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We study the effects of oversized solute atoms on the diffusion of clusters of self-
interstitial atoms produced in metals by high energy irradiation. We usc kinetic
Monte Carlo (KMC) simulations in model BCC iron, and include elastic interactions
between the defects. We show that clastic repulsion between solute atoms and the
clusters can coufine the latier to one dimensional segments. The casy direction
of motion of each cluster is assumed to rotate infrequently, allowing it to escape
to a new counfined segment. The consequences of the confinement for the cffective
diffusivity of the cluster, and its rate of reaction with other static point defects are
explored both by KMC simulations and by an analytic theory. It is shown that the
predictions of the theory agree very well with the computer simulations. We suggest
some of the possible consequences of these findings for the design of alloys that are
more resistant to the effects of high energy radiation damage.
Keywords: Confinement, self-interstitial atom, defect clusters, solute atom,

impurity atom, diffusion, transport, kinetic Monte Carlo, radiation damage,
computer modelling, dislocation loop, elastic interactions, BCC iron

1. Introduction

The history of our understanding of sclf-interstitial atom (SIA) clustering and
transport has shown the importance of this behaviour to the microstructural
evolution of materials irradiated at high energies. 3-D diffusing single SIAs were
assumed in standard rate theory (SRT) (Brailsford & Bullough 1972, 1981). SRT
describes the effects of electron irradiation well. When the production bias model
(PBM) (Woo ¢t al. 1990) was introduced it showed the importance of SIA clustering
within the cascade region of high energy radiation damage. However the PBM
initially assumed these STA clusters to be completely sessile objects susceptible to
removal only by recombination or ‘dislocation sweeping’. Molecular dynamics (MD)
simulations then suggested the possibility that in face centered cubic materials, such
sessile loops can unfault and become glissile along their glide prism (Foreman et
al. 1991). This allowed the refinement of the PBM to incorporate 1-D transport,
explaining mesoscale structure observed in many situations (Trinkaus et al. 1997).
Subsequently MD simulations (Bacon et el. 1997, 2000; Wirth et al. 1997; Osctsky
et al. 2000a, 2000b) and some experiments (Kiritani 1997; Hayashi et el. 2002) have
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2 T. S. Hudson, S. L. Dudarev, A. P. Sutton

shown that these glissile clusters can occur in body centred cubic materials as well.
Further generalisation of this transport model (Heinisch et ul. 2000; Trinkaus et al.
2002; Golubov et al. 2000) has incorporated the importance of the slight non-one-
dimensionality of the transport, for example the infrequent rotations of the glide
direction onto other close packed axes (Bacon et al. 2000; Soneda & Diaz de la
Rubia 2001; Doan et al. 2001), or conservative climb of clusters diffusing slowly
in the plane perpendicular to their fast glide (Hudson et al. 2002). Recent KMC
simulations incorporating clastic interactions have indicated drastic decreases in
long range SIA cluster transport due to ‘focusing’ in the stress field of a dislocation.
In the case of a concentrated system of SIA clusters the focusing is achieved by
mutual elastic interactions with other STA clusters (Ghoniem et al. 2002).

This adds up to a substantial body of understanding about the transport
of SIAs and their clusters in pure metals. There has long been a belief, and
experimental proof that other stress centres such as solute atoms and impurity
atoms (in this paper we shall use the terms ‘solute’ and ‘impurity’ interchangeably)
can influence the evolution of irradiated materials. Examples include the stark
differences in irradiated microstructure in nickel alloyed with 2at% of variously sized
substitutional solutes (Yoshiie et al. 2002), and molecular dynamics simulations
of SIA clusters interacting with single vacancies (Pelfort et al. 2001) and with
oversized copper impurities in BCC iron (Marian et al. 2002). The latter study
found a decrecase in the diffusion prefactor of the cluster, and for small clusters
there was an increased frequency of rotations of the Burgers vector. One of the most
common methods of describing the effects of impurities, or modelling them in KMC
simulations of radiation damage is to consider them as temporary traps for SIA
clusters, forming sessile complexes. The complexes may subsequently spontaneously
break apart, releasing single interstitials, or the cluster, back into a mobile state.
This may be appropriate for some types of solute or impurity atoms (especially
undersized) and some temperature conditions, but it does not cover the whole
range of possibilitites.

In this paper we describe another transport regime where 1-D confinement
of these SIA clusters occurs through repulsive interactions with oversized solute
atoms. The clusters can escape from these confined segments only by changing
their direction of motion. The 1-D confinement during the period between direction
changes can dramatically reduce the effective diffusion coefficient of the SIA cluster.
It also reduces the volume of space explored by the cluster over a long period of
time, and hence it reduces its rate of reaction with other defects such as vacancy
clusters. The region of 3-D space explored by the SIA cluster is more compactly
centred on its initial position, because the path lengths between direction changes
are no more than the confinement distance. If the confinement distance is small
compared to the characteristic microstructural distances in the system, it leads to
~a transition to behaviour more like the 3-D transport of SRT, even when changes
to the direction of motion of the cluster are infrequent. This is a possible origin for
the 1-D to 3-D transition assumed in recent explanations of void swelling profiles
near grain boundaries formally similar to SRT (Dudarev et ol. 2003).

Using KMC simulations with elastic interactions described in §2 we demonstrate
in §3 that this confinement can occur, and we measure its effect on the diffusion
coefficient of SIA clusters and the rates of reaction with static point defects as
a function of solute atom concentration. An analytic model is then developed
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Interstitial cluster confinement 3

in §4 for this mode of transport, and compared to these simulation results.
The implications of this regime of transport for SIA clusters for microstructural
evolution in irradiated materials are discussed in §3.

2. Simulation Methodology

We used the KMC program of (Caturla et al. 2000), to which we have added elastic
interactions between all defects (Hudson et al. 2003), to simulate the motion of SIA
clusters in a random distribution of solute atoms in BCC iron.

The interaction between interstitial clusters and oversized impuritics was
calculated by linear elasticity theory. The interstitial cluster was modelled by a
circular perfect dislocation loop with its Burgers vector in a close packed (111)
direction perpendicular to the plane of the loop. The direction of easy motion
for these clusters is parallel to the Burgers vector of the loop. The energy of
interaction between a dislocation loop and an impurity atom, modelled as a centre of
dilatation with relaxation volume AV, is then £ = % (0zz + Oy + 0::) AV, where
(022 + oyy + 022} 18 the hydrostatic stress generated by the loop at the centre of
the point defect.

(a) Elastic Field of @ Loop

Khraishi et al. give an expression for the stress tensor of circular dislocation
loops like those we use to model our SIA clusters (KKhraishi et al. 2001), but this
expression has singularities at the circumference of the loop, corresponding to the
core of the dislocation. To model the situation where the edge of an interstitial
cluster approaches very close to an impurity, we have smoothed out the field near
the core of the dislocation in a manner similar to the Peierls-Nabarro model for
a straight dislocation (Peierls 1940; Nabarro 1947). This smoothing removes the
singularities in the stress ficld of the loop by introducing a minimum separation,
equal to the interatomic distance, between the edge of the loop and the point at
which the stress is calculated. Some further modification was required to cnsure that
stresses near the centre of the loop remain well behaved. Appendix A describes
in detail the modified hydrostatic stress field we have used. Figure 1 shows the
behaviour in the vicinity of the loop, of the hydrostatic stress as calculated by
the smoothed equations (A 3) we have used, compared to that calculated by the
original cquations of Khraishi et al. 2001. In the direction parallel to the axis of
the loop, there is recent evidence from atomistic models that clasticity theory
underestimates the ‘length’ of the cluster, in that it has an extended cluster-of-
crowdions shape (Puigvi et al. 2003). Although this will slightly affect the range at
which our interactions become strongly repulsive, it is unlikely to affect our results
qualitatively, because the path lengths we consider between solute atoms are far
greater than the length of the extended crowdion cluster. It would be impractical to
use molecular dynamics simulation for this study, although it might better account
for the details of the clastic interactions, because the timescales involved in the
rotation of even moderately sized clusters are inaccessible.
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Figure 1. Total hydrostatic stress on a cross section through a 10 interstitial loop (radius

0.22 nm) iif BCC iron. Dashed line: according to formulae of Khraishi et. al.; Full line:
with smoothing terms as given in Appendix A included to remove singularities.

(b) Configurational Energy Landscape

For a SIA cluster placed in a randomly distributed field of impurities, figure 2
shows a sample potential energy landscape. We see numerous potential wells, with
small potential barriers to entry, where the cluster passes close to an impurity.
There are rarer occasions where there is a very large potential barrier, when the
loop attempts to go past an impurity located within its glide cylinder. These energy
barriers are higher than the depth of the deepest energy wells. This is because all
segments of the dislocation loop contribute constructively to the compression within
the loop. Outside the loop only nearby segments will contribute tensile stresses,
other segments will tend to contribute compressive stresses. The difference between
the peak height and the maximum well depth indicates that there is a range of
temperature at which loops will be able to pass over all energy wells, but will be
able to surmount the energy barriers only very rarely. In this way they may become
trapped between pairs of impurities over which effectively they cannot pass. This
temperature range will depend on the size of the loop, the relaxation volume of the
solute atom, and the host material.

3. KMC results

This section describes our simulations of the characteristic motion of the interstitial
cluster in a random field of solute atoms, the effective diffusion coefficient as a
function of solute concentration, and the rate of reaction with a third, immobile
species.

In all these simulations we have used an interstitial cluster of 10 SIAs, the size
of some of the larger clusters formed in 40 keV cascades in BCC iron (Bacon et al.
2000), modelled by a circular dislocation loop with radius 0.22 nm, and oversized
solute atoms with a relaxation volume of +1.2% of the host atomic volume, and a
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Figure 2. Sample energy landscape for a cluster of 10 self-interstitial atoms in BCC iron,
caused by a random field of oversized impurities (formation volume +1.2% of the host
atomic volume) at a concentration of 4.0 x 10?° cm™* (corresponding to 0.47 at.%). The

cluster is modelled by a circular dislocation loop, and its linear elastic interaction with
the impurities is smoothed, as described in the Appendix.

temperature of 1000 K. Under these conditions we expect the confinement between
pairs of impurities as described in the previous section. Diflusion is governed
by an Arrhenius law D = wpa®exp (—E,/kT) with an exponential prefactor of
woa? = 3.4 x 107* cm?® 57!, and an activation cnergy of E, = 0.046 ¢V, where
wo is the attempt frequency, and a is the diffusive hop length. Rotation to other
close packed glide directions is also governed by an Arrhenius law, with an assumed
attempt frequency of 0.75 x 10* s~!, and an assumed activation energy of 1.0 eV.
Actual values for these reorientation rates are as yet unknown for such large clusters
because the timescale involved is too large for molecular dynamics studies to
date. Consequently we restrict ourselves to describing qualitiatively the phenomena
involved and do not claim this is a quantitative description of SIA cluster diffusion in
BCC iron. The possible dependence of the activation energy of rotation of clusters
on the local impurity concentration (Marian et al. 2002) is not included in this
study, but would further enhance the 3-D nature of the SIA cluster transport in an
impurity field.

(a) Confinement

First we examine the trajectory of a single interstitial cluster through the field
of impurities. Figure 3 is a plot of the z, y, and z components of the position
of the SIA cluster as a function of time. Because the cluster always travels in a
{(111) direction, we can detect a rotation of the Burgers vector of this cluster cach
time the sign of the change in one of these components flips relative to another.
The rectangles marked on the figure are positioned to show the times of these
Burgers vector changes, and the maximum and minimum extent of the x position
component in between rotations. This shows us, that in some cases, for example the
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second rectangle, the particle is confined between two points until a rotation occurs,
although it is free to diffuse within that segment. In other cases, the endpoints of
its confinement are so far apart that it does not explore this length by the time it
rotates, e.g. the first box.

70.0 . . .

50.0

30.0 -

loop position (nm)

.0 : . :
0.0e+00 5.0e-08 1.0e-07 1.5e-07 2.0e-07

time (s)
Figure 3. Sample Cartesian trajectory of a cluster of 10 self-interstitial atoms in BCC iron
at a temperature of 1000 K, within a field of oversized impurities (formation volume +1.2%
of the host atomic volume) at a concentration of 4.0 x 10%° cm™? (corresponding to 0.47
at.%). Initial coordinates: (0, 0, 0). Black: x, dark grey: y, and light grey: z coordinates
are plotted against time. Boxes indicate the times of rotations, and the maximum and
minimum extent of the z coordinate before the next rotation.

(b) Diffusion

To measure the effect of this confinement by impurites on the overall transport,
we simulated motion of SIA clusters to obtain numerous trajectories, each over a
time of 2 x 10~7 s , from which mean squared displacements and effective diffusion
coeflicients could be extracted. These effective diffusion coefficients are plotted as
a function of impurity concentration in figure 4. They are compared to results of
an analytical model, equation (4.12), which will be described below. Both show
an initial insensitivity to impurities, when the concentration of impurities is so low
that collisions with them are infrequent. At larger concentrations where confinement
can occur within the typical distance between Burgers vector rotations, a drastic
decrease in the diffusion coefficient occurs with increasing concentration.

(¢) Reaction

The confinement by impurities also has a substantial effect on any reactions
involving the interstitial clusters. Simulations were performed of an SIA cluster
in a randomly distributed field of stationary spherical sinks with no elastic field.
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Figure 4. Effective diffusion coefficient for a 10 SIA cluster in BCC iron undergoing 1-D
diffusion with rare direction changes at a temperature of 1000 K, within a field of oversized
impurities (formation volume +1.2% of the host atomic volume), as a function of impurity
concentration. Crosses: KMC results. Line: As predicted by model in section §4 a.

The concentration of these sinks was 1 x 10" cim™?, and the capture radius used
was 0.68 nm. Each sink is assumed to be a perfect absorber. We compare the case
of annihilation in a pure material to the case of annihilation in a random field of
stationary solute atoms with a concentration of 4 x 10°® cin~2. Many simulations
of annihilations of individual SIA clusters were performed in this manner, 10000
in pure iron and 200 in impure iron, to determine the probability of a cluster
surviving in the presence of these sinks as a function of time. These probabilitics
are plotted and compared to theoretical curves from equations (4.30) and (4.14) in
figure 5. It is seen that the probability of survival of an SIA cluster is enhanced
considerably, especially at longer times, when solute atoms are present that confine
the 1-D diffusion of the SIA cluster. More generally, we conclude that oversized
solute atoms will reduce the rates of reaction between SIA clusters and static defect
clusters, such as vacancy clusters.

4. Theoretical Analysis

In this section we present an analytic model system that enables us to generalize the
results of the KMC simulations described in §3. To understand the behaviour of the
loops in the stress fields caused by the impurity atorus, we construct the following
model system, for comparison to the KMC results in §3. Consider a temperature
where loops are freely able to pass over the energy wells arising from attractive
interactions to impurities ncarby, but where loops are unable to overcome the large
energy barriers provided by direct traversals of an impurity atom. In this case, until
the Burgers vector of the loop rotates, we treat the transport as 1-D Brownian
motion except that it is limited by the fact that it is always reflected when it
cncounters an impurity directly.
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Figure 5. Survival probability for a 10 SIA cluster undergoing 1-D diffusion with rare
direction changes at a temperature of 1000 K, in a field of spherical sinks (Concentration:
1 x 10" cm™2, capture radius 0.68 nm) without an elastic field, plotted against time.
Squares: KMC results in pure BCC iron; Circles: KMC results with an oversized impurity
(formation volume +1.2% of the host atomic volume) concentration of 4 x 10*® cm™2.
Curves: as predicted by model in §4b, full: in a pure material, dashed: with oversized
impurity field.

Confinement will dramatically alter both the overall distance loops can diffuse
in a given time and the volume of space they explore. Since interstitial clusters
generally diffuse much faster than other species in the system, the volume they
explore as a function of time is very important to rates of reaction with other defects.
In §4 a we focus on estimating the effective diffusion coefficient in the presence of
confinement, as a function of the diffusion coefficient of the SIA cluster in a pure
material, the solute concentration, and the frequency of rotations of the Burgers
vector. In §4 b we will investigate analytically the reaction rates with a field of small
spherical stationary sinks. These analytic results are compared with the simulations
described in §3. :

(a) Effective diffusion coefficient

(i) Confined 1-D motion

For one dimensional diffusion of a loop along the z-axis, confined to a ‘box’
between z = 0 and 2z = L, and starting at position zy within the box, the probability
distribution for the location of the loop after time t is given by:

o0 . e 2,2
plx,t) = % + %ﬂ; cos (ﬂ’fg‘»o) cos (%) exp (— ”2_2}%) (4.1)

To obtain an effective diffusion coefficient, the first quantity required is the mean
squared displacement as a function of time while the loop remains confined in this
box. The initial position g within the box is selected from a uniform distribution
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(see discussion of equation (4.4)), so we will average over all possible zg. We denote
this mean squared displacement g(L,t):

O 2
g(L,t) —2/ / p(z, 1) (v — o) dedxg
L* Jo Jo

( (2n+1)2ﬂ-2Dt)
o |

(2n +1)*

L? 1612 &
k¥

6 rd &2)

n=0

Assuming the impurities in the material are distributed at random, there will
be a distribution of lengths of confinement. If P (L) is the distribution of lengths
to the left of our initial starting point before we reach an impurity, and P, (L) is
the same distribution to the right, then we have:

exp (_.55,—2)

F(L) = P (L)= LU/Q

(43)
where Ly = 2/(m2N) is the mean distance between impurities,  is the radius of
the loop, N is the concentration of impurities. This means that the overall box
length distribution is:

L
/0 Pi(L-y) P (y)dy

fL dexp(— Lf/z)
0 G
4Lexp(—Lf/2) 44
- -

P(L)

dy

[,

Note that in the last step the integrand was independent of y, implying that the
ensemble of clusters which are initially confined in a particular boxlength L will
initially be spread uniformly, justifying our use of the particular average in equation
(4.2).

It follows from cquations (4.2) and (4.4) that the mean squared displacement
for a 1-D diffusing cluster positioned at random in this impurity field is:

() = g;/:cy(L, B i (—%) dL (4.5)

The lowermost curve in figure 6 shows this function for a concentration of
impurities corresponding to an average boxlength of Ly = 32 nm where the initial
gradicnt is equivalent to diffusion in a pure medium, with diffusion coefficient of
D=10""cm?s™!.

(i) Confined 1-D motion with rotations

Now we examine the case where random infrequent rotations are introduced.
Because they are not corrclated, the probability R, (7) of having undergone
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rotations of the Burgers vector exactly n times after the system has evolved for
time 7 is given by the Poisson distribution:

rtexp (-F) (4.6)

Bnn) = — iy

where t* is the average time between rotations.

We can find the fraction j,4; (,7) of all the particles, which have made n + 1
rotations after time 7 and have lived in that n + 1 state for a time ¢. Clearly
Jnt1 (t,7) = 0 for ¢t > 7, so the interesting distribution is for ¢ < 7. Also, jo (¢,7)
is special because a loop that has never rotated must have been in that same state
as long as the system has been evolving. Thus we have:

Jo(t,7) =Ro(7)d (T —1) (4.7)

For one or more rotations we have:
. 1 t
1 (6, 7)) = Ry (7 — t) e fort < (4.8)

which is the fraction R, that were able to convert to state n + 1 at time 7 — ¢,
multiplied by the rate of conversion 1/¢*, multiplied by the probability of survival
in this state for time ¢, exp (—¢/t*).

We now make the approximation that each time a rotation occurs, a new pair
of impurity endpoints is chosen, that has never been sampled before, i.e. the cluster
never returns to a confinement segment it occupied earlier. This is likely to be
valid when the impurities are single atoms, and the average path length is much
larger than the radius of the loop. In that case, the mean squared displacement it
undergoes from its new starting point along the new confined segment can simply
be added to the total mean squared displacement for its entire journey.

We define h (1) as the mean squared displacement after a time 7 from the initial
position of a loop randomly inserted in the impure crystal.

dh T) Z/ in (1) dg t) (4.9)

n=0

This general form for the rate of increase of the mean squared displacement may
be explained as follows. For a given number of rotations we multiply the probability
distribution function for the SIA cluster being confined for a time ¢ in its current
confinement segment, given that the total elapsed time is 7, by the rate of increase
of mean squared displacement we would expect after being confined for this time
t. We integrate this product over all confinement times and sum over all numbers
of rotations.

Combining equations (4.6), (4.7), (4.8) and (4.9}, we get:

é’;&_f) = I ( t*)d%(r)+

Z/ 'n,—l)l (T:t)nrlti*exp (-1) @0,

n=1

(4.10)
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which can be simplified to:
dh(r) _ ) Ty dg (1) 1 f7 t\ dg(t)
5 = exp (—-i—;) Ir + f_*/u exp )@ dt

To illustrate the range of possible behaviour predicted by equation (4.11) we
show in figure 6 the limit of the equation in a pure material (Ly — c0), which
corresponds to free diffusion. We integrate equation (4.11) nurmerically, with the
initial condition h (0) = 0, and also show the case of complete 1-D confinement by
a randomly distributed field of solute atoms when no rotations are allowed, and
finally two intermediate cases with the same confinement length distribution but
with rotations allowed.

(4.11)

0.6
------ No rotations, L ;=32 nm
—-—-- t=3x10" 5, L,=32 nm |
S I=2K10-7 s, L°=32 nm ’,’, r
Free diffusion /,»’ _,i
o 04 //, =
E fr’ ‘;,’-"’
£ e
= e
= Pt
R S ——
A 02 e
L) -
—_ 2
e /
1
=
v
0.0 . ]
0.0 1.0 2.0 3.0

time (x10™'s)

Figure 6. Representative cases of the theoretical mean squared displacement as a function
of time. ¢t is the mean time between rotations, Lp is the mean confinement length. 4
cases are shown: free diffusion; 1-D confinement with Lo = 32 nm; confinement where
Lo = 32 nm but rotations are allowed: with ¢” = 3 x 107" 5; and with ¢* = 2% 107" 5. All
cases use D = 1071 em® s7 1.

To obtain effective diffusion coefficients at long times, corresponding to linear
parts of the curves in figure 6, we take the limit 7 — oo and recalling that g(0) = 0,
we get:

dh(7)
dr

1 [ A _
T exp (= | 3 (t) dt (4.12)
When the lengths of paths between rotations are small compared to the mean
distance between impurities, equation (4.12) reduces to the same diffusive behaviour
as the loop would undergo in a pure crystal
1 dh(7)

Depr = 6 dr

w|

T=00
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12 T. S. Hudson, S. L. Dudarev, A. P. Sutton

The factor of 3 comes from the fact that we have ‘bent’ 1D motion into 3 dimensions.
The opposite limit where rotations are rare and the impurity concentrations are
significant, results in an effective diffusion coefficient:

1 dh(r) L2 1
Doty = - 9 -~
=6 dr I o T (72 N)? ¢+

Note that in this limit the effective diffusion coefficient is independent of the
coefficient D of one-dimensional diffusion and is inversely proportional to the square
of the concentration of solute atoms N in the material as well as to the square of

the number v of STAs forming the cluster v ~ mr2.

(b) Effective reaction rates

We now consider the effective capture rate of a SIA cluster diffusing as above in
a randomly distributed field of impurities, and in the presence of perfectly absorbing
stationary spherical sinks with a capture radius of r.. We let [{ ()] and [S] be the
concentrations of interstitial clusters and sinks respectively, and Z () be the total
length of the path through the material traversed by the cluster at least once, as a
function of time 7.

@ = —[I(7)][S] 7r2 dzc'if-) (4.13)
So the survival probability at time 7 is:
1= L0l o (cis1mr2z () (4.14)

[Z(0)]

The key parameter that impurities will affect is Z (), and we will now derive an
expression for it.

(i) Free 1-D ezploration

Consider an unconfined 1-D random walk, comprising random hops Xy, Xs, ...
where X; = +£1. Define the currect position Y;,, the maximum to date M}, and
minimum to date M :

T o= X Pl b
M} max (Y3,Y2,...Y3)
M, = min(},Ys,...13) (4.15)

Using the reflection principle, it has been shown that (see for example
http://www.math.uah.edu/statold/walk /walk2.html):

P (.M,;F = m) = P(¥Ys=m) when m mod 2 = n mod 2
PMI=m)=P(Y,=m+1) whenmmod2# nmod2  (4.16)
As n increases the combinatorial solution for the distribution Y, can be

approximated by exponential terms using Stirling’s rule. We also replace the
discrete variables, the number n of hops and the current position ¥,, = m,
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with continous variables time ¢ and current position ¥ = z. The density of our
probability distribution function P (M™* = z,t) approaches double the density of
the probability distribution function P (¥ = z,t), because the discrete probability
distribution P (¥;, = m) is 0 when n and m are of different parity.

The continuous description of the distribution P (Y = z,1) is the well known
casc of Brownian motion:

P(Y =) = ——cxp (—i) (4.17)
" 2(sDt)? 4Dt

It follows that the distribution of maximal values of 1-D Brownian motion after
time ¢ is:

1 g?
P(MY =u,t) = ——5exp (— ) forez >0 (4.18)
( ) (xDt)? 4Dt

By symmetry the distribution of minimal values of a 1-D Brownian walk after
time { is:
P(M~ =-z,t) =P (M* =u,t) (4.19)

To calculate the average distance explored in the positive direction as a function

of time, we cvaluate:
e 1 @2
@ T CXp (— ) dr
fu (ﬂnDi)é 4Dt

NEAY 130
() (4.20)

T

(MF (1))

I

Using the symmetry between the minimal value distribution and the maximal value
distribution, we get the average total distance explored in both directions as a
function of time:

T

(M* (1) = M~ (1)) = 4(E)§ (4.21)

(i1) Confined 1-D exploration

We consider how the average total distance explored of equation (4.21) changes
when we confine the cluster between impenetrable objects distance L apart. Initially
mimicking the above behaviour, the explored distance will eventually saturate at
L.

To evaluate the explored distance, we first go back to the free case, and consider
the probability that a 1-D diffusing particle starting at the origin does not leave the
interval (—xp,zp) in time #: P(zp,zH,t) = P((M™ > —zr) & (M* < xzy),f).
This probability can be evaluated in three steps. First by solving the diffusion
equation in this interval with the boundary conditions that at both ends the
concentration is fixed at 0, equivalent to absorbing walls, we obtain the distribution
of positions of particles which have remained between these bounds. Secondly, this
solution is integrated over this interval to find the fraction of the diffusing particles
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that have remained always in this interval.

i ((2?“ +1) WL)
oo - = 2
I + T (2m+1) w2 Dt
P(zp,zg,t) = — E exp| ————— (4.22)
L m=0 2m +1 ('T’-L + :rff)z

In the third step, we follow Berezhkovskii et al. 1989, and find the joint proba-
bility distribution of the Brownian trajectory for which the maximal deviations of
the centre of the cluster during time ¢ to the left and right of the starting point are
exactly z and xy respectively (their equation (32)):

a*pP (:I'JL,:L'H, t)

OuwrOry #:23)

o (:EL:':‘EHJ t)

We note that our equation for P (zz,z,t) in 4.22 differs significantly from the
equivalent equation given in Berezhkovskii et al. 1989, although we have followed
their method. Using our expression we get:

U (zp,zH,t) =
e i { [B (x3 — %) (—20 + (zL + .'r.n)z) cos (ﬂ) +
o % H Tty

B.
(402 - 6C (zz + 91!1)2 +Bzrzy (wp + 2:1{)2) sin (i)] X

L +TH
C -1
((2?71 + 1) exp (m) (ﬂ':L "I“-'L'H)B)

(4.24)

where

B
C

@m+1)n
(2rn 4+ 1)* 7° Dt

Because a particle must have exactly one maximal deviation on either side of its
origin, the identity fooo dzp, jg’o deg¥ (2, zy,t) = 1 must hold.

Using ¥ (zr,zm,t), we now consider the case of a particle constrained within a
box of length L = Iy + l5. The particle starts at the origin, which is [; to the right
of the left of the box. Let 2z (l;,ls,t) be the average distance explored after time ¢.
It is obtained by folding the joint probability distribution for a free particle, shown
in equation (4.24), at both ends of the box. For example if a free particle trajectory
folded over from the right hand end of the box overlaps so far that it covers the left
hand side of the box, then irrespective of the maximal excursion on the left hand
side, the whole box length has been explored. Averaging over all trajectories, the
expected length explored after time t, having started at position [; from the left of
the box, is:

max (zg,zL — 2I1,12) + ] (4.25)

00 o0
z(ll,lg,t)-—.[u dLL‘L/U dzp¥ (IL,CL‘H,f) rnax(x;,,s;;;-2lg,l1)
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We can break these integrals into segments:

z (I, lg,t) =

[
/°° d:L_Ll:j;sz:I:H‘I’(:I:L,:J:H,t)[L]+ .
2

fl:c’ dey¥ (xg,Ty,t) (L]

‘/‘gfﬁ_{2 iy fc':z doyg ¥ (zp,zm,t) [li + max (=2l + xp, zH)] + &
2 Jio de® (zp, i, t) [ L]

/ghdu‘:L j;z deg® (zp,zm,t) [l + o]+ +
n flg dog¥ (2, o, t) [L]

J-sz dep¥ (xp,wm, t) [ +2m] +
" dry, I;h dep¥® (zp,zp.t) [zp + L]+
° ST dag @ (zr, wr, 1) [max (zp, Ty — 2b) + L] +

Jota e, derr® (zr, o, t) [L]

Grouping together the three terms which involve the integral over zpy from [s to
oo we obtain the first line of the following equation, and the remaining terms are
simplifications of the corresponding integrals in equation (4.26):

1412

(4.26)

z(li,lgt) = LxP((M™ < ~l)&(MT > 1))
+ LxP((M~<-ly-2h)& (M <1y))

la+20 Ia
+ / dy, drgr [l 4+ max (xy, =20 + 22)] ¥ (xp, 20, t)
al 0

20, 1
+ / drr diwgr (e + 1) ¥ (g, xp,t)
I 0

Iy {a
+ / d:L‘L[ deg (cg + o) ¥ (zp,cpr,t)
0 0

151 2ls
+ / dxy, dx g (lg"f‘!l;[,)‘ﬂ(l‘j;,i"n,i)
0 .

1
15 2'312+i'1
-+ f d':L‘L/ dag [l + max(zg, 2q — 20)] © (zr, x5, 1)
0 2y
+ LxP((M™>-4)&(MT>2+1)) (4.27)

The next step is to average z (I1,13,1) over all possible initial positions in the
box to get z (L, t):

L
2(L,t) = %/0 bl e by, il (4.28)

The final step is to average Z (L,t), over the box length distribution as in
equation (4.5) to get Z (t) for a given solute atom concentration:

5(t) = f‘% fow S(E, B eup (-%) dL (4.29)
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(ili) Confined 1-D exploration with rotations

With Z (1), we can use similar arguments to that used in equation (4.11) to get
the average total volume explored as a function of time

az(r) _ exp(~ti*) dz(r) 1fTexp( i) ZWl) g (430)
0

dr dr  t* ) dt

Note that we have not squared the total length explored at any stage here as
we did in the analysis in §4 a. The reason is that when a cluster changes directions
and starts a new confined exploration, the new explored distance itself additively
contributes to the mean total length explored. In §4 a however, it was the squares
of the new displacements which additively contributed to the total mean squared
displacement. OQur assumption of additive contributions to the mean total length
explored requires long lengths for each 1-D path compared to the cluster radius.
In the case of very high impurity concentrations, or very frequent rotations, this
approximation breaks down and 3D volume exploration models should be used.

Now that we have an expression for Z, then rates of reaction with stationary
sinks may be obtained as discussed in equation (4.14). The results compare
favourably to the KMC simulations, as shown in figure 5.

5. Implications and Conclusions

We have argued in this paper that under certain conditions of temperature,
frequency of rotation of SIA clusters, and concentration of solute atoms, the
diffusivity of these clusters, and their ability to reach and react with other defects,
may be severely curtailed by oversized solute atomns confining their one-dimensional
excursions. Undersized impurities or oversized impurities at low temperatures may
attract and trap STA clusters. At higher temperatures we expect confinement by
repulsion from oversized impurities at either end of a 1-D segment along which there
is otherwise free diffusion. We have observed this confinement in the kinetic Monte
Carlo simulations of §3. Rotation of the Burgers vector eventually allows the SIA
clusters to migrate over greater distances, but the effective diffusion coefficient and
the rate of volume exploration can be much lower than that of a cluster diffusing
freely in a pure material. The confinement to short segments accompanied by
rotations of the Burgers vector destroys the long ballistic motion characteristic of
typical 1-D transport of these interstitial clusters, making the diffusion effectively 3-
D on a smaller spatial scale. This is possible even for clusters which rotate only very
infrequently and would in a pure material be considered to have near 1-D transport.
Near 3-D motion of the clusters in such alloys may render void explanations of the
observed larger-scale microstructural features that rely on near 1-D transport.

An analytic theory is presented in §4 and compared to the KMC simulation
results. It successfully accounts for both the reduction in effective diffusion
coefficient, and the reduction in reaction rates associated with a reduced ability
to explore space found in the KMC simulations.

The partially confined motion of SIA clusters able to undergo Burgers vector
rotations presents further questions about how the impurity interaction affects the
evolution of a high-energy radiation cascade in alloys. Because the SIA clusters will
remain in the vicinity of where they were created for longer, near the vacancies and
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vacancy clusters, and because they will explore more 3-dimensionally in that region,
we expect higher levels of recombination within the cascade after the thermal spike.
More generally, it should be possible to tailor the solute composition in reactor
materials to take advantage of their reduction of the transport of SIA clusters,
to design alloys resistant to high-energy radiation damage, for example enhancing
recombination and thereby reducing swelling.

This work was supported by the UK Office of Science and Technology, Engineering and
Physical Sciences Research Council, EURATOM, the Overseas Research Students Award
Scheme, and a Linacre College Applied Materials Scholarship. The authors wish to thank
Georges Martin for helpful discussions. The authors also wish to thank Maria-José Caturla
for the provision of the bigmac computer program, and subsequent instructive discussions.

Appendix A. Equations for hydrostatic stress from loops

The equations according to Khraishi et. al. 2001 for the uniaxial stress components
of a circular dislocation loop with Burgers vector in the z direction perpendicular
to the habit plane of the loop are:

o p C[DyE (k) + DioK (k)] + C' [Di E (k) + D12 K (k)]

o-: = C'[D3E(k)+ Dy (k)] (A1)

Il

where K (k) is the complete elliptic integral of the first kind, and E(k) is the
complete elliptic integral of the second kind, and the coeflicients Dy, Dy, Dy, Dy,
Dyq, and Dy» arc functions of the variables:

2 3
p = (¥ +y7)*
- (p2+22)%
c = -G
m
Gb.
1 ze o z
5 = 2m (1 —v)
a = r*+R?
b = 2pR
2 \*
k (u+b) (42)

The expression for g, can be obtained from the expression for o, by switching «
and y.

The expressions we have used for the coeflicients D3, D4, Dg, Dho, D11, and D3,
are given in equation (A 3). We have followed the notation of Khraishi et. al. 2001.
These coefficients have been smoothed by addition of the term A2, a constant the
size of the interatomic distance squared, each time the term a—b = 2% +(R — ,a)2 was
required, to remove the stress singularities at the location of the dislocation core.
For very small loops such as the loop modelled here, a smaller constant A ~ R/10 is
required to eliminate the divergent behaviour. D;q is also multiplied by the factor
(a — b)/(a — b+ A?) to correct for a singularity which otherwise appears in the
centre of the loop. This factor approaches 1 when far from the loop.
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(a+b)(a— b+ A?)(a — 2R?) + 2%(a® + 30%) — 8az’R?

Dy = :
(a=b+A2)2(a+b)%
p, = —(@=b+A)(a+b)-2*a-2R?)
b (a—b+A2)(a+1b)?
Do - Ua=b+A%(a+b)(y* - 2%) — y?p’(a — 2R?))
9 (a—b+ A?)(a +b)7pt
2 _ g2 2.2
Dy = -y )l+:u p
(a + b)2p4
a(a —b+ A%)(a +b)(z ~ v )R+
{(a —-b +A2)(a + b) [2(&- _ 3R2)$2 + ayz] _
(a® + 3b® — BaR?)x22%}p?
(a — b+ A2)2(a + b)3 pt
(a—b+A%)(a+b)(y? - s?)R2-
a—1b [(a—b+A2)(a+b)(232+y2) _ (a_sz)mzzz] p2
Dy = I A X - g o
* (a-b+ A)a+b)ip
(A3)
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