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Abstract

It is shown, through an elementary quantum mechanical calculation, that two particles
interacting via a short range repulsive force in an external periodic potential can form
a bound state. The two particle wave function is labeled by a continuous centre of mass
momentum. It is bounded and spatially localized in the centre of mass system. For
instance, a combination of short-range (ie screened) binary Coulomb interactions and
the periodic potential provided by the stationary ions, can create a two-electron bound
state in a crystalline solid (Slater et al[3] and Hubbard [4]). However, the phenomenon
delineated here is quite universal in the sense that, under appropriate conditions, bound
states are possible independent of the nature of the particles and/or the mechanism
by which the external periodic potential is engineered. Our general wave mechanical
result may explain experimental results presenting evidence of such bound pair states
in solids ([1]) and photonic lattices([2]). It has many other potentially interesting
consequences even for classical interacting wave systems (e.g. solitons) propagating in
a periodic background.

The energy spectrum of free quantum particles (obeying the Schrédinger equation) in
a periodic potential is disconnected, and consists of allowed and forbidden bands; the
band gaps arise due to Bragg reflections. The existence of the bound states for repelling
particles can, then, be qualitatively explained by the fact that the Bloch spectrum of
a particle moving in a periodic potential implies negative effective masses for certain
wave numbers (close to zone boundaries) and particles with negative effective masses
subject to repulsive forces can form bound states. A deeper explanation may lie in
the fact that Bragg reflection actually constrains two electrons to be close even though
they repel each other, provided they both have energies close to a zone boundary.

This result, a characteristic of the wave nature of matter, does not apply to classical
particles. Classical waves, on the other hand, do indeed duplicate this remarkable
behavior of quantum particles; well-defined bound states ( called ”Gap modes”) of the
Alfvén waves emerge in an effective repulsive potential embedded in a periodic potential
created by the toroidal magnetic field geometry in tokamak plasmas[5]. Nonlinearly
interacting wave motions are also of great interest in plasmas (drift waves) and fluids
(Rossby waves).[6]



In this paper, we provide a simple (and interestingly, in principle, exact) quantum
mechanical calculation demonstrating that two particles (electrons, atoms, etc.), inter-
acting through a short-range binary repulsion, can indeed form a bound state in a given
periodic potential (this work is based on an earlier unpublished report of the authors
[7]). The calculation is readily seen to apply to any pair of repelling particles-not nec-
essarily identical- in any external periodic potential such as those created, for example,
by suitable laser fields in cold-ion traps [2]. In principle, the effect can also be expected
to apply, under suitable conditions, to solitons moving in a periodic external potential
provided their mutual interaction can be represented by a short-range repulsion.

Since the repulsive potential in most cases of interest will be short range Coulomb, we
will call the bound state derived in this paper as a “Coulomb pair”. We will show, that
unlike phonon-mediated Cooper pairing, the wave function of the “Coulomb pair” (in
the centre-of-mass frame) tends to be strongly localised in position space.

Consider two particles a, b interacting with each other via a repulsive potential V. (|z, —
zp|) in the presence of an external periodic potential Vj,(z + d) = Vj(z). The time-
independent Schrodinger equation, describing their motion is,
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In the absence of either V}, or V;, this equation may be solved to yield non-square
integrable solutions corresponding respectively to ‘Bloch states’ (V; = 0) or ‘scattering
states’ (V, = 0). For a short-ranged (e.g., screened Coulomb) repulsive potential V., we
find that Eq. (1) admits solutions that are Bloch-like ~ ¢ W (x,y) in the center of
mass coordinate x = (x,+xp)/2 [W(x,y) is periodic in 2 with the lattice period d], and
localized in the relative coordinate y = x, — ;. These eigensolutions are nondegenerate
and are labelled by K, the center-of-mass ‘wavenumber’. Thus the wave function
U(z,,xp, K) has a characteristic energy E(K). The proof applies mutatis mutandis
to any reasonable periodic potential and to any purely repulsive potential which is
sufficiently short-ranged.

In the following, €(k,n) is the eigen-energy. For transparency of notation we use the
reduced zone scheme in which k is the reduced zone wavenumber —7/d < k < 7/d,
and n is the band index. In the rest of this paper we will use £ as a composite symbol
for k and n with [ = Y02, fz/r'jd(dk /27) denoting integration over the allowed bands.
The total (spin plus orbital) wavefunction must be antisymmetric. Since the potentials
(by assumption) are independent of spin, we may look for spin zero (singlets) or spin
one (triplet) solutions. For simplicity, we discuss the singlet case, corresponding to
spatially symmetric wave functions. Unless otherwise stated, in the following the label
U refers to the symmetric spatial orbital. This orbital wave function is expanded in
terms of symmetrized products of one-electron Bloch states, e“””UkA(x) and satisfies,

when substituted in Eq. (1), an integral equation for the amplitude W.
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The solution is of the form \Il(g;,&,) = 0(K — kg — kp)F(ko, K — kg, ng,np) with F
satisfying

[E — €(&) — (&) Fka,naymy) = (21d)™" 3= | P F(ky, 1, mi)dk, (2)

These spatially symmetric solutions are even in y = x, — xp. The kernel P of the
equation is obtained by transforming to the center of mass x and the relative coordinate
ylxea=x+y/2,2y =2 —y/2, du, dxy, = dz dy], exploiting the periodicity of the Bloch
functions, and using the standard identity >r'=*% exp[inf] = 27d(f) for —m < 0§ < 7

n=—oo

P = (2m/d)d (ko+ky—ka—ks) / dyV: (|y]) exp[—iy (kg —Fka)] /_ (Z; dz A(z+y/2)A(z—y/2)
(3)

where A,y = [Ug(2) U (2)]q(s) are periodic in z,(), and the double integral constitutes
p.

We simplify Equation (3)(essentially equivalent to Eq.(1)) to elucidate the basic physics
of Coulomb pair-formation by putting Bloch functions equal to unity, by modelling
the repulsive potential by V, = Vydd(y) leading to P = Vyd?, and by restricting the
k integration only to the two relevant bands n = 1,2. Defining new dimensionless
variables k = kd/2n, K = Kd/2n(-1/2 < k, K < 1/2), u = k—K/2, and remembering
the constraints on k! integration, Eq. (3) leads to the integral equation/dispersion
relation,

1 (1-K)/2 du
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This equation is clearly a generalisation of Hubbard’s [2]. Given the single-particle
energy spectrum (ie €(k)) and the interaction potential Vj, this equation is readily
solved numerically to give the energy F(K) and the two-particle wave function in terms
of the relative coordinate y. It admits, of course, various ‘scattering states’ which are
not square integrable in y. We shall be more interested in the bound states. Even
without solving Eq.(4), it is evident from the nature of the energy denominators that
when E lies in the two-particle gaps caused by non overlapping Bloch band energies,
the equation has nontrivial solutions which correspond to the two particle bound states.
It can be seen from elementary arguments that the pair wave function in this case is

localized in y (ie,/™2° |¥(z, y)[2dy < |C]?).
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Fig. la: Pair energy E(K) and the Bloch energy bands for the Kronig-Penney potential,
Fig. 1b: Pair coherence function p(y), see text for details.

We present as an explicit example, numerical solutions based on the one-particle dis-

persion relation cos2me!/? 4 (sin 27e'/2/27¢'/2)Qy = cos 27k corresponding to the
well-known Kronig-Penney potential V,(z) = Qo(h*/md) Xr==, d(z — nd), Qy =

(md/h*)@b, where Q(b) is the strength (range) of the potential. Here we show a
typical strong potential (Qy = 5) example for which the gap size is comparable to the
band width. In Fig. la, we plot the functions €;(k) [single-particle ‘valence’ band],
€s(k) [single-particle ‘conduction’ band] and E(K) for V; = 0.5 (a typical value when
the screened Coulomb potential is approximated by a delta function). The precise
location of the energy eigenvalue F(K) will depend on the strength of the repulsive
potential V;. The plot of E(K) as a function of K shows : 1) that the minimum pair
energy occurs at K = 1/2, and 2) that the pair energy for the chosen parameters has
a slow K variation (high effective mass). In Fig. 1b we display a plot of the relative
probability density [¥(z,y)[?/|¥(z,0)|*> = p(y) as a function of y (measured in d) for
the most tightly bound K = 1/2 state. The probability density falls off rapidly imply-
ing a short coherence length £ ~ d, the lattice period. The pair size remains between
1 — 10d for all reasonable values of )y and V. Thus, the present pairing mechanism
can operate essentially independently of any other (for example, the lattice-phonon
mediated, long-range Cooper pairing for electrons in a crystalline lattice)

The main results of the preceding calculation can now be summarized: 1. In a periodic
external potential, two electrons (or indeed any pair of like-charged particles, identical
or otherwise) interacting through a short-ranged repulsive potential can be ‘bound’
to form a spin zero compound boson with a spatial extent of the order of a lattice
length. For electrons in a solid lattice it will have a charge of —2e . This result is
remarkable since neither of the two potentials can, by itself, yield states localized in
the relative coordinate(but Bloch-like in the centre of mass coordinate). 2. An essential
requirement for solutions of this type to exist is the disconnected nature of the single-
particle energy spectrum (i.e, the existence of distinct band gaps ). 3. Typically,
the two-particle energy F(K) is a continuous function of the lattice momentum K
of the pair, and forms a band with higher energies than would be the case if both
constituents had energies in the valence (ie lower) band. Thus these pair states possess
higher energies and are ‘excited’ relative to the ground state of the two-particle system.
This is perfectly understandable since the repulsive interaction can only ever increase
the energy of a pair relative to the unperturbed system.



We believe that our calculation, firmly based as it is on wave mechanics, can provide
a theoretical framework for a detailed understanding of the recent experiments of [2].
It shows that the correlation of repulsively interacting particles in periodic potentials
is a characteristic of interacting waves, having little to do with spins, complicated
many-body effects, second-quantization (thus the particles need not both be bosons or
fermions) etc. Perhaps the simplest physical manifestation of the phenomenon under
discussion is provided by the delocalized motions of paired electrons in a benzene ring
structure. The predicted energy of the bound state, as well as its spatial shape and
extent, could be readily compared with the experiment. It would also be of interest
to consider the case of two interacting solitons in a periodic potential. This problem
could be attacked numerically (and indeed experimentally) and would have interesting
consequences for nonlinear optics and wave motion generally and also possibly in the
molecular dynamical theory of defect propagation in materials. We hypothesize that
under suitable conditions, bound pairs of solitons can exist in stable (or meta stable)
states and propagate together in the environment of an external periodic potential.
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