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Abstract The spectrum of modes associated with a magnetic X—point is determined,
taking into account resistivity and electron inertia in Ohm’s law. The assumed
equilibrium configuration has zero current. In the limit of zero resistivity and viscosity,
the equation describing perturbations to the X-point equilibrium has two classes of
continuum eigensolutions. We find that in the case of finite resistivity and zero viscosity,
there are both continuous and discrete spectra present depending upon the relative
values of the resistive length scale and the collisionless skin depth. The continuum
is associated with singular eigenmodes. The magnetic field then has a logarithmic
singularity and finite energy, while the perturbed velocity is not square-integrable
and the kinetic energy is thus infinite. The current density has both even and odd
parity current sheets about the singularity. In the absence of viscosity, for a given
ratio of collisionless skin depth to system size, there is an upper limit to the real
eigenmode frequency; there is no such upper limit in the purely ideal or resistive
magnetohydrodynamics (MHD) cases. The damping rate of the continuum eigenmodes
scales with the square of the ratio of the resistive length to the collisionless skin depth,
and is independent of the frequency. This damping is much weaker than that predicted
by resistive MHD in the large Lundquist number limit. The analysis shows that electron
inertia does not automatically resolve singularities of ideal MHD. Indeed electron
MHD, unlike purely resistive MHD which only has a discrete spectrum of strongly
damped eigenmodes, permits the existence of weakly damped eigenmodes (discrete or
continuum), with frequencies typically in the Alfvén range, which could be readily
excited by other instabilities. Such modes could redistribute or accelerate energetic
ions and possibly affect turbulent plasma transport in the vicinity of X-points. The
results apply both to azimuthally-symmetric modes and to more general helical modes
with nonzero azimuthal and longitudinal wave numbers. In the presence of a small
electron viscosity, the singularities are resolved and the eigenmode spectrum again
becomes purely discrete, involving viscous critical layers.



1 Introduction

Magnetic X—points exist close to the plasma boundary of divertor tokamaks. In
tokamak plasmas generally, X-points are produced by reconnection of magnetic
field lines resulting from magnetohydrodynamic (MHD) instabilities. The widths of
magnetic islands formed by reconnection can be amplified as a result of the removal
of bootstrap current from the vicinity of the island O-points. These “neoclassical
tearing modes” can limit the achievable plasma pressure and hence fusion yield in large
tokamaks. In addition, “classical tearing modes”, involving reconnecting nonlinearly
saturated magnetic island structures [1, 2] driven by current gradients, can also occur.
The latter are thought to be responsible for sawteeth (with dominant poloidal and
toroidal mode numbers m = 1,n = 1), major disruptions (m = 2,n = 1) and possibly
also edge localised modes (ELMs). The basic properties of magnetic X—points are of
intrinsic plasma physics interest. The fact that they are associated with performance—
limiting instabilities in magnetic fusion experiments creates an additional motivation
to study them. .

In a paper focused on the problem of energy release in solar flares, Craig and
McClymont [3] studied small amplitude oscillations associated with a current—free two—
dimensional X—point in the limit of incompressible resistive MHD. Specifically, they
considered an equilibrium magnetic field of the form

B
Bg = ﬁ'(yff‘*‘wf’) (1)
0

where X, ¥ denote unit vectors in the z and vy directions and By is the field at a circular
boundary, R = (2% + y*)1/? = Ry. This field can be written as V x (g2), where &
denotes the unit vector in the z direction and

Ye = EE(QZ—.&?Z) (2)

It follows immediately from Ampére’s law that such a configuration has zero current.
Craig and McClymont considered incompressible, inviscid perturbations to this
equilibrium in the (z,y) plane. They showed that only azimuthally symmetric
perturbations are associated with true magnetic reconnection. Because dissipation
is taken into account, the normal modes of the system have complex eigenvalues; since
the equilibrium configuration is potential, all the modes are damped. Hamilton and
co—workers [4] have demonstrated recently that the perturbation analysis of Craig and
McClymont remains valid if there is a constant and uniform magnetic field component
in the z—direction, provided that any plasma flows are restricted to the (z,y) plane.

Craig and McClymont used the resistive MHD form of Ohm’s law:

E+vxB = nj . (3)



where E is the electric field, v is the flow velocity, j is current density and 1 is resistivity,
assumed constant. For certain applications, such as sawtooth relaxation events in high
temperature tokamak discharges [5, 6], it is appropriate to use a more general form of
Ohm’s law in which electron inertia is taken into account:
., Me0j

E+vxB = "J“LE?SE’ (4)
where m,, e, n denote respectively the electron mass, charge and density (assumed
constant). In this paper we extend the analysis of Craig and McClymont to determine
the mode spectrum of a system with equilibrium configuration in the (z, y) plane given
by Eq. (1), and with Ohm’s law taking the form of Eq. (4) rather than Eq. (3). More
general forms of Ohm’s law also includes pressure gradient terms, the Hall current term,
and a term associated with viscosity of the electron fluid; we neglect pressure gradient
terms in both Ohm’s law and the fluid momentum equation, but later in the paper
we discuss the possible effects of finite electron viscosity on the X—point eigenvalue
spectrum. '

There are several motivations for this study. Normal modes associated with X—points
constitute a possible channel for the dissipation of any free energy in the system,
and could thus play a role in the time evolution of the X-point configuration. If
detected by magnetic coils, the modes could in principle provide diagnostic information
on plasma parameters, as in the case of other high frequency Alfvénic instabilities
[7). Secondly, as suggested in the case of solar flares [4], the modes could accelerate
or redistribute charged particles in the X-point vicinity. Finally, if driven by other
instabilities nonlinearly, the modes could play an important role in transport processes
near X-points.

The paper is organized as follows. After formulating the general eigenvalue equation in
Section 2, including the effects of electron viscosity, we study analytically the properties
of the inviscid equation, first in the limit of zero resistivity (Section 3) then for the
case of finite resistivity (Section 4). Computations of eigenvalues and eigenfunctions,
carried out using two complementary techniques, are presented in Section 5, and in
Section 6 we demonstrate that singularities in the inviscid problem are eliminated by
electron viscosity. In the final section we present a brief discussion of the significance
of the results and some conclusions.

2 Formulation of Eigenvalue Problem

With the electron inertia term included in Ohm’s law, it is straightforward to show
that B satisfies the evolution equation

3] c? i
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where c is the speed of light, wy. is the electron plasma frequency and yqg is the
permeability of free space. Writing

B = V x(¥2)+ B3, | | (6)

where B, is a constant, Eq. (5) becomes

8
5 (v-Z )+ e = Lo, )

wpe Ho
Neglecting plasma pressure and viscosity, the appropriate form of the momentum
equation is

ov 1,
3?: + (V v) = ;.] X BJ (8)

where p is mass density. It is easily verified that v =0, ¥ = 9 define a steady-state
solution of Egs. (7) and (8). Putting ¥ = 95+, where |V1)| < |V¢g|, and using the
fact that the equilibrium has zero flow (so that v can be treated as a perturbation),
it is straightforward to show that Egs. (7) and (8), when linearized, can be combined
into a single equation for 1:

2 2 p2
L (1/)——2— &)-f—“‘ivw 1% _ g (9)
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To obtain this result we have used the fact that |Viyg|?> = BZR?/R2. In view of the
fact that the equilibrium magnetic configuration [Eq. (2)] depends on the azimuthal
angle = tan~*(y/z), it is remarkable that ¢ does not appear in the equation for the
perturbed fields. This feature allows separability of the eigenmodes.

It is appropriate at this point to introduce dimensionless variables. Following Ref.
[3], we write 7 = R/R; and normalize time to Rgy/csy where cag = By/\/fop is
the Alfvén speed at R = Ry defined in terms of the magnetic field in the (z,y)
plane. In applying the model to, for example, magnetic islands in tokamaks, the
boundary Ry should be chosen to be smaller than the island width. We also introduce
S = poRpcao/n, the Lundquist number at R = Ry, and the dimensionless electron skin
depth é, = ¢/(wyeRo). The typical resistive length scale is L, = RpS~'/2. Tt follows
that ¢/(wpeln) = 6.5/, This nondimensional ratio will play an important role in the
later analysis. Written in terms of these dimensionless variables and parameters, Eq.
(9) becomes

o
61&2 (w SEVP) = r2 V2 — v2 5 = 0. (10)

The Laplacian operator in Eq. (10) can be written as
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We now seek separable solutions for 9 of the form

w — ei(mgo-l—kz-wt)f(,r). (12)

The Laplacian then becomes a differential operator in r:

1d d m?
v2 s = T i I S -4
~ rdr (Tdr) r2 2 3

Equation (10} then reduces to

Wi+ (’rz - w?d? — z%) Eg—: (rg{:) - (T—j + kz)f] = (14)

Instead of Eq. (4), one may use a more general Ohm’s law that includes a simple
formulation of classical electron perpendicular viscosity but neglects parallel viscosity

[8]:

Lome [ PR,
E B = i el
+ v x m+nez{8t TeV_] , (15)

where p, is thermal electron Larmor radius and 7, is electron collision time. It is
straightforward to show that Eq. (9) becomes

F (- e 2.7 B§R2 27 N 0¥ . Cng 451/;

Introducing a dimensionless electron Larmor radius p.. = pe/Ro and a dimensionless
collision time 7, = Ro7e/can, we deduce the following eigenvalue equation

w

wzfﬁ-(rz—wzcﬁg—is

)V2f = —iwbeV*], (17)

where € = (6.p2,/72,) is the electron perpendicular viscosity Reynolds number .

3 Spectral Analysis Part I: § — 0c0,e — 0

Before we proceed to analyse the eigenvalue problem formulated in the previous Section,
it is worthwhile to establish some standard terminology associated with eigenvalue
problems. Considering Eq. (17), let us note that S, d.,e,m and k are to be regarded
as specified parameters. The first three are given by the physical conditions at hand,
whilst the last two are wavenumbers, as indicated by Eq. (12). In general, we seek a
nontrivial solution of the equation subject to the specified boundary data.



It is well-known that such solutions can exist only for certain values of the generally
complex parameter w. The set of values of this eigenparameter in the complex plane
for which nontrivial solutions exist is called the spectrum of the eigenvalue problem.
The spectrum is always a closed, proper subset of the complex plane. For each value in
this set, there may be one or more (in cases of degeneracy) eigenmodes (i.e. complex
functions f(S, de, €, m, k;w;r) which satisfy the equation and the imposed boundary
conditions). If all such eigenmodes and the spectrum can be determined, it is then
known from the general theory of such problems [9] that the solution of the initial-
boundary value problem for Eq. (16) can be solved by expanding the specified initial
function in terms of the complete set of eigenmodes. The aim of the spectral theory of
equations such as Eq. (17) is therefore a) to determine the spectrum; b) to determine
the associated eigenmodes and c) to establish an “expansion theorem” which enables
the solution of the initial value problem in terms of the eigenfunctions. Such an
expansion is commonly called the “spectral resolution” of the problem and is exactly
analogous to solving equations with constant coefficients by Fourier-Laplace transforms.
~ The expansion problem is essentially a technical matter (given the spectrum and the
eigenfunctions) which is best handled by constructing the Green’s function for the
system in terms of the eigenmodes, as demonstrated for example by Titchmarsh [9].
Indeed, the Green’s function method is so powerful that it can be directly used to
actually construct the eigenfunctions and eigenvalues, as shown in [9, 10, 12, 13].

We shall be exclusively concerned in this paper with the first two tasks outlined in the
previous paragraph. It should be stressed that in general, the spectrum (for differential
or integral operators) must consist of an infinity of points in the complex w-plane. It is
also the case that the spectrum, at least for equations of the type considered here, may
consist of two topologically distinct types of point sets. Thus, the discrete spectrum is
composed of points which are isolated in the sense that each will have a neighbourhood
where there will be no other eigenvalues, and may form a finite (possibly empty) or a
countably infinite set; the continuous spectrum (when it exists) will consist of continua
which may be curves or segments of curves in the complex plane. Discrete eigenvalues
occur at the poles of the Green’s function the residues of which give the eigenmodes.
The continua are usually associated with branch point singularities of the Green’s
function and its discontinuities across suitable branch cuts in the complex w-plane[9].

The delineation of these differerit possibilities is of great importance for applications,
as first demonstrated by Case [10]. The works of Titchmarsh and Case show that the
continuum eigenmodes are always associated with a singularity of the problem, be it
due to infinite extent of the solution domain (e.g. plane waves and Bloch waves in
quantum mechanics, the Rydberg continuum of the hydrogen atom) or to singularities
in the coefficients in the equations (e.g. inviscid Couette flow considered by Case [10],
the well-known Alfvén continuum in ideal MHD, the Vlasov problem of collisonless
kinetics) which often have a clear physical origin and sometimes a physical resolution
in terms of higher order effects not included in the eigenvalue problem considered (for
some elementary explicit examples relevant to. plasma physics, see [11, 12, 13]). Our



p‘urpose in this paper is to describe in analytic and numerical terms the complete
spectral theory of the problems posed in the previous section and exhibit its stuctural
richness and possible -physical significance for more complex problems.

We begin the spectral theory with an important special case: we assume that S — oo
in the above equations. If we neglect electron perpendicular viscosity the motion is
governed solely by electron inertia, a time-reversible, reactive effect. It should be noted,
however, that electron inertial terms in Ohm’s Law can cause collisionless reconnection.
We identify two separate cases: Case 1, in which m = 0,k = 0 (where m, k are the
wave numbers associated with @, z respectively); and Case 2 where m, k do not vanish.
Case 1 is considered in detail. We shall see later that Case 2 can be analyzed in exactly
the same way.

The eigenvalue equation is reduced in Case 1 by making the substitution z = r?; we
then find V2 = 4L (z£) =4D? and

WF + (¢ — WPR)ADYf = —iwb.el6D ] - (18)

This case has the following boundary conditions: at z = 0 we must have f regular
(or analytic). This requires df /dz to be finite (although the perturbed azimuthal field
amplitude, which is proportional to df /dr, is zero). We also require d*f/dz* = 0 at
the origin. At the right hand end point z = 1 (in our nondimensional units), we have
df /dr = d*f/dz* = 0. These conditions are of the Neumann type in that the value
of f can be altered by an arbitrary constant. This is as it should be in that only the
spatial derivatives of f represent physical quantities such as magnetic field and current
density. We now have a well-posed, two-point eigenvalue problem for the fourth order
system.

We note that for € # 0 all the coefficients in Eq. (18) are analytic in the parameters
and z. Note that the coefficient of the highest order spatial derivative does not vanish.
Under these circumstances, the solutions are entire functions and the spectrum can only
be discrete. It is easily proved directly from the governing Eq. (17) above that there
can be no linear instability and all modes must be damped. This is due to the physical
fact that the equilibrium has no free energy to drive instabilities (ideal or otherwise)
in this case. We note too striking formal similarities between the above equation and
the Orr-Sommerfeld equation of parallel flows in hydrodynamics (cf. Drazin and Reid

[14]).
We next turn to an analytic theory of the spectral problem formulated above. It is

useful to bear in mind that physically interesting limits are §, < 1 and € < 1. We first
neglect e (electron viscosity) entirely and consider the outer limiting problem

d b @

dz (2 dn:) 4 (w282 — 1) 19)

subject to the boundary conditions that f be regular at z = 0 and df /dz =0 at z = 1.



It is worth remarking at this point that ideal MHD corresponds to letting 8, — 0 in the
above equation. Using the substitution » = Inz we can easily solve the equation. The
boundary condition at = 1 can be satisfied by taking f = cos(¥ Inz) for arbitrary
real w. The origin z = 0 is a regular singular point which is in general a branch point’
for both linearly independent solutions. Furthermore, neither the current density nor
the velocity is square integrable over the interval [0,1]. Hence the solutions belong to
a continuous spectrum, namely the Alfvén continuum. Craig and McClymont resolved
the singularity at the origin and obtained discrete, damped eigensolutions within the
resistive MHD (1/S # 0) model. This model is not valid whenever c¢/wpe > Ly, i.e

whenever, 62 > 1/S. Our primary interest is in the latter situation, although we will
make contact with the solutions of Craig and McClymont.

Neglecting resistive effects for the moment, we obtain the following key theorems
relating to Eq. (19):

" Theorem 1

Every non-trivial solution of the above boundary value problem must have Im(w?42) =
0.

Proof: Assume, to the contrary, Im(w262) # 0. The equation is regular in the interval
(0,1), except at the regular singular point z = 0. We may therefore multiply the
equation by f* (the complex conjugate of f) and integrate over (0,1), since both f
and f* must be regular throughout the interval. Similarly we multiply the equation
satisfied by f* by f and integrate. Thus we obtain the relations :

3 df ar* .

B da: dz az o= 4 .[ w2c52 — ) 7(20)
4 df art . _ (w*)2 i

~Jo Tdz do ay = o ((w*)262 — :1:)635c (2

The right hand side of Eq. (20) can be written as o [ Jo |f12dz + f} G’g%:l Using a
similar transformation on the right hand side of Eq. (21) and subtracting the second
equation from the first, we obtain the identity

0 = Im(w?s?) f |J5612”d“’[ - (22)

Since the integral is positive definite, the result follows.

Theorem 2

A necessary condition for Eq. (19) to have a non-trivial solution is for the real number
w22 = a? to lie in the interval 0 < o? < 1.

Proof: By the previous result, w? and hence o must be real. Since the boundary
conditions are real, we consider the equation when o lies outside the interval [0,1].
Without loss of generality we can choose f itself to be a real function in this case. It



follows that Eq. (20) is valid. We see at once that it leads to a contradiction if a? > 1
(the right hand side will then be positive although the left hand side is negative) and
also if o < 0, when, again the right hand side will be positive. The theorem follows.

This argument establishes that we must have a singular eigenvalue problem [9] with
a? —z vanishing somewhere in the solution domain. We next prove that if this problem
has a non-trivial solution, it must belong to the continuous spectrum [9].

Theorem 3

If the stated problem has a non-trivial eigensolution, both f and df/dz must be
square-integrable over [0,1]. Thus the magnetic energy of the perturbation is bounded.
However, the velocity perturbation and the current density perturbation are not square
integrable and hence the eigensolutions must belong to the continuous spectrum, with
eigenvalues satisfying 0 < o? < 1.

Proof: We have already seen that o belongs to the interval. Using Frobenius theory
(cf. Olver [15], Goursat [16]) it can be shown that the equation has two linearly
independent solutions at the regular singular point z = a?. These solutions, which we
denote by @,(z,a?), ¢s(z,a?) (where z = z — o?, not to be confused with the usual
cylindrical longitudinal coordinate which has no relevance in the present section}, have
the following well-known properties (Goursat[16]): @,(z, a?) is analytic at the singular
point z = 0 and vanishes there. Furthermore, it can be normalized to have unit slope at
this point. Its power series converges for |z] < a? (i.e. as far as the nearest singularity,
at z = —a?). It may be continued analytically everywhere in the finite complex z plane
and represents a single-valued function in the cut plane, where the cut extends from
—00 to z = —a?, along the negative real axis (it has a branch point at infinity and at
z=—a?).

The solution that is singular at z = 0, ¢, can be chosen to be unity at this point and
has an expansion of the form ¢, = v, (z, a?)+¢,(z, a?)log(2), where 1, (z, o?) is another
analytic function. For real values of z, we may take ¢, = ¥.(z,a?) + ¢.(z,a?) In 2| on
either side of z = 0. It can, of course be continued all the way to z = 1 — a®. As we
shall discuss later, these functions can be expressed explicitly in terms of appropriate
solutions of the hypergeometric equation (cf. Olver [15], Goursat[16]). They can also
be readily computed numerically. It is clear from this discussion that f must be
expressible (for real z) in terms of ¢ s(z,a?). It is plain that both f and df /dz are
square integrable (over z € [0,1]): this indicates that the magnetic energy is finite.
Note however that the current density is proportional to £(zL) o< 1/(a? — 2). It
is therefore not square integrable in the interval [0,1]. Since the perturbed velocity
in the neighborhood of z = o? is proportional to the perturbed current density [cf.
Eq. (8)], we see that the eigensolutions cannot have finite kinetic energy. Hence all
the acceptable eigensolutions must belong to the continuous spectrum [9]. We shall
proceed to the actual construction of the continuum eigensolutions in terms of ¢, @s.



Theorem 4

Letu = z/a? bé a real variable in (0, c0). The singular eigenvafue problem defined by,

d, d 2
@“Eﬁ‘ - (fa_g)a-f-u)’ 23)

for real 0 < @? < 1, with f regular at » = 0 and df /du = 0 at u = 1/a?, has a class of
continuum modes labelled by a? such that f can be chosen to be unity at the interior
regular singular point u = 1.

Proof: Note that the eigenvalue a? occurs now in both the equation and the right
hand boundary condition. However, the three regular singularities in the equation are
now at the fixed points u = 0,1, oo.

We demonstrate the analytic construction (in principle) of the above class of solutions.
In the case of continua, the eigenvalue is not determined by the boundary data, but
may be chosen in advance as any point of the continuous spectrum (in this case,
0 < o? < 1). Hence let us start with a specific value @? in this interval and construct
the eigenfunction f,2(u) satisfying Eq. (23) and the conditions of the theorem.

We denote by ¢, q2(u) the solution of the second order ordinary differential equation
Eq. (23) which is analytic at the regular singular point v = 1. We know from general
theory that it exists and has a zero there. We may choose it to have unit slope at this
point. We denote the second, linearly independent solution of the equation at u =1
by ¢ q2(u). As stated earlier, we know from the general theory that this function can
be chosen to be unity at u = 1 and has a logarithmic singularity in its derivative. We
will assume (again from the general theory of linear differential equations [16]) that
these two linearly independent solutions can be extended all the way to v = 1 and to
u=1/a?
For u < 1, the general solution we seek will be written as f 2 (u) = @y o2 (u)+A" @, 2 (u).
Since u = 0 is also a regular singularity of the equation with only one of the
two solutions there being analytic (the other has a logarithmic branch point), we
can find A~ uniquely by requiring the linear combination f,(u) to be analytic at
v = 0. Thus, f(u) is a solution of Eq. (23) (in [0,1)), which is analytic at
% = 0 and has unit amplitude at « = 1. In the same manner, we set, for u > 1,
H(u) = @s2(u) + AT a2(u). Here, the appropriate continuations of the functions
to the domain are used. The constant AT must now be determined from the boundary
condition. Since we must have df);/du = 0 at u = 1/0?, A™ is generally determined
by the equation

At = - [%} : (24)

where the operator d/du is denoted by a prime.

10



In general, ¢, ,.(1/ a?) will not vanish and the above formulae complete the construction
of the continuum eigenmode corresponding to a? in the entire interval [0,1]. This
implies generically that the perturbed magnetic field (which is purely azimuthal in this
m = 0 case) will be proportional to fl;. It is zero at the origin, but tends to infinity
logarithmically as u — £1. Note also that typically we will have A* — A~ #£ 0. In this
event there will be in addition a finite discontinuity, corresponding to a current sheet.
The first type of logarithmic singularity has an odd parity current sheet whilst the
second type is a delta-function or even parity sheet. Note however that the potential
itself (proportional to f,2) is continuous at the interior singularity. At u = 1/a? the

magnetic field vanishes, by construction.

We next consider the exceptional case mentioned above: values of o? for which
¢ 02(1/ @?) = 0. In this case, the continuum eigensolution has the following structure:

fo = 0;fh = ¢r02(u) in [1,1/0®). According to this solution which fits all the
requirements (except that the potential now vanishes at the singular point), the
perturbed magnetic field is excluded (rather like the Meissner effect in superconductors)
within the singularity and there is no logarithmic infinity. Instead, there is a purely
symmetrical current sheet at the singular point and the magnetic field has a finite

discontinuity at u = 1 (the eigenfunction has unit slope in the limit u — 1%) .

It is useful to give an equivalent and more physically appealing form of the solution.
Note that f_, constructed above is analytic at u = 0 and can be continued past its
logarithmic branch point at u = 1 all the way up to u = 1/a?. It follows that f,2(u)
can then be written over the whole domain in the equivalent form,

fcx2 (u) = fa_ﬂ(u) + (A+ - A_)H(u - l)qbr,az(u)’ (25)

where H(u — 1) is the standard Heaviside function. Substitution in Eq. (23) yields,
upon making use of the properties of ¢, .2 and the well-known Dirac delta-function
identities zd(z) = 0, dH(z)/dz = 6(z), the inhomogeneous differential equation

A’(a2,53) — At _ A- (27)

We convert this equation into an equivalent integral equation, which is very convenient
for numerical calculations. Thus we formally integrate Eq. (26) from u = 0, making
use of the regularity of the solution at this point, obtaining:

2 u
o2 [ i
(16—2) [/0 (H)dﬁ —Inju— 1|] + A'H(u~1), (28)

where we have a principal value integral at « = 1. We have then used the fact that
f=1at u=1 to convert the principal value integral into a convergent integral using

11



standard properties of the logarithmic function. In this approach o? is supposed known
and A’ is the eigenvalue to be determined by the dispersion relation which f and A’
must satisfy:

a? 1e? f 1 1

e i A In|l— — = A 29
e |G+ 1|] A )
These equations clearly exhibit the nature of the singularity at v = 1 in the magnetic
field. The logarithm corresponds to the odd parity current sheet whilst the Heaviside
function describes the even parity current sheet.

Equation (28) can be integrated with respect to u about v = 1. The resulting integral
equation can be solved simultaneously with the linear constraint given by Eq. (29).
This can be done numerically by iteration, starting with any reasonable initial f.
As previously stated, in addition to the above eigensolutions, a different class of
eigensolutions with the property that f = 0 at u = 1 can also be constructed by
the integral equation technique. It is easily seen that if f is continuous everywhere and
vanishes at u = 1, we must have f = 0 for u < 1 in order to enforce the analyticity of
the solution near the regular singularity at the origin. We can integrate Eq. (23) once
and write (for u > 1)

2 u
u% = (21%) fl —J;(I:)Cit+l, (30)

where we have made use of the fact that f vanishes at u = 1 and its derivative is chosen
to be unity. In this exceptional case, o has to be determined: the dispersion relation
for o is obtained from

a? ., ye’ f(t)dt
"4;?5?]1 T = (31) -

As before, Egs. (30,31) can be solved by iteration. We have already noted that this
type of solution must be written as fu2(u) = ¢, 42(u)H (u—1). It follows that the jump
in the derivative at the singular point, A’ = 1, and Eq. (31) follows from Eq. (26).

The results proved establish that the introduction of electron inertia to ideal MHD
reduces the ideal MHD continuum (0 < w? < o0) to a band-limited continuum,
0 < w?? < 1. In other words, electron inertia does not introduce damping or growth
or discrete modes. It does, however, reduce the extent of the ideal MHD continuum.
This is a remarkable fact in itself, showing that the interior singularity of the eigenvalue
equations in the ideal case is merely altered, but not removed or resolved in electron
MHD (ie, with electron inertia). As will be discussed later, the continuum eigenmodes
in this case can be exactly expressed in terms of the solutions of the hypergeometric
equation [15, 16].

12



4 Spectral Analysis Part II: § < co,e = 0

We next consider the general inviscid case when S is finite but € is still neglected. It
is convenient to go back to the form of the problem suggested by Eq. (14). When
m = 0,e = 0, we find that Eq. (18) may be written as

df,  w? f
d;r; dx) T 4 (02— 93)’ 2
o = Wi+ z§, (33)

where 0 < z < 1 and the usual boundary conditions apply. We observe that unlike
Eq. (19), we no longer have a Hermitian operator and the eigenvalues must therefore
lie in the lower half of the complex w-plane (since we know that the modes can only
be damped).

It is useful to introduce the real frequency wg and the decay rate 7 (we will demonstrate
that the latter must be positive), so that w = wy — #y.  We also set o = a +ib. It
follows from simple algebra that

W = wi+y (34)
a = Re(a?)
2 1 "
— Jol'8+ 2182 ) (35)
b = Im(a?)
= 2&)06 (2352 - ’)) (36)
w? = (Jw|® - 27?) — 2iwyy. (37)

The structure of the spectrum and the nature of the eigenmodes of Eq. (32) are
elucidated by the following three theorems. It is convenient to treat the case of purely
damped modes with real frequency, wp = 0 separately.

Theorem 5 (Discrete spectra with wy # 0):

If Im(a?) # 0, it must be positive for wy > 0. Furthermore, Re(a?) = |w|?6? +
9769(2552 7) < 1. This component of the spectrum consists (for ¢ # 0) of a
finite number of discrete eigenvalues and damped eigenmodes, with damping rate
v satisfying 1/(2562) > v > 0. The eigenvalues are determined by solving the
transcendental dispersion equation involving the Gaussian hypergeometric function,
F(1-1i%,1+i%,2;1/a%) = 0 (where o? is related to w through Eq. (33)). The
correspondmg elgenfunctions have finite kinetic and magnetic field energies and have
no singularities in 0 < z < 1. If the dispersion relation has no solutions, the discrete
spectrum does not exist in this case.

13



Proof:

When Im(a?) = b # 0, it is clear that the equation has no interior singularity. This
immediately shows that not only the field but also the current density and velocity must
be continuous over the whole solution domain (assuming that the eigenvalue problem
has a nontrivial solution). Thus they must be square integrable and therefore belong
to the discrete spectrum. It is also clear that w cannot be zero since then the only
solution of the eigenvalue problem is the trivial solution, f = const. We can readily
derive the following simple identities along the lines of earlier results (cf. Egs. (20,21)):

1 1 2
- f . jf Pty = i (alf_]_ i (38)
1 _1a  fP
(W) / I ]2dm T 4o ((a*)z—m)dx (39)

Let us consider the difference of these equations:

“ [(w?') - (w*)z)] folmlg—glzdx = %j{;l [fI? [521_—1; = c.c.] dz, (40)

where c.c. denotes complex conjugate. This relation yields certain key inequalities
when simplified to

; vodf blwl* (1 |f|*dzx
2w07/0 m|a|2d:s = 7 )t —ap (41)

Since wy 7# 0 by assumption, it can be assumed, without loss of generality, to be
positive. Upon using Eq. (36), Eq. (41) immediately leads to

Zlwl* 1 |fPde ], 1 | [t 1 |f|%ds
T[fu %z |2d T Iaz—wIQ] - (25‘53){ 4 Do lo’z_mlz]. “)

* This proves that

. L (43)

25652

From this we deduce the main results,

Im(a?) = 2uwpd? (25,52 - )
> 0 ' (44)

Re(a®) = |wl6l + 298 (555 — ),

1
2352
> w8 (45)
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It is also easily established that Re(a?) < |w[?6? + 545 7. Adding Eqgs.(38,39), and
clearing fractions, we obtain,

-] [ = B [lisp [ o

If Re(w?) = w? — 72 is positive, the inequality Re(a?) < 1 is necessary to avoid a
contradiction. If on the other hand Re(w?) < 0, Re(e?) < /S < 1/(25%?) < 1, as
assumed. Hence we have shown that Re(a?) = a < 1 in all cases.

Multiplying Eqs. (38,39) by w? and its complex conjugate respectively and subtracting,

we also obtain,
1, ;
- d
[ e |

w|f|2d$ _ (WP |fPda
1 X (46)

la?2—z2 — 2582 a? —z|*

} = 0,viz.,

These results imply that,

(Jwl*?)
2552

(47)

somewhat strengthening Eq. (43). The latter now results in,

1> |w?2>0. (48)

To summarize, we have shown that if Im(a?) # 0 (and wy > 0), the equation has
no singularity in the interior of the solution domain and we must have Im(a?) > 0,
|w|?62 < 27,562 < 1. We can readily convert the problem into equivalent (non-singular)
integral equations. We now demonstrate that the conditions derived are also sufficient
for the existence of eigensolutions.

The proof hinges on a transformation of Eq. (32) into the hypergeometric equation
(cf. Olver [15], Goursat [16]). Setting u = z/a? we obtain

d?f df w?,
TFt(-wo—f =0 (49)

" This is a particular form of the hypergeometric equation

u(l —u)

2

d df
T i) - e R
u( u)d2+[c (1+a+b)u]du abf
with a = "‘” y Bie= ‘;’ , ¢ = 1. For these values, it is well known from standard theory
[15] that the Gaussmn hypergeometric function F'(a,b;c;u) is an analytic solution at

u=0.
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This function has the convergent power series representation

T(e) Z T(a+n)I(b+ n)u®

(@) () Tctn)  nl’ R

F(a,b;c;u)
) n=0
valid in |u| < 1. Evidently, F'(a,b;c;0) = 1. We also have Re(c—a—b) =1 > 0. It
follows that F'(a, b;c; 1) = 1“(1——a,)lf("1'—_b)

Olver[15] also shows that F' has an analytic continuation to the entire cut u-plane (cut
running from u = 1 to infinity along the positive real u-axis), given by the integral,

e b) f P11 — 41— )0, (51)

F(a,b;c;u) W ;

which is applicable for arbitrary u provided that Re(a) < 1 and Re(c) > Re(b) > 0.
We can use this result to derive a dispersion relation for the discrete eigenvalues of Eq.
(32). The boundary condition that f is analytic at r = 0 is automatically satisfied by
the f given by Eq. (51) with the parameters as obtained above. At the other boundary
r =1, df /dr = 0 requires that dF/dz = 0. Using the differentiation formula [17]

d b
ZF(abicz) = —Fla+1,b+1c+1;2), (52)
dz c

we deduce that f' = 0 is satisfied if

1w i 1
F(l—?,1+-2—,2,?> — 0. (53)
In view of Eq. (51), bearing in mind that I'(2) =1 and I'(1 — iw/2), ['(2 + iw/2) are
guaranteed to be finite for wy # 0, we infer that Eq. (52) is equivalent to

. _ .
[ = )01 — tfo?) e = . (54
0

Itis straightforward to verify that the integral in this expression satisfies the conditions
for the validity of analytic continuation provided that 0 < /2 < 1. Equation (54)
constitutes a dispersion relation for the discrete eigenvalues w; having determined these,
one can then construct the corresponding eigenfunction using

(1)

f = F(zw-/2 P(l-zw/z)[ =11 — ‘*“/z(l-trz/az)f”/zdt. (55)

As stated in the theorem, the dispersion relation for the discrete eigenvalues coincides
with the Craig and McClymont eigensolutions when §, = 0.

Theorem 6 (Continuous spectrum with wy 5 0):

For these modes, it is necessary that Im(a®) = 0. If S,0, satisfy the criterion,
S, > 1/2, a continuous spectrum always exists (for wy # 0). There is then an
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interior singularity at £ = a® where the eigenfunction f is continuous, together with

a square integrable (but discontinuous) first derivative. It may be chosen to have unit

amplitude at the singularity. However, the current density and the velocity are not

square integrable and generally even and odd parity current sheets are simultaneously

present. The damping rate of the modes with non-zero real frequency is independent

of o? and is given by v = 1/(2562). The real frequency, wy satisfies the inequality,
0 < wid? <1- E%Tg" The continuum eigenmodes with nonvanishing real frequencies

can always be chosen to have unit amplitude at the interior singular point.

Proof:

We now consider the possibility that Im(a?) = 0 and assume that the real frequency
wo # 0. From the preceding arguments, we have immediately, v = 1/(2562) in this
case. Defining an angle @ by the relation sinf = v/|w|, we see that w = |w|exp(—if).
It is convenient to write |w| = Q = (w§ + Z'é'lfs'g)l/ 2. Evidently o® = 0262, wy = Q2 cosf
in this case.

It is convenient to write the eigenvalue equation [Eq. (32)] in the form

d, df,  [o?exp(—2if)
@ - o) - | TR g (56)

with the boundary conditions that f be regular at x = 0 and % =0atz=1. Fora
given value of the parameter o2, 8 is a definite function of @, S and 8, via y[= 1/(2562)]
through its defining relation sin @ = 1/(2Q2.562).

We can show immediately, using earlier arguments, that a nontrivial solution of the
problem only exists if 0 < a®* < 1. If o? lies outside this interval, the -equation is
non-singular and the integral relations lead to a contradiction. Thus we may assume
without loss of generality that a® — z vanishes at a point in the unit interval. To
proceed further we demonstrate some properties of solutions of Eq. (56).

Consider Eq. (56) in 0 < z < 0o, where 0 < @ < 1 and 0 < § < w/2 are otherwise
arbitrary real parameters and &, is a fixed real parameter (where 0 < 6, < 1).
We can construct a solution of this equation ®,4(a? 6;z) (the suffix r stands for
“regular/single-valued analytic” function of the complex variable z) with the following
properties:

a). ®,9(a?,0; 1) is analytic as a function of the complex variable z for |z| < @® and is
nonzero for z = 0.

b). ®.0(a? 6;z) can be chosen to have the value unity at z = a®, where it has,
as a function of the complex variable, £ — o?, a logarithmic branch point and
d®,,/dz ~ In(|z — o?|). Furthermore, ®,4(a? 0;z) has an analytic continuation (in
the cut plane, with a cut running from z = o? to oo, but the principal branch is valid

on the cut) beyond z = a?.

To prove these statements, we use the properties of the hypergeometric equation form
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of Eq. (56). Setting u = z/a? we obtain

d? df a?exp(—2if)
1- - SR, g
u(l —u) g+ (1 - )= 257 f=0 (57)
This is a particular form of the hypergeometric equation with a = —2 exp(—if),

b= ;T“‘eexp(—iﬂ), ¢ = 1. As stated earlier, the Gaussian hypergeometric function
F(a,b;c;u) is an analytic function at u = 0. It is also known [16, 17] that for the
parameters used in our application

1
Flabliv) = sarorasn
X Wa [@n = log(1 — )] (1 — u)™* (58)
T(@T®)IA+a) 1+ |
w I'(l1+a+n)(l+b+n)

(1+n)In!

where the coefficients (), can be expressed in terms of logarithmic derivatives of the
Gamma function [16, 17]. This formula is valid for |u — 1| < 1 and arg|(1 —u)| < 7
and a,b do not take zero or negative integer values. It shows that F' clearly has a
logarithmically infinite derivative at u = 1. We have already seen (cf. Eq. (51)) that
- that F' has an analytic continuation to the entire cut u-plane (cut running from 1 to
o0) given by Euler’s integral,

Fla,bicu) = T r(c) f £71(1 — £)e51(1 — tu)odt, (59)

which is applicable for arbltrary u provided that Re(a) = —z3-sinf < 1 and
Re(c) = 1 > Re(b) = 55-sinf > 0. Equation (59) holds in partlcular when u is
real and greater than unity. By setting ®,0(a? 0;z) = F(a, b 1;ua?)['(1 — a)['(1 —b),
we establish the stated result (a) above.

We next consider the solution of Eq. (56) which is analytic at z = a?. Consider Eq.
(56) in 0 £ z < oo, where 0 < @ < 1 and 0 < § < 7/2 are otherwise arbitrary real
parameters and &, is a fixed real parameter (where 0 < 6, < 1).. We can construct a
solution of this equation ®,,(c?, 8;z) with the following properties:

a) @,,(a? 0;z) is analytic as a function of the complex variable z for |z — o?| < a?

and vanishes at z = o?.

b) ®,1(a? @;z) can be chosen to have unit slope at x = a?. As a function of the
complex variable, z — a? ®,;(a?,6; ) has an analytic continuation (in the cut plane,
with a cut running from —oo to z = o?) for z > a?.

¢) The derivative, di‘;“ # 0 for z > o2, for any permissible values of a?, §.
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To prove these statements, we consider the transformed Eq. (57). From standard
theory[lS 16, 17] we know tha.t at u = 1 there exists an analytic solution (u—1))F(1—

—b;2;1 —u) = ®,1(a?, 0;u), which evidently vanishes there and has unit slope.
This solution is expressible as a power series in 1 — u with a radius of convergence
unity. It can be analytically continued by expressing it in terms of the two linearly
independent solutions at the regular singularity at oo.

Thus, we need only prove c) in detail. Consider Eq. (57) written in the form

(-ugein - | T

(60)
with F' = &, ,(a?,6;u) . Assume, contrary to hypothesis, that there is a uy > 1, such
that the derivative, &l vanishes there. We multiply the equation by F*/(1 — u) and
integrate over [1, u+] bearlng in mind the fact that this function is analytic at u =1
and using the assumed condition at u.. We obtain the integral identity (all integrals
are convergent),

_/' u|— _a ex;;&;%ﬁ)) /;u-:- 1[1i|udu (61)

Subtracting this equation from its complex conjugate, we derive the contradiction that
a positive definite integral must vanish. Hence the result stated has been proved.

From this point on, we simply follow the procedure used in Theorem 3 and obtain
the continuum eigensolutions when Im(a?) = 0 and wy # 0. The following theorem
summarizes the results, which follow mutatis mutandis from the arguments used in the
proof of Theorem 3.

Theorem 7

1. If 0 < o? < 1, the eigensolution of Eq. (60) with unit amplitude at u = 1 belongs
to the continuous spectrum and can be written in the form

F(a?,0;u) = ®,p(a? 8;u)+ A% 8,600, (c? 6;u), (62)
where A’ is determined by the dispersion relation,

@;,0(0{2, 3; 1/0{2)
@71(a?,6;1/0?)

A’ (63)

In Eq. (63) the denominator cannot vanish when wy # 0 (by the previous
theorem).

2. Furthermore, F satisfies the integro-differential equations,

dF o’ exp(-2if)

= (22 )UO(1 Yt —Infu—1)| + AHu—-1), (64)
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a? exp(—2i6) /e F—1 1 ,
(—453—)/0 (t—_l—)dtﬂn@—u} = A. . (63)

3. There are no eigensolutions which vanish at u = 1. The damping rate 7 of these
eigensolutions is independent of o and is given by v = 1/(2542).

We take up now the special case of zero real frequency (ie, purely damped) modes. We
know that they cannot occur if 1/S = 0. The situation is different and more interesting
when 1/8, 6, are both nonzero.

Theorem 8: Spectral properties of purely damped (wy = 0) eigenmodes

If wg = 0In Eq. (32) we must have Im(a?) = 0. Furthermore, Re(a?) = a =
762(-5%; — 7) satisfies the inequalities 0 < o? < ﬁ If ﬁ < 1, there is a purely
continuous spectrum of damped modes with 0 < v < 552 If == 452 7z > 1, there will be a
continuum as well as a possibly non-empty discrete spectrum of damped modes.

Proof

It is obvious from Eq. (36) that in this case Im(a?) = 0. From Eq. (35) it follows that
a? = y62[1/(982) —7]. If o < 0, Eq. (32) can be easily seen to have no solution, using
the argument of Theorem 2. It then follows that 0 < v < 1/(542). By maximising a
over this range, we infer that 0 < o? < 1/(452%6?%). Evidently, there are two possibilities.
If 1/(45%6%) < 1, there will be a real interior singularity for each allowed value of y and
we can construct a continuum exactly as we did in Theorem 4. If 1/(45%62) > 1, the
continuum extends only for 0 < @® < 1. For 1 < a? < 1/(45252), there are no interior
singularities and only discrete solutions can be expected. These may or may not exist
depending upon the conditions. We indicate their construction.

Now suppose 1 < o? < 1/(45%?). Equation (32) can be transformed into the
hypergeometric equation by setting v = z/a? a = —v/2, b = 7/2, ¢ = 1. The
solution which is analytic at z = 0 is F'(a, b; 1; z/a?). We need to impose the boundary
condition at z = 1. This, as discussed earlier, takes the form of the transcendental
equation F(1 —v/2,1+v/2;2;1/a?) = 0, with 1 < o? < 1/(45%5?), and v is a root
of the quadratic equation o® = v§2[1/(S62) — 7). In this case the power series for the
hypergeometric function can be used, since the argument 1/a? < 1, by assumption.
Each root of the transcendental equation satisfying the constraints will contribute a
discrete eigenmode. Note also that when o > 1, Eq. (32) can allow solutions since we
have —7%/4 in the right hand side rather than w?/4, which appears in Eq. (32) and,
as shown in Theorem 2, disallows a? > 1 solutions in the case of finite wy and S — oo.
The discrete wp = 0 modes, if they exist, are of little physical relevance, since they will
be very strongly damped for realistic values of S and 4,.

It is of interest to note that 1/(45%62) > 1 is precisely the criterion found for the
wo # 0 continuum to disappear. It is also of interest to note that these purely damped
continua exist for every finite d., so long as 1/S > 0, however small.
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This completes the determination of the spectra of this problem. In general the
continuous and discrete spectra determined by the above theorems coexist. In the limit
as § — oo for fixed &, the discrete spectrum disappears and the continuum merges
smoothly with the ideal electron MHD continuum found in the previous section. As
6 — 0 for fixed S, the continuum with wy # 0 disappears (when é, = 55). The
purely damped continuum remains until é, = 0. In this limit, the discrete spectrum
coincides with the Craig and McClymont discrete spectrum. If one takes the ordered
limit S — oo after d, — 0, one recovers the ideal MHD continuum.

We have established the spectral properties in the Case 1, when m = k£ = 0. We now
indicate how the analysis extends to the situation when m # 0 and k is arbitrary.
Equation (32) now becomes (NB Eq. (33) relating o? to w still applies),
d, df 1,m? 2 _ w_2 i '

@5 -1+ = S (66)
The boundary conditions are: f must be regular at £ = 0 and vanish at z = 1. It is
elementary to verify that Theorems 1 and 2 are hardly modified, since the extra terms
merely add a negative definite contribution to the left. Theorem 3 is also applicable
since the points z = 0, 1 remain regular singular points of the equation. Theorem 4 will
hold with only very minor changes brought about by f = 0 at £ = 1. Note however
that the integral equations have to be modified slightly to account for the different
boundary condition at z = 1. In particular, the constraint given by Eq. (29) must be
replaced by one which requires f(1) = 0. It is now clear that Theorem 5 also applies,
mutatis mutandis. The eigenvalue equation is no longer the hypergeometric equation
however, since it will have an irregular singular point at infinity. This hardly changes
the general method of construction of the discrete and continuum eigenfunctions, apart
from the inapplicability of the theory of the hypergeometric function and its analytical
continuations. An equivalent theory can be easily constructed for Eq. (66).

5 Numerical Solutions in Inviscid Limit

5.1 Shooting method

We consider the € = 0, m = 0 case of the eigenvalue problem with boundary conditions
f'=0atr=0and r = 1. Both discrete and continuum eigenvalues of Eq. (14) can be
obtained using the shooting method; it is then straightforward to construct numerically
the corresponding eigenfunctions. Having determined f(r), it is instructive to compute
the azimuthal field perturbation é(p o —f" and the longitudinal current perturbation
jz o< —f" — f'/r. The momentum equation [Eq. (8)] indicates that the latter quantity
is related in a simple way to the fluid velocity and displacement.

Figure 1 shows Bw and j, eigenfunctions computed numerically for the case S = 103,
de = 0.01. The mode shown in the upper two plots belongs to the discrete spectrum,
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while the mode in the lower plots lies in the continuum. In the discrete spectrum, both
the real frequency and the damping rate increase with the number of radial nodes: the
mode with wy = 0.80 in Fig. 1 has the lowest frequency and damping in the discrete
spectrum. Qualitatively, this mode is similar to those found by Craig and McClymont
[3] for 8. = 0. However, there are no continuum modes in the model considered by
these authors, except in the ideal limit (S — oo0). Figure 1 illustrates the important
point that the continuum exists for finite values of S, provided that &, is also finite.
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Figure 1: Real (solid curves) and imaginary (broken curves) parts of B, (left plots)
and 7, (right plots) for e =0, m =0, 6. = 0.01 and S = 10®. The upper plots show an
example of a discrete eigenmode, while the lower plots show a continuum eigenmode.

Two characteristic dimensionless length scales appear in Eq. (14): wod, and (wp/S)Y/2.
For values of &, such that wyd, < (wy/S)*/?, we find modes that are similar to that
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shown in the upper plots of Fig. 1, insofar as the eigenfunctions are analytic. Keeping
S fixed, however, we find that the eigenmodes become singular, and the eigenvalue
spectrum continuous, when d. is increased to the point where the resistive length
becomes comparable to the inertial length. To illustrate this change of character, it is
useful to consider o, defined as before by

o? = w22 +iw/S. (67)

In general, o® is complex. As we have seen earlier, the eigenvalue problem becomes
singular if Im(a?) = 0. Figure 2 shows the imaginary part of o? for S = 10% and 4,
increasing from 0 to 0.05.

0.00 0.01 0.02 0.03 0.04 §, 0.0

Figure 2: Imaginary part of a® = w?§2 + iw/S versus é, for e =0, m =0 and S = 10%.

The curve was obtained by computing wp and <y in the limit 4, = 0 for the lowest
frequency discrete mode, and tracking this mode as 8, increases. We find that Im(a?)
approaches zero and then remains there: there is a discontinuity in the derivative of
Im(c?) with respect to d.. At this point, the discrete mode merges with the continuum.
It is important to note, however, that the continuum exists for values of J. below that
at which the curve in Fig. 2 crosses the J, axis: this is indicated in Fig. 2 by a solid line
extending along the entire 4, axis. The continuum mode shown in Fig. 1, for example,
corresponds to the point d, = 0.01, Im(e?) = 0 in Fig. 2.

As we have seen in the previous section, Im(c?) vanishes if the damping rate v satisfies
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This scaling is in marked contrast to the much weaker (logarithmic) dependence on §
found in the limit §. — 0 by Craig and McClymont[3]:

ﬂ_2

v S 5)7 (69)

We have found numerically that when §, = 0 and f’ rather than f is set equal to zero
at r = 1, the damping still varies as (In §)~2, although its magnitude is slightly greater
than that given by Eq. (69). For a given d., the damping rate scales according to
Eq. (68) when S is sufficiently large. Tokamak plasmas are characterised by very large
Lundquist numbers, and so the damping of these continuum modes could be vanishingly
small. In areal system, with a non—potential equilibrium field involving currents and/or
energetic particles, it is possible that the modes could be driven unstable.

Figure 3 shows the relationship between the discrete and continuous eigenvalue spectra
for one particular pair of values of S and § (as in Fig. 1, 10® and 0.01 respectively). In
this case there are ten discrete modes with damping rates lying below the continuum
value given by Eq. (68). We showed earlier that no modes can exist with v greater
than 1/2562. The discrete modes are essentially unaffected by the existence of the
continuum until they merge with it. In the model of Craig and McClymont, there is
no upper limit to wp or 7 in the discrete spectrum. As §. is increased for fixed S,
the continuum moves towards the real axis in the complex w plane, annihilating as it
does so the modes in the discrete spectrum. When the fundamental (lowest frequency)
discrete mode merges with the continuum, the discrete spectrum ceases to exist.

To understand the nature of the singular eigenfunction solutions of Eq. (18), we
consider the limit S — oo,e — 0, i.e. o® = w?d2. For m = 0 Eq. (19) is obtained. We
have already discussed the nature of the solutions near the interior singularity. Since
logarithmic singularities are integrable, the total magnetic field energy is finite. We
have already discussed the different species of eigenmode solutions of Eq. (19)).

We have numerically obtained both classes of solution. Figure 4 shows B,, and j, for
an eigenmode of the first type, with a logarithmic singularity in E'y, at 7 = wd,, and
Fig. 5 shows a solution of the second type. In the latter case B‘p is finite everywhere,
but is discontinuous at r = wd,. Since the perturbed current density is proportional
to —V2¢p ~ —(f" + f'/r), there is a cylindrical current sheet at this radius, as shown
in Fig. 5(b). Numerically, it is straightforward to find modes similar to that shown in
Fig. 4 for finite values of S and o? real (i.e. the regime in which Eq. (32) is singular).
In this case the damping rate is invariably equal to the value given by Eq. (68), as
foreseen by the analysis of the preceding section.

5.2 Dispersion relation for discrete spectrum

Craig and McClymont[3] noted that for the case of m = 0,k = 0, . = 0 Eq. (14)
reduces to the hypergeometric equation. We have seen that this remains true when
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Figure 3: The discrete eigenvalue spectrum for e = 0, m = 0, §. = 0.01 and S = 10°.
The solid line at Im(w) = —5 indicates the continuum.

de is finite, and have discussed some properties of the solutions which are useful in
constructing the continuum eigensolutions. We apply the hypergeometric function
solutions to the discrete spectrum which exists when Im(a?) > 0.

The solutions of Eq. (56) which are analytic at z = 0 take the form (as already noted)

sz( iwiwlﬁ), (70)

Y —2'5 ) e

where F(a,b;c;u) is the hypergeometric series, Eq. (50). This series has circle
of convergence |z| = 1; since |o?| is generally less than unity, the hypergeometric
series cannot be used to represent eigenfunction solutions of Eq. (14) in the domain
o] < 7 < 1. However, the hypergeometric function can be defined for 2| > 1 by
analytical continuation, as in Eq. (51).

The integral in Eq. (51) gives the principal value of F provided that 0 < v/2 < 1; a
particular form of the same integral appears in the dispersion relation for the discrete
spectrum, Eq. (54). It is necessary to exercise care in solving this dispersion relation,
since the integrand contains factors such as cos[(w/2)Int], which pose difficulties for
numerical integration routines in the limit ¢ — 0. Singular points of this type occur
at both end of the integration interval and, in the case of real o?, at t = « (it should
be noted, however, that the eigenvalues are not determined by Eq. (51) in this case,
since they lie in the continuous spectrum). In the immediate vicinity of each of these
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Figure 4: Example of a continuum eigenfunction in the limit S — oco. The parameters
are e = 0, m = 0, § = 0.1, and the plotted quantities are (a)} azimuthal field
perturbation and (b) longitudinal current perturbation. The (real) eigenvalue is
w =~ 0.40.

points, only one of the three factors in the integrand varies significantly; the other two
can be regarded as constant. Thus, one can evaluate contributions to the integral from
neighbourhoods of the points ¢ = 0, 1 and « analytically, and the remainder of the
integral numerically.

Evaluating the integral in Eq. (54) in this way for particular values of S and 4., we find
that it vanishes for complex frequencies w lying very close to the discrete eigenvalues
obtained using the shooting method. However, this method of eigenvalue determination
fails when o approaches the real line. The hypergeometric functions may also be used
(with care) in the continuum case. However, the values are needed along the cut
and the analytic continuation of the Gaussian hypergeometric series alone cannot give
the answer. In particular the current sheets prevent simple application of tabulated
functions. However, both the shooting method and the integral equation method are
powerful enough to deal with the continuum case, as we demonstrated in the previous
subsection.

6 Viscous Layer Theory in Limit S — 00,e € 1

We now treat the inner equations developed from Eq. (17). For simplicity of treatment
we shall assume that wd, = a < 1 is a fixed parameter whilst ¢ — 0. Introducing
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Figure 5: Continuum eigenfunction in the limit S — oo with zero amplitude inside
r = wd,. There is a current sheet (more precisely, a current cylinder) at this point.
Asin Fig4, e = 0, m = 0 and 6. = 0.1. The eigenvalue is wy =~ 0.52 and the
plotted quantities are (a) azimuthal field perturbation and (b) longitudinal current
perturbation.

z = r?, and considering m = 0, Eq. (17) can be written in the form
o?
5_2f +(z—a?4D*f = —iel6D*f (71)

Clearly close to the singularity, “dominant balance” suggests the inner layer scaling,
z = o + ae'®%, where 7 is a “stretched” layer variable. Bearing in mind the fact
that f = 1 at the singularity and is continuous, the eigenvalue equation for f can then
be written as a pair of coupled second-order differential equations for f and the layer
current-density, g:

d*f i
& (72)
. ae'l? d%g
Zg + (“@;)f = 4 (73)

In the absence of the viscous term, the current density clearly blows up near the interior
singularity  ~ o? like 1/(a? — z), when f itself is non-zero there. Let us first consider
the case when f — 1 as £ — a?. It is evident that in the layer, we may replace
f by unity (in leading order of ¢) and obtain, upon introducing the compler variable
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Z = (4exp(—im/2))/*%, and g = G(%5) (4 exp(—im/2)) /3

d’G

This is an inhomogeneous Airy equation [15], whose properties are well-known. We
defer the detailed anlysis of the inner layer to a later work, but merely note here that
the continuous spectra will be resoved into discrete eigenvalues in the lower half w-plane
by the viscous term. The damping rate is expected to scale like €!/®. This resolution
is analogous (both physically and mathematically) to that of the flow continuum by
ordinary viscosity encountered in the much simpler case of the advection-diffusion
equation [13].

7 Discussion and Conclusions

We have determined the spectrum of modes associated with a current—free magnetic X—
point, taking into account resistivity and electron inertia in Ohm’s law. In the limit of
zero resistivity and viscosity, we have shown that the equation describing perturbations
to the X-—point equilibrium has two classes of singular eigenfunctions (continuuous
spectra). For small finite values of resisitivity and zero viscosity, there are two cases.
For fixed dimensionless skin depth 4., the spectrum has both discrete and continuous
components when the Lundquist number S is sufficiently small. Remarkably, when the
Lundquist number exceeds a critical threshold we again obtain a continuum, although
the modes are weakly damped. We have also found a continuum and possibly discrete
solutions under well-defined conditions of purely damped, zero frequency modes. Thus,
in this problem, the singularity is not resolved by resistivity in the presence of electron
inertia, if the skin depth exceeds the resistive length scale sufficiently. Electron viscosity
is expected to resolve the singularities fully and introduce purely discrete spectra. We
have indicated the key elements of a deeper analysis of the critical layers. A full
treatment of the layer theory is left for future work.

These results indicate the existence of eigenmodes with frequencies typically in the
Alfvén range, which could redistribute or accelerate energetic ions in their vicinity.
They could in principle also be involved in nonlinear turbulent transport processes in
the vicinity of X-point configurations. It should be stressed that the problem should
be regarded as a paradigm for more realistic and complex field configurations with
the same X-point topology. We have omitted several possibly important effects which
may significantly modify the spectral properties. These include finite ion gyro radius,
equilibrium currents, pressure gradients, field curvatures, compressibility, flows, and
many kinetic effects. Some of these will introduce gaps and gap modes in the continuous
spectra, and possibly new branches of the spectrum (e.g. drift Alfvén or trapped
particle modes). An understanding of the linear eigenmode spectrum is of fundamental
importance for nonlinear calculations of turbulence and spectral transfer processes.
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