillations of the water surface, given by the equation,
z =n(z,y,t). Assuming the flow due to the water wave to be small amplitude and ir-
rotational, discuss the wave motion of the surface and the velocity fields. Assume that
the “free surface”, F(z,y, z,t) = z — h(z,y, t) is a “material surface” (this is called the
kinematic boundary condition) and the pressure = p., on this surface as the boundary
conditions at the free surface. The bottom of the lake is assumed to be “impenetrable”
(ie., u.z = 0). Periodic boundary conditions may be assumed in the x and y direc-
tions. Thus you may assume that all quantities vary like, F'(z) exp [ik,z + ikyy — iwt],
where kg, k, are “wave numbers” in the respective directions and w is the frequency.
Determine, in particular, the function F for the perturbed velocity potential ¢ and the
pressure, and the dispersion relation which connectsw with kg, k.

3. What is the primary difference between this “water wave” and the sound wave as
regards the propagation speed of the disturbances of a given wave number?

14*. This problem is typical of the so-called “exterior flow problem” in ideal incom-
pressible, irrotational flow theory and illustrates the utility of the velocity potential;
Let x = (z, v, 2).

1. Show that the velocity potential defined by, ¢g = U.x is a possible, 3-d exact
solution of the incompressible, irrotational hydrodynamic equations of motion, where
U(t) is a spatially uniform but time-dependent vector.(Hint. Verify that, V2(¢,) = 0).



2. Calculate the pressure at every point of the flow and interpret the solution physically.

3. Show also that ¢; = Z;r? = 2% + y? + 22 is a solution, as is the sum, @o,u(x) =
¢0+(%)¢1, where a is a positive constant.(Hint: 1/r is a solution of Laplace’s equation,
as are its spatial derivatives. The solution is simplified if at any instant ¢, you take
U = U(t)e, and use spherical polar coordinates, r, 8, ¢, noting that only , @ enter the
problem. The time is merely a parameter in this problem!)

4. Show that n.V@, y = 0 on the spherical surface, r = a, where n is the unit normal
to the surface. Interpret the solution as the flow past a solid sphere of radius a (in the
region outside the sphere) which becomes uniform and equal to U at infinity. (Hint:
calculate the fluid velocity on the surface of the sphere and at infinity from the velocity
potential).

5. When U is independent of time, work out the pressure everywhere in the fluid
and by integrating it over the surface of the sphere, and show that the total force
exerted by the fluid on the sphere vanishes. In particular, show that the sphere does
not experience a “drag” force parallel to the flow direction at infinity. This is a special
case of an important theorem of steady, ideal, incompressible, irrotational flow known
as D’Alembert’s Theorem (sometimes mistakenly called “D’Alembert’s paradox”).



Cosmic Plasmas, Physics 418

Solutions to the problems for Lecture 3

A. Thyagaraja

EURATOM/UKAEA Fusion Association, Culham Science
Centre, Abingdon, OX14 3DB, UK.

Note: The suggested solutions here are essentially outlines or “sketches”. You should
check your own solutions against the suggestions made here and/or work through them
if you had difficulties the first time.

1. Show that Eqgs.(1-3) imply that the internal energy per unit volume, e = -5, of a
perfect gas satisfies the equation,

de

— +V.(ue) +pVu = 0

ot

If m is the mass of a molecule, the number density of the gas is related to the mass
density pm through, n = 22 Given that in a perfect gas, with temperature measured

in joules, p = nT, find the equation satisfied by the temperature T.

Solution: The continuity equation, upon expansion and using the fact that p, = m.n
gives,

g—? +uVn+nVau = 0
Multiply this equation by n?~! to get,
on on”
?;t_ +uVn'+m'Vau = a—nt + V.(un") + (y— 1)n"V.u
=0 (1)

Now, p = p*(n/n*)?. The required equation for e = ;f—l follows upon multiplying by
the constant, p*(n*)~7 and using the definitions. Substituting, e = nT/(y — 1) in the
equation for e (just derived), we find that T satisfies,

%—T+u.VT+(7—1)TVu =0



2. Find the equation satisfied by the entropy per particle, s = —Inp + Tj—l InT of a
perfect gas. Deduce the conservation equation satisfied by the entropy per unit volume,
Y =ns = pus/m.

Solution: From the definitions, and the preceding results, observe that,

Ds s
Dt ot

= V.u
Since, we have from the continuity equation, the relation, % +nV.u = 0, it follows

that the entropy per unit volume, ¥ = ns satisfies,

Dx
Dt

We see that in an ideal (ie., isentropic) fluid, the material derivative of the entropy per
unit volume vanishes. This is in fact what is meant by isentropic flow. Note that ¥
need not be uniform in space or constant in time.

3. Show that Eq.(11) follows from Eq.(10).

Solution: It is easy to verify that Eq.(11) reduces to Eq.(10). Firstly, since K is only
a function of position, using the equation of continuity and preceding results, we get
the following:

apgf{ + V. (pnEKu) = ppuVEK
9, p P\ _
at(7_1)+v.(u7_1) = —pV.u



We expand the LHS of Eq.(11):

8 [, pmu? P _ Opnu? 8 u? P
7|5+ 2= u)| = 2215 205 9. (2] -
+V.(pmKu) — ppu. VK
1 u? u?
= . |l = Kon)] - Vom0 + pun ¥ (5)

a8 u®
+pm-5£(7) - V.(pu) + u.Vp — ppu.VK

-1

2
= -V {H(%+ 1 p—ffpm)}

& u? u?
Hhmz (5) + Pt V() +0.Vp — puu. VK
By virtue of Eq.(8) (it is equivalent to Eq.(10)!), the terms in the last row cancel, and

we have arrived at Eq.(11).
4. Show that Eq.(13) follows from Eq.(9) and the equations of continuity, Eq.(1).

Solution: We have seen in the Notes that Eq.(9) can be expanded to,

%—V: +u. VW = —WV.u+W.Vu

From the equation of continuity, we find that ;}; satisfies the equation,

0,1 1 1
—(—)+uV(—) = (—)V.u
dt pm) (pm) (pm)

It follows readily that W* = W /p,,, satisfies Eq.(13).

5. In deriving the wave equation for small amplitude sound waves, Eq.(35), we used
the isentropic relation between density and pressure. Newton assumed a perfect gas
and related pressure and density by treating the temperature (rather than the entropy,
as we and Laplace did) as a constant. Derive the analogue of Eq.(35) with Newton’s
isothermal relation. How could you experimentally distinguish between the theory of
sound waves due to Laplace (isentropic) and Newton (isothermal)?

Solution: The linearized isentropic relation says, pﬁ; = 75’%. If we take the isothermal
assumption of Newton, p = p(Ty/m), where T} is the temperature (in joules). Then,
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linearization yields,i0 = io. In effect, we will get Newton’s theory, simply by replacing
v =1 in all the formulae! We get the same wave equation for small disturbances, but
C? = po/po. It is now obvious how we distinguish between the two theories. We
simply measure the speed of sound at fixed ambient conditions. Since CZ(Laplace) =
vC?(Newton) we have a clear experimental verdict. Indeed, Laplace modified Newton’s
theory precisely because Newton’s prediction of the speed of sound was considerably
lower than the actual value!

6. If a source emits sound with a constant wavelength in vessels filled with hydrogen and
helium respectively at the same temperature, where would one hear a higher frequency
and why?

Solution: Hydrogen being the lighter gas would have a larger sound speed than Helium
at the same temperature. Since w = C,k, at given wave length, the frequency would
be higher in Hydrogen.

7. Show from Eq.(30) that W.VH = 0, in steady ideal flow. In Eq.(39) show why it
is permissible to set H(t) = 0.

Solution: Taking the dot product of Eq.(30) with W gives the first result. Since
u = V¢, we may add an arbitrary function of ¢ to ¢ without altering any physics!
Hence we can simply “absorb” an arbitrary function H(¢) into the definition of the
velocity potential ¢. This new ¢ will give the same velocities as the old one and will
have H = 0, identically.

8. Consider a steady, incompressible ideal flow through a convergent-divergent “nozzle”
formed by rotating a parabola (¥ = (Ymax—Ymin)(%)*+Ymin) about the x-axis. Apply the
mass conservation and the Bernoulli equations to obtain the variation of the pressure
along the symmetry axis. Assume that the “inlet” is located at x = —L and the
centreline velocity there is ug. Calculate the difference in pressure between the inlet
and the point where the pressure is a minimum (where is this point?).

Solution: Since the flow is stated to be steady and incompressible, we may assume
the density to be py,. Let all the inlet quantities be denoted by the subscript 0 and
the “throat” (y = Ymin) Quantities, by the subscript, “t”. Thus the inlet area is
Ay =my2 ., A = my2... The steady mass continuity relation reads,

PmlioAg = PmiliA;



The steady, incompressible Bernoulli relation is,

. g,
PmE‘i‘Po = Pm?"'pt
It follows that,
ﬁﬂ_ﬁt ﬁ't 2
T = (=) -1
(%Pmuoz) (un)
—) =1
At)
= (=)o
Ymin

It is evident that py > p;. It is evident that the pressure at the throat is lower than at
any other point, and correspondingly the velocity is the greatest there. Note that this
solution is only valid if the velocity at the throat, @:is very much smaller than the speed
of sound there (this is the condition for incompressible flow). It is a problem for the
“advanced” student to consider the same general situation when the flow isnot assumed
to be incompressible, but still under steady, continuous and isentropic conditions (the
general case of 1-d compressible “nozzle flow”).

9. We have derived the sound wave equation in a gas at rest. If the gas were moving
with a uniform and constant velocity, u, with respect to an observer, what is the equa-
tion of satisfied by the density fluctuations in that frame? Derive the famous “Doppler
shift” formula from the corresponding dispersion equation (analogue of Eq.(36)).(Hint:
Observe that pm = po,p = po,u = g is an exact solution of the BEuler equations.
Discuss “small oscillations” about this state as has been done in the Notes about the
state of “rest” where, uy = 0.)

Solution: Firstly, note that g, pp,po do, indeed, satisfy the compressible, steady
Euler equations. Next, we “linearize” the system, exactly as before, substituting,
Pm = po+ PP = po + P,u = uy + 1 in the full equations of motion and get (upon
dropping terms quadratic in the disturbances)

ap ~ =
5’;’-+u0.vp+p0v.u = 0
oa - i
E+u0.Vu = —(p—O)Vp
P_ (L
Do V(Po)



It is easily seen that the relative density fluctuation, ¢ = ;% satisfies the modified wave
equation,

(ﬁ + . V2o =C2V0a

ot

in place of Eq.(35). As before, we try the “harmonic plane wave”, o >~ exp(ik.x —iwt).
We find that the dispersion relation relating k,w to be,

(w—ugk)? = CK°

The frequency is no longer given by, w = +C;lk|, as in the case of sound waves
propagating in “still” air, but is in fact, w = ug.k = C,|k|. Suppose the source of sound
moves “with the fluid”, ie., with the velocity, ug. To a stationary observer, aligned
along the direction of this velocity, sound will be appearing to come towards him with
speed, C; + V' and as the source recedes away from him, the wave will seem to be
travelling at speed, Cs — V. Since the wave length remains unchanged, he will hear
the higher pitched Doppler “up shift” on approach of the source towards him and the
“down shift” as the source moves past and away from him. Note that the D’Alembert
wave equation for sound is not form invariant under Galilean transformations. This
says that sound speed depends upon the relative motion of the observer, the “medium”
(ie., the gas), and the source in general and is not absolute like the speed of light which
is invariant for all observers and requires time and space to be relative for relatively
moving observers.

This simple analysis can be generalized to situations when ug is nonuniform (ie varies in
space) but still satisfies the equations of motion. In this “sheared flow” case, the wave
equation is more complex (involving equations with spatially variable coefficients as
opposed to Eq.(35) with its constant coefficients), as it also is when pg, py are spatially
variable, steady exact solutions of the Euler equations. Such modified wave propa-
gation problems in stratified/moving gases are of great importance in meteorology,
astro/geophysics and in engineering.
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Problem Set for Lecture 4: Collisions, two-fluid
theory and qualitative ideas of plasma turbulence
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Note: The problems are designed to bring out key points made in the lectures and
clarify them through explicit examples. Hints for their solutions are provided in some
cases. Problems which are “hard” are starred; they will be dealt with in the “problems
class”, at least in outline. Solutions to the problems will be handed out separately.
Some additional problems are also provided for entertainment for those who wish to go
deeper into the subject. They are optional extras and will not be required as a part of

this course.

1. Consider the 1-dimensional diffusion equation,

o _

ot Ox?
where, —co < z < +o00. At t = 0, n(z,0) = no(z), where ng is an even, positive
function of z which tends to zero like an exponential as z — oco. Show, without
solving the equation that,

1. JZ2 n(z,t)dz = Iy(t) is a constant equal to Ip(0) = [ ny(z)dx

" n(z t)z?d . : 2 ,
2. < (Az)? >= IﬂLgM satisfies the equation, % = D, and integrate

this equation.

3. Interpret p(z,t) = n(z,t)/Iy as a “probablility distribution” and work out the
physical meaning of the above two results.

2. Consider heat conduction in a copper bar (cf. Egs.(4,5) of the lectures) to proceed
according to Fourier’s hypothesis. Since the volume doe not change, the change in
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the entropy, TdS = CydT, according to thermodynamics. Since entropy-flux can be
defined as, &, show that heat conduction equation, Eq.(5) implies that S continually
increases within a bounded volume A of copper whose boundaries are “adiabatic” (ie.,
g.n = 0 on X, the bounding surface of A, where, n is the unit normal to ¥), provided
K1 > 0 everywhere. If you start with an arbitrary initial distribution of temperature
within A, determine the temperature distribution within the region A as t — oo.
How does this asymptotic distribution depend on the thermal diffusivity x, on the
initial distribution, T'(r,0)? Explain how Fourier’s Law of heat conduction embodies

the Second Law of Thermodynamics on the basis of this example.

3. Consider the two-fluid equilibrium obtained in the Notes (Eqgs.(13-19)). If S, =
(£)S*, for 0 < r < a and S* is a constant (units: electrons. m~>.s™"), obtain n.(r)
and B,(r), assuming that v; is given by Braginskii’s formula mentioned in the text.
T., By, A are to be treated as known (constant} quantities.

4. Find the condition on L, kg, ps for the ordering, w, < Q to be valid.

e

5. Show that the solution to Eq.(31) of the Notes is given by, %’ = F(0—w.t,r, z), where
t}—‘I’(Q, r,z,0) = F(8,r,2), at t = 0 and F is periodic in #, but may be an “arbitrary”
function of its other arguments.

6*. Show that if n, = n* exp [—(r/L,)?], where n*, L, are constants, w, is a constant.
Solve Eq.(40) of the text for A and determine the eigenvalues w and eigenfunctions.
(Hint: a knowledge of Bessel functions is needed for this problem!)

7. Derive Eq.(46) of the Notes in detail.
8. Taking v,; to be given by Braginskii’s formula for v; and estimate how large %J-

must be to get wim = 0.01wy,. Assume that T, =~ 1KeV, B ~ 1T, L, ~ Im, p;k; = 0.1.
These are typical “tokamak” values. Take A = 20.
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Solutions to the problems for Lecture 11
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Note: The suggested solutions here are essentially outlines or “sketches”. You should
check your own solutions against the suggestions made here and/or work through them
if you had difficulties the first time.

Some important corrections to the Lecture Notes for Lecture 11 and the
problem set distributed. In the lecture Notes, a formula was given for the Bragin-
skii collision frequency, v; Unfortunately, the formula quoted was in Gaussian units!
The correct SI formula is the following:

2129, Ae?
127322 mb 2 T3/

I/f—

The notation and the symbols are exactly as in the lecture Notes.

Corrections to the problems: Problem 1 needs a correction in Part 2, as indicated below.
In the last problem, the number density, n. was not specified. It should be taken as
5 5 104%m~2,

1. Consider the 1-dimensional diffusion equation,

n B &%n

ot~ o2

where, —o0 < z < +o0o. At t = 0, n(z,0) = ny(z), where ng is an even, positive
function of x which tends to zero like an exponential as z — oco. Show, without
solving the equation that,

1. [*2n(z,t)dz = Iy(t) is a constant equal to Ij(0) = [T ng(z)dz

1



n(z,t)zldz

2. < (Az)? >= L2 satisfies the equation, Lﬁ:’& = 2D (this was wrongly

given in the distributed sheet!), and integrate this equation.

3. Interpret p(z,t) = n(z,t)/l, as a “probablility distribution™ and work out the
physical meaning of the above two results.

Solution: 1. Integrate the equation from —oo to oo with lespect to x. From the
boundary conditions at infinity, the rhs vanishes. Hence, we find, 42 = 0. Evaluating
it at ¢t = 0 gives the required result.

2. Multiply the diffusion equation by z? and integrate w.r.t z over the whole domain.
We obtain,

d +oo 9 _ “+o0 8271
E(/.m n(z, aldz) = D] oo

— 9D f"m :ca—ndm

+oo
= 2Df ndz

= 2DI,(0)

where we use integration by parts (twice!) and the b.c’s. Note that we also use the
result obtained above for the constancy of Iy, incidentally correcting a typo in the
problem. The rhs should be 2 x DIy, not DI as the problem originally stated! The
integration is straight forward: < (Az)? > (t) = 2Dt+ < (Az)* > (0). This shows
that the mean-square displacement is linearly proportional to the time, a typical result
of random walk theory.

3. It is evident that p(z,t) = n/l is a positive probability density, as it is clearly true
that [T p(z,t)dz = 1. Thus p(z,t)dz is the probability of finding a particle in the
interv al, z,z+dz at time t. Obviously, < (Az)? > (t) is the mean square displacement
of the random walking particle (“drunkard”!) at time ¢t. We have shown that this
increases linearly with time, although < Az >= 0 for all time. Thus, even though the
drunkard may have had a zero probability of being outside a finite interval initially, as
t — o0, there will be a small likelihood of finding him arbitrarily far from the starting
point.

2. Consider heat conduction in a copper bar (cf. Eqgs.(4,5) of the lectures) to proceed
according to Fourier’s hypothesis. Since the volume doe not change, the change in

bo



the entropy, TdS = CydT, according to thermodynamics. Since entropy-flux can be
defined as, 7, show that heat conduction equation, Eq.(5) implies that S continually
increases within a bounded volume A of copper whose boundaries are “adiabatic” (ie.,
q.n = 0 on X, the bounding surface of A, where, n is the unit normal to ¥), provided
K7 > 0 everywhere. If you start with an arbitrary initial distribution of temperature
within A, determine the temperature distribution within the region A as t — oo.
How does this asymptotic distribution depend on the thermal diffusivity x, on the
initial distribution, T'(r,0)7 Explain how Fourier’s Law of heat conduction embodies
the Second Law of Thermodynamics on the basis of this example.

Solution: We convert the equation for T into one for S!

CVE’ = -V.q
as qa
T— = -V.|T=
5% = v [77]
- _pv(Qy_yrd
=: TV.(T) VT.T
We divide this equation by T' and use Fourier’s Law, g = —K7VT, to get,
as q vT
— (=) = Kp(—)?

Next we integrate this equation over the domain A and make use of the divergence
theorem and the b.c., to obtain,

%(LSGEV)-#(LV.%dV) = /AKT(g)de

%([ASCEV)—I-L%.ndA = LKT(%z)ZdV
d VT

EE(LSCEV) = LKT(?)ng

where the surface integral vanishes from the “adiabatic wall condition”. For Kr >
0 everywhere, the rhs is evidently positive (unless V1" = 0 everywhere within Al).
Hence the total entropy of the system, [, SdV increases monotonically during the
process of thermal conduction. Let us observe that as in problem 1, Fourier’s heat
conduction equation in A with the adiabatic b.c conserves the total internal energy.
Thus integrating the basic equauation over A and making use of the divergence theorem
and the b.c, we find that E(t) = Cy [, TdV is a constant. Since it is plain that in the
“final state” as t tends to infinity, the entropy is a maximum if and only if T is uniform

3



throughout A, we see that this uniform temperature must be equal to, Txpa = V(‘?T(;’é.‘;,

where V(A) is the volume of the domain A. This does not depend on K7! In fact it
only depends upon the total initial internal energy, E(0), the specific heat, Cy and the
volume of the domain.

Fourier’s Law clearly implies that a nonequilibrium temperature distribution in an
adiabatic enclosure (ie., a thermally “insulated” system) will evolve in such a manner
as to continually and irreversibly increase the entropy, which reaches its maximum
value in the thermodynamic equilibrium state when the temperature becomes uniform
everywhere. This evolution must of course be consistent with the First Law of Ther-
modynamics, ie., the Law of Conservation of Energy, and it indeed is, as shown by
our simple calculations. The thermal conductivity must be everywhere positive, but
its size is irrelevant as far as qualitative consistency with Thermodynamic Laws are
concerned.

3. Consider the two-fluid equilibrium obtained in the Notes (Eqs.(13-19)). If S, =
(£)S*, for 0 < r < @ and S* is a constant (units: electrons. m~3.s7"), obtain n.(r)
and B.(r), assuming that vy is given by Braginskii’s formula mentioned in the text.
T., By, A are to be treated as known (constant) quantities.

Solution: Consider Eq.(19):

1d dn. T e
;g(TDJ_eE)'F(E)S =0

multiplying by r and integrating once from the origin, we find, quite generally, D ‘i‘; =

—Q—ZS*, where we use the fact the particle flux must be zero at the origin (ie., the axis).

1/2 4 -
2 nele . Note that all quantities except n, are con-

Now, we are given that vy ~ & I

21/2n,(0)Aet

T - e o *Re(i") * __ l 2 s
stant. We may therefore write, D, = D (o) D* = ;5 psvy, where, g = ror T

We then find that n.(r) satisfies the equation,
dn, _ _rne(0)5"

e 32 D

This equation is readily integrated to give, n2 = C — %”;”—%ﬂi We can obtain

the constant C' from the condition, n.(a) = 0. In fact, we get, C = M’%D(O)i_
Since, at 7 = 0,n. = ng(0), by definition, we have, 9D* = 24%5*. This then gives,

4028 1208/2e2m 1/ 23/ . .
1 (0) ‘= op2 )(—tfor——)- The density profile can be written more transpar-

ently in the form, n.(r/a) = n.(0) [1 - (2)3]. It follows from Eq.(15) that, B.(r) =
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1/2 .
By [1 - 3’%&“&] / . It is an interesting problem to figure out how big S* can be to have
a consistent solution, and what happens if this is exceeded.

4. Find the condition on L,, kg, ps for the ordering, w, < € to be valid.

Solution: From Eq.(33) of the Notes, we have, e = (n—fi-:)(kgps) = L2(kops) =
p*kgps. Hence the condition is p* < 1, for kgp, ~ 1.

5. Show that the solution to Eq.(31) of the Notes is given by, % = F(6—w.t,r, z), where
%(9,?, z,0) = F(0,r,z), at t = 0 and F is periodic in 0, but may be an “arbitrary”
function of its other arguments.

Solution: Simply substituting the given functional form into Eq.(31), we get the result!
It is evident that at ¢ = 0, we match the initial condition. The periodicity of F' wrt. @
is a simple consequence of the single-valuedness of the electrostatic potential.

6*. Show that if n,o = n* exp [—(r/Ly)?], where n*, L, are constants, w, is a constant.
Solve Eq.(40) of the text for A and determine the eigenvalues w and eigenfunctions.
(Hint: a knowledge of Bessel functions is needed for this problem!)

Solution: Substituting for n.y and its derivative in Eq.(32), we see immediately that

w, for this profile is independent of 7 and satisfies, w, = £~ We may plainly write

Eq.(40) in the form,
——(r—)— (=4 = —KA
[ = L ]

P2

Suppose we set, z = rK'/2. The equation then becomes (with A = f(z)),

d2f  1df m?
et gm0

We recognize this as Bessel’s equation of integer order m in the variable z (see, for
example, Handbook of Mathematical Functions, eds. Abramowitz and Stegun, p. 358).
It has two linearly independent solutions, J,(2), Y, (2), of which only J,,(z) is regular
at the origin. We require also that A(r = a) = 0. This implies that, J,,(aKY/2) = 0.
Now, the zeros of Bessel functions are well-documented (see above reference or books



on Bessel functions). They are all real and increasing numbers. We denote them
by o™, o{™, ... We then obtain the result that aK'/? = o{™, for example. The

3
“eigenvalue equation” determining the frequency, w then becomes,

[&—1 CS!“'E} _ (agm)Psy
e

w a?
LI 1 W 1 &2 0
w, 1+ (0(11:)2!13)2 Wy (o(]":;m)2 w?
ol
It is entirely reasonable to regard, “L— as a typical “perpendicular wavenumber” asso-

(-m)
ciated with the zero al ) of Jpm. Settmg this to be, Ky ™ = —1— we see that the above

eigenvalue relation for the “dimensionless frequency”, = becomes

(w 9 1 Wy 1 Ok
w1+ (a2 @ T4 (V)2 Wl
Note that this is virtually identical with the “local dispersion relation”, Eq.(41) derived
in the text, upon dividing the latter by w?! Incidentally, we see that the “normal
modes” are labelled by the “azimuthal quantum number”, m and the “radial quantum
number”, a,(cm), k =1,2,... This completes the exact solution of the drift wave poblem
for this “Gaussian” density profile.

) = 0

7. Derive Eq.(46) of the Notes in detail.

Solution: Using Eq.(35) for 6,;, and Eq.(45) for @1;., we find that the perturbed
perpendicular current density,

ji — eﬂeo(ﬁJ_i—ﬁJ.e)

ed d ed ed  C,p,

= Efleg [(Csps)ez X VJ_(?) vLat(T ) Cspse; X VJ.? ~n )
e e e

e, xV,n

88)
T,

Note that the E x B drifts in both species cancel. This drift does not ever drive
perpendicular currents in quasi neutral conditions, only flows. Now, Eq.(44) gives an
expression for the fluctuating parallel current density:

= €Ny [ pSVL ] —eCspse, X V10

jz = ezeneO(ﬁzi_ﬂze)
’n"legT a,n ed

= = -2

F Molei a9z Neo Ao
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We are almost done! Let us recall that “quasi-neutrality” requires that V.j J=0. This
means, V.(j. +j.) = 0. It is elementary to note that the second term in the expression
for the perpendicular current is divergence-free and substitution gives Eq.(46) of the
text. This completes the derivation.

It is an excellent exercise (left to the interested student!) to repeat the above analysis
of drift waves carefully in the case when the diamagnetic variation of B, with r is fully
taken into account. Some terms we have approximated away (can you identify which?)
will enter this analysis.

21/2n, Aet
1273/2e2m 2T
how large £+ 7~ must be to get win = 0.01wye. Assume that 7, ~ 1KeV, n, =~ 5x10%m
B ~ 1T, L, ~ 1m, p;k; = 0.1. These are typical “tokamak” values. Take A = 20.

8. Taking v.; to be given by Braginskii’s formula for v,; ~ 577 and estimate

Solution: Taking the ions to be protons, we know that 2= = 5.4 x 107* and Q,; =
eB/m; = 4.8 x 10719/1.67 x 1072 ~ 3 x 10%rads/s, for B = 1T. Similarly, Cy, =
(T,/m;)"? = (1.6 x 10-16/1.67 x 1072142 ~ 3.2 x 10°m/s. It follows that, p, =
Cs/Q ~ 107®m. Taking ¢ = 8.85 x 10712 (SI) , A = 20, we calculate vy ~

21/2 %5%10'9 %20%6.55 %10~ 76 _ 9.3%x107% _, 10351
12x5.56x78.3x10~21x0.95x10-19x2x10-24 — 9.9x10-060 —

We approximate wye ~ (Cs/Ly,)(psky) =~ 3.2 x 10%. Then,

Wim ~ Mg\  Wrelei kJ_ 2
o = GACEHED)
3.2x10*x10% Kk,
~ -4 Flyg
= (34x 107 (D)
~ 1.9><10‘“(-’%—)2 (1)

Thus we find that (%) ~ ({) x 10°. This 1mp11es that || ~ 2.3 x 10* Since
poky =~ 0.1, k, =~ 0.1/(2.3 x 10*p,) ~ 4 x 10-3m~". This is, even compared to 1/L, a
very long wave length! This example illustrates the sort of relatively simple estimates

one can make in drift wave physics.






