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Abstract

Some properties of axisymmetric equilibrium solutions for the poloidal flux function ¥(R, Z)
in toroidal geometry are examined, where 1 is a solution to the non-linear Grad-Shafranov
equation whose right hand side features two unknown functions p(y’) and f'(1); p is plasma
pressure, f is toroidal R times toroidal field, while the prime denotes differentiation w.r.t. 1.
A brief review is given of previous work on analytic methods developed to find solutions
from analytic representations of (p, f). The review includes numerical methods to find ¢ from
experimental data on ¥ and /or Vi along curves outside the plasma. The latter, referred to as
equilibrium reconstruction, assumes that the functional forms of (p, f) are given. Equilibrium
reconstruction has formed the basis of data analysis on tokamak experiments like JET,
TFTR, DIII-D, JT60 and ASDEX. Studies have been made to examine if it is possible to
find solutions 1 from the knowledge of ¥ and Vi on some contour embracing the plasma
cross section, but without making prior assumptions about (p, f). This study has involved
many attempts to relate in general the functions (p, f) to the topological properties of the
curves of constant ¢ and constant , where x is the function orthogonal to % in the poloidal
plane. Previous work has shown that (p, f) can be determined if the full geometry of the
1 curves alone is known. It is emphasized that this equilibrium reconstruction study is
still inconclusive. An analytical equilibrium solution (Solovev) has been used as an example
in our study and many of its properties are outlined. The equilibrium topology uniquely
determines the functional variation of the cross field guiding centre drift motion, which in
turn determines the neoclassical thermal flux. It is shown that this drift motion is at a
maximuin close to the locus of inflexion points of the x curves, i.e. along a curve connecting
points where the curvature of the x curves is zero.



1 Introduction

1.1 Overview and motivation for the study

The reviews by Morozov & Solovev [1] and by Solovev & Shafranov [2] describe many general
properties of plasma equilibria e.g. magnetic field lines, magnetic field strength and topology
for non-axisymmetric and axisymmetric equilibria. We shall consider only tokamak equilibria
which exhibit toroidal axisymmetry as decsribed in subsection 1.2. Any axisymmetric
toroidal equilibrium is expressed by a function (R, Z) for the poloidal flux. In subsection
1.3 we make the distinction between three categories of equilibria and show how these relate
to analytic solutions and solutions derived from experimental data. The latter is known as
equilibrium reconstruction and subsections 1.4 - 1.6 review a variety of methods developed
during the last 35 years. Two examples of analytic solutions are briefly given in section
2. The Solovev equilibrium solution [3] used in many applications is described in section 3.
Section 4 presents various formulae for the topology of the equilibrium. We have used these
formulae in attempts to relate generic properties of the equilibrium topology to the current
distribution. Our study originates from the early work on equilibrium reconstruction [4]
which established the link between the topology of the flux surfaces and the toroidal current
distribution. The problem investigated in this paper is whether the current distribution can
be determined solely from experimental data external to the plasma, i.e. with no information
about the topology of the internal flux surfaces; the current distribution is specified by two
functions (p(1), f(v)) of just one variable 1 (see next subsection). A solution to this problem,
if it exists, would have a major impact on analysis of tokamak data. It would also have an
impact in astro-physics, especially on attempts to determine the mass distribution of the sun,
assuming that this distribution is not spherically symmetric. In mathematics the problem is
known as the Cauchy problem as described in section 5: can two one-dimensional functions
(p, f) be determined from two different one-dimensional functions ¥(¢) and V(£) on some
curve I' external to the plasma, where £ denotes the arc length along I'. Thus in this problem
both Dirichlet and Neuman boundary conditions are imposed . After numerous attempts
to solve this problem we emphasize that the problem remains unresolved. The topology also
determines the guiding centre drift motion which in turn together with collisions determines
the neoclassical heat flux. Section 6 gives formulae for the guiding centre velocities. The
computations in section 6 on that component orthogonal to the 1 surfaces show ”a drift loss
cone”, a banana shaped region in which the drift velocity, and hence the heat flux, is at a
maximum. The conclusion to an unresolved problem is the subject of continued research on
that problem.

1.2 (R,¢,Z) and (%, ¢, x) coordinates

We shall here consider only axis-symmetric solutions appropriate for tokamak equilibria.
Such equilibria are solutions to the Grad-Shafranov equation [5, 6, 7] which links the poloidal
flux function ¢ to the toroidal current density Jy in toroidal geometry (R, ¢, Z). We shall
occasionally use cylinder geometry (R,6,Z) where Bz, Jz denote the longitudinal field,



current density. The equilibrium equation in cylindrical and toroidal geometry is
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In Eq.(1) p = p(¢) is the plasma pressure and f = f(¢) = RBj, toroidal R times toroidal
field; often the RHS terms are denoted by p’ and ff’. Solutions ¥(R, Z) can be found within
a domain Q in (R, Z) whose boundary is I'; in some cases of analytic representations, {2
may be infinite. Boundary conditions like ) |p (Dirichlet type) or V4 |r (Neuman) may be
specified. In the next subsections we shall see that there exist various categories of solutions
depending on how the problem is posed. Solutions to Eq.(1) are functions involving two
types of basis functions

Vs = D U Youn(BP™ 277, Yo = D7 Bron Yma (R, Z7) (2)

The even-even power basis functions yield up-down symmetric solutions v, (R,Z) =
Y4+ (R, —Z); similarly the even-odd power basis functions produce anti-symmetric solutions
Y_(R,Z) # ¢Y_(R,—Z) [8]. These simple basis functions of Eq.(2) result from a separation
of the variables (R, Z) followed by subsequent expansions of the Z function like e**# and
the R function. The latter can be Bessel functions [9], Coulomb wave functions [10] or more
complex polynomials [11]. The cited references have all assumed functional dependences
p(), f() which result in forms of Eq.(1) that are linear in .

We have also studied a function x(R, Z) which describes the curves orthogonal to the flux
surfaces ¥(R, Z). These curves of constant y represent the projected paths of guiding centre
drifts across the plasma surfaces. Once a solution (R, Z) is known, then a solution x(R, Z)
can in theory be found from the orthogonality relation
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The function £(R, Z) can be any continous function; the appearance of £ as £~ is due
to convention (see subsections 3.5 & 4.1). A computational model for the construction of
discrete orthogonal coordinates x;(R;, Z;) from a set of discrete points v;(R;, Z;) has been
developed by Barfield [12] and Potter & Tuttle [13]; subscripts 4 refer to curves of constant x
and 1 respectively. The approximation made in [13] is to assume that £ can be expressed in
the product form € = ¢, (R)g2(Z) within a computational cell and then £ has a discontinous
jump at a cell boundary. This decomposition is a better approximation than the original one
made by Barfield [12] who simply assumed constant £ in a computational cell. A parametric
solution for the orthogonal coordinate ) can also in principle be found from the following
differential equation in which superscript y indicates that x is constant
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Equation(4) is usually a highly non-linear differential equation for curves Z(R, x = x1), e.g.

many solutions (R, Z) involve terms like Z?" (see Eq.34). In section 2 we shall consider
some analytic solutions to Eq.(1). With these it is convenient to use a non-dimensional flux
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surface label = defined via a dimensionless function s(z) which describes the geometry, i.e.
shape 2(R, Z) of the flux surfaces, usually s(z) = z?™. Ampere’s law gives via integration
around the plasma boundary T’

=t ala) j{mlvs(a: |de = poly = th = po Ro I¢[j{ |Vs(m)|d€] ~ 5

where I is the total plasma current and Ry is the R coordinate for the magnetic axis location
(Ro, Zy), i.e. major radius; minor radius is a; the integral in brackets is a dimensionless
number which according to [4] depends only on the shape parameters for the boundary, e.g.
ellipticity «, triangularity J as well as the inverse aspect ratio € = a/Ry. Solutions to Eq.(1)
are often presented graphically as a set of flux surfaces, Such graphs show visually the radial
variations of the key equilibrium shape functions: i) Shafranov shift, A(z), ii) elongation,
k(z), iii) triangularity, 6(z), iv) single or double null separatrix. A knowledge of two of these
three profiles is sufficient to determine the entire current distribution, Jy [4]. The definitions
of the shape parameters have been subject to variations in the past 35 years; however, we
shall use those definitions adopted when the international tokamak confinement database
was established [14]. We return to this in section 4.

1.3 Equilibrium categories

Properties of equilibrium solutions (R, Z) and how to obtain the latter are reviewed by
Lackner [15] who discusses computational problems together with the problem of determining
the plasma boundary I',. Reference [15] also describes convergence criteria while reference
[16] discusses the non-uniqueness of equilibria; reference [4] explains the link between flux
surface geometry and current density. The computational models have been reviewed by
McNamara [17]. In general we can divide equilibrium solutions into three categories which
feature dimensional constants 1y, Py and Fp in units [Vs], [Jm™3], [Vsm™!] respectively and
a set of dimensionless parameters (p;, f;,I1;, ;). These constants and parameters together
characterize the functions p’ and ff’ on the RHS of Eq.(1).

Category I has analytically known solutions, usually found with the following simple
functions on the RHS of Eq.(1) which allow for a constant term and a term linear in ¢ ~ z?™

dp _ 2m f F2
The domain  is inﬁnite, but a plasma boundary I'y( Pr) can be determined where P;, denotes
the location of some point on a plasma limiter. Alternatively I', may be a separatrix which
can be determined from the analytic representation of 1. Some solutions with p, =0, f; =0
will be described in section 2.

(f1 + fpa™) (6)

Category II has computed solutions with non-trivial functions on the RHS of Eq.(1), e
functions which lead to forms of Eq.(1) that are non-linear

PSSR B
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Equation(7) can be considered a generalisation of Eq.(6) and it requires a numerical method
to compute 1; the dimensional constants Py, Fp, %y are given. In category II the plasma
boundary must be given either in an analytic form or as a set of pre-computed points
Iy(Rk, Zk), k = 1, K, since the computation takes place on a finite grid. The next subsection
will discuss various computations.

Category III equilibria are reconstructed from magnetic data and sometimes constrained by
additional data. A fast method approximates Jy by a filaments or wires (see section 1.4).
For complete equlibrium reconstruction a variety of functions on the RHS of Eq.(1) have
been tried, e.g basis functions different from polynomials
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A part of the reconstruction problem is to determine the shape of I'; from one of two
conditions: either it is determined as a 1) contour passing through a limiter point Py, or it is
determined as a separatrix with one or two x-points. This determination takes place within
the ”inner iteration cycle”. In the "outer iteration cycle” the parameter set (p;,7;, f;, ¢;)
are varied until some convergence criteria is satisfied. The dimensional constants Py, Fy may
also be varied. Only the total plasma current I, ~ to/(poRo) (Eq.5) is given. In some cases
the use of a particular form for p’, f f' like those of Eqs.(6-8) may be incompatible with the
given data and no solution can be found. Experience from the analysis of JET data shows
that such situations can arise at the beginning of the current rise phase or a short time
interval before a major MHD event, sawtooth crash, external kink or disruption, i.e. the
magnetic data is incompatible with the assumption of axisymmetry, such that Eq.(1) does
not apply.

1.4 Equilibrium computation

Early tokamak equilibrium calculations were limited by finite computing resources unlike
today. The solution (R, Z) could be evaluated on a grid as small as 15 by 30 points.
The major fusion laboratories each had an equilibrium code. At Oak Ridge National
Laboratory (ORNL) the code by Callen & Dory [18] was restricted to solve circular equilibria,
i. e. it essentially calculates the Shafranov shift A for each surface. The Culham
Laboratory equilibrium code POTENT [19] was used extensively for equilibrium and stability
calculations. An extension to three dimensional non-axisymmeteric equilibria was made to
study the influence from the iron core on the JET tokamak. The IPP Garching code by
Feneberg & Lackner [20] used the simple expressions of Eq.(6) together with multi-coil
specifications. The Kurchatov Institute code by Zakharov [21] embodied ”the virtual casing
principle” to compute equilibria with complex coil configurations, but with a simple form
of the RHS of Eq.(1) like Eq.(6). At Gulf General Atomic (GA) the code by Chu et al.
[22] was used to compute the highly elongated Doublet II equilibria. Around 1980 a new
computationally fast, but non-exact method was developed by Lao, Hirshman and Wieland
[23]. The approximation made in this work is to find moment solutions to Eqgs.(1). This can



be implemented computationally if each plasma surface is expressed as

R(z,¢) = z Rn(z)cos(mq) , Z(z,C) = B(z) 3 Zu(z)sin(me) (9)

m=1

In Eq.(9) the moments (R,,, Z,,) depend on the flux surface label. Ry(z = 0) is the magnetic
axis location and E(z) is approximately the elongation & of surface z. The angle parameter
¢ is related to the poloidal angle € via the transformation

¢ =6+ Asinf, [N <1 (10)

This formalism is embodied in the VMOMS code [24] - [25] and in various codes interpreting
soft x-ray data such as the one on JET. The representation is particularly useful for 11/2 D
transport calculations such as the interpretative calculations of the TRANSP code [26, 27].
The formalism in Eq.(9) can be extended to 3D non-axisymmetric equilibria [28] by replacing
m¢ by m{ —n¢. One shortcoming of the moment representation Eq.(9) is that it cannot deal
with x-point separatrix contours. Thus the 1 1/2 D predictive calculations of the JETTO
code at JET [29, 30] use a conventional equilibrium solver ESCO [31] which is similar to
POTENT. Similarly the TRANSP code has replaced the representation of Eq.(9) by that of
EFIT [32] (see subsection 1.6) as standard JET equilibria now feature a separatrix.

1.5 Fast equilibrium reconstruction

The equilibrium reconstruction techniques start from the work by Shafranov [33] which
demonstrates how the global equilibrium parameter A = f;+1/2¢;, the sum of plasma beta
and internal inductance, can be determined from external magnetic measurements. Various
methods to identify the plasma bounday shape from one tokamak discharge before the next
one (intershot analysis) have been embodied in the so-called ”fast boundary solvers”: the
method by Swain et al. [34] used the approximation for data from ISX at ORNL

J
Js = 3 L S(R=R)S(Z—25), Luire = (I, T, 1) (11)

J=1

The continuous plasma current distribution is represented by a number of current carrying
wires. Equation(11) can be generalised from current carrying wires (i.e. points) to a current
carrying cylinder (curve in (R, Z) space) as in the method by Feneberg & Lackner [35);
this latter method was used in the JET intershot analysis code FAST [36]. When internal
divertor coils were fitted to JET a new numerical method based on vacuum solutions was
introduced [37]; this method is so fast that it runs real-time displays of the evolving plasma
boundary. The GA code MFIT [32] has used a simplified parametric representation replacing
Eq.(8). This code has developed into EFIT, which is in use at several fusion laboratories. At
JET a different version EFITJ [38] has been developed and at Culham this has been further
developed into [39] (see next subsection). In fast equilibrium construction codes the poloidal
magnetic field B,, and poloidal flux ¢ are written as vectors expressing the values of the
magnetic field B;, (¢ = 1,I), and poloidal flux vy, (k = 1, K), at respectively the I and K



spatial locations, where the measurements are made. The speed advantage of fast solvers
lies in the following representations

Bpai’ = é ' Iw'ire ) '(/) — g . Iwi're (12)

The two matrices B and ¥ are precalculated only once for a given set of wire coordinates
(R;, Z;). Evaluation of the vectors in Eq.(12) B and 1 thus involves only 2J multiplications
for any point (R, Z) inside the precalculated space. The solution I ;. is itself found from a
x? fit to external magnetic data. This involves the inversion of a J by J matrix.

1.6 Complete equilibrium reconstruction

The equilibrium reconstruction codes began when tokamaks like JET, DIII-D, JT-60 had
magnetic diagnostics installed precisely for the purpose of equilibrium reconstruction. On
JET such data would include: i) measurements of poloidal flux ¢ by flux loops along the outer
vessel surface; ii) measurements of the poloidal field B,y by pick-up coils placed along the
inner vessel surface; iii) measurements of the diamagnetic flux A®; iv) currents in poloidal-
toroidal field coils. DIII-D and JT-60 would produce similar data.

At CEA Fontenay and later at Cadarache the IDENTB code [40] was developed under a
JET contract. It was later replaced by the IDENTC and IDENTD versions [41]. The
IDENTB,C,D codes featured a finite element representation of the toroidal current density
J; each version had a higher order element than its predecessor. These codes also featured
a computational grid generator which could adapt itself to a variety of JET scenarios.
IDENTB,C used the exponential terms in Eq.(8) while IDENTD used Eq.(7). To obtain
a new solution 7/* at iteration 7 in the inner cycle, the external field produced by poloidal
field coils was reproduced computationally from a current distribution I,., flowing on the
JET vessel surface just as in the original FAST code [35]. When the JET internal divertor
coils were fitted to JET, IDENTD was replaced by a new version of EFIT.

At GA the EFIT code [32], which would later develop into the EFITJ code [38], was developed
with a fixed square grid uniform in (R, Z) which for JET would cover the entire region
inside the iron core. EFIT uses Eq.(7) and employs a finite difference formulation of Eq.(1).
The code has been used extensively in the fusion community and its solutions 1 are used
in TRANSP transport calculations. A fast and simplified version of EFIT produces data
between JET pulses (intershot analysis). A more special version of EFIT has used Thomson
scattering data on p, polarimeter data on [ Bpyd{ and MSE data on Bpy to constrain the
solutions [39].

2 Analytic equilibrium solutions

We consider a few solutions which are represented by compact analytic expressions, i.e.
not by infinite series. The solutions which we consider, are idealised equilibria because the
RHS terms of Eq.(1) are either constant or linear (Eq.6) unlike experimentally determined
equilibria, which normally have the RHS terms peaked on axis z = 0 and then falling of with



increasing z; in many cases the current density at the boundary J4(R,z = 25) = 0. We can
divide analytic solutions into three classes: i) approximate solutions using local expansions
near x-points or global expansions in the inverse aspect ratio ¢ = a/Ry; ii) compact functions
for 1) that are easy and fast to compute, i.e. they involve only a few terms; iii) functions
which involve infinite series, i.e like Eq.(2); such functions have been used in the studies
quoted earlier [9, 10, 11].

2.1 Cylinder geometry

The most trivial equilibrium solutions to Eq.(1) are those with rotational symmetry, i.e. one-
dimensional functions 1) = 1(R); several examples can be constructed. One two-dimensional
solution has elliptic surfaces with constant ellipticity E(> 0) [4]

W(R,Z) =10 2%, 2° = (R/Ro— 12+ Z%/(R2 E?), Jz(¢)) = — Yo (2+2/E* (13)

poRg
This solution is purely of academic interest. The solution to Eq.(3) for the orthogonal
function y is easily found
(Z/Ro)”"
tany = ———— 14
X T Wk -1 S

The solution has four fold symmetry w.r.t the R and Z axes (x = 0,7/2, 7,37/2).

2.2 Toroidal equilibria without separatrix

One simple solution in toroidal geometry with flux surfaces ressembling ellipses is

VR Z) =t ot at = (B/RS— 1)+ Z2/(RE) , Jo(h) =~ (o + ) (19)

Again the ellipticity £ must be positive to obtain closed 1) surfaces. The 1) derivatives in Js
are constant

dp 81/)0 df 2"100
e b el o 16
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The solution to Eq.(3) for the orthogonal function y is again easily found
(Z/Ro)*
tan y = ——>r— 17
X T WRy -1 k%

The solution in Eq.(15) is again mainly of academic interest. The solution (15) has up-
down symmetry. Four curves (x = 0,7/2,7,3r/2) are straight lines. Another toroidal
equilibrium solution, also of academic interest, as it cannot be established experimentally, is
the degenerate solution found by Palumbo [42] and Bishop & Taylor [43]. The degeneracy
of this solution arises from B being constant on each flux surface. This solution is a toroidal
mimimum B equilibrium as found earlier [42]; it has B increasing and p decreasing away from
the magnetic axis, i.e. the ideal confinement system in which guiding centre drift surfaces
and flux surfaces coincide.



3 Solovev equilibrium

3.1 Solutions for ¢, B,J

An example of a compact analytic solution to Egs.(1-3) is the Solovev equilibrium solution
[3]. This solution has been used to analyse the stability of D-shaped JET configurations [44];
it has also been used extensively in Monte Carlo simulations [45, 46]. The solution describes
seven classes of topologically different equilibria (see subsection 3.3 and Table I) and it is
expressed by the equation

YRZ) =that, o = (RIR =1+ (e — R (18)

The Solovev solution is up-down symmetric and does not contain the R%logR term of the
solution considered in [8]. If that term is added to Eq.(18) then the resulting solution has
the undesirable property that the vertical field Bz — oo as R — 0. None of the solutions
(13,15,18) are truly global solutions, since the poloidal field By, does not fall off as 277, v > 0.
They can thus only be made to represent a plasma equilibrium for z marginally larger than
the separatrix value z,. The 1 derivatives of Eq.(1), which are constant just as those of
Egs.(6,8), are given by

dp (8 +2/E?) daf R:
— = —1fy —F = 2 ==5 19
- " R Ty T TR o
The poloidal and toroidal magnetic field components are given by
2Z(R? — R2)
Br = —th AR
1 2 2 2
= E [R(z) Bt,ﬁD F2 R4R w Tl[)]I/
2 2
4 R 2Z (20)

z = Yo [Eg(?!?%—l)"‘w]

The vacuum field on axis By must be specified separately from 1) in such a way as to make
the safety factor on axis, g;(z = 0) = 1. The poloidal and toroidal current components are
given by, respectively,

Yo R2
s pen SO I
Jr RAE? RBy
o SE? +2 4R?
J¢ DR4 [ B2 R+ RE2]
Yo 2
=—— < B 21
JZ [LORgEZ Rqu b4 ( )

Equation(21) shows us that JxB ~ [—Bz, 0, Bg], i.e. axisymmetry. Although the 1) surfaces
resemble those of experimentally produced tokamak equilibria, e.g. like those of JET, neither
the poloidal magnetic field components (Eq.19), nor the poloidal current components (Eq.20)
can be said to correspond to experimental conditions.
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3.2 Parameters and separatrix

The parameter Ry denotes the magnetic axis and R, denotes the position of a separatrix (see
below). Both are determined by a set of four separate parameters (R;, Ry, Ry, Z,,) which
define a D-shaped reference surface going through the three points (R;,0), (R, 0), (Rm, Zm)-
These four coordinates are used to define the parameters of Eq.(18) as follows [3]:
RIRZ - R: Z

! R‘Z_ E2

R} + R3 _
° R}+R}-2R:, T  RI+R:-2RZ

2

Ry — Ry
a=

- (22)

2 _
1RD_

We note that both R2 < 0 and E? < 0 allow for solutions (see Table I). The reference surface
passing through the four points (R, 0), (Rz,0), (Rm, +Z,) can be thought of as the plasma
boundary, when a plasma limiter is present. The boundary value is

Yo=10 15, =y = (R — Ri)*/ (4Ry) (23)
A separatrix exists except when R, = Ry; the separatrix has the 9 value
Yo =01y, 2z = (R} — R3)?/R} (24)

The separatrix consists of two curves, a vertical line and a curve, which can be an ellipse, a
hyperbola or a straight line as shown in Figures 1-7 and in Table I

Z2
E=R, , R2+§=2RS—R§ (25)
When 2R3 = R2 the separatrix curve degenerates to a straight line as the RHS of Eq.(25)
vanishes; this line and the vertical line together form a triangle. The vertical line and curve
intersect at the X-point (R, Z,). The elliptic separatrix intersects the R and Z axes at
(Rs,0), (0, Z,) respectively. These coordinates are given by

R, = R, , Z; = B* (2R;—2R;), R} = 2R}~ R., Z} = E* (2R} R})  (26)

3.3 7 classes of equilibria

There are seven classes of topologically different equilibria possible as shown in Table I; the
equilibria have plasma surfaces, i.e. surfaces with 0 < 1 < %), which show D-shapes
or inverted D-shapes. The seven classes are distinguished by the value of R, relative to
the values of (Ry, R;), as shown in Table I which lists the R,, range for each class. The
seven classes have positive/negative RZ, E® etc. as indicated. In classes 3 and 4 there is
no separatrix. These various choices permit a variety of geometries as can be seen from
Figures 1 to 7. These figures show contours of constant v, i.e. flux surfaces for a given
value of R, which is also given in Table I. The separatrix curves in Figures 1-2 and 5-7
are shown as dot-dash curves. Figures 1-7 also show the orthogonal contours of constant
X (see Eqs.3,33). Subsection 3.5 describes how x is computed. The stability of equilibria
of classes 1 to 7 has been examined in reference [44] as a benchmark for the then future
JET tokamak. Only classes 1 and 2 were found to exhibit stability, the remaining classes
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being mainly of academic interest. The class 1 equilibria have been used in extensive Monte
Carlo guiding-centre drift calculations of the ion thermal heat flux [45] and self consistent
test particle modelling of a plasma [46]. From Eqs.(19,21) we can see that class 2 equilibria,
which approximate spherical tokamak equilibria, are degenerate as they have no poloidal
current density, Jr = Jz = 0 and the toroidal field is a pure vacuum field By = Ro/RByo as
f" = 0. The flux function 1 of Eq.(18) can be positive, zero or negative as shown in Table
I. The contour with ¥ = 0 lying outside the separatrix is given by

(R - B}’

but does not exist for classes 2, 3, and 4. At the origih ¥(R = 0,Z = 0) = %
for all classes, while on the magnetic axis )(R,0) = 0. For class 4 equilibria both

R, — oo and E? — oo such that Eq.(18) takes the form 2! = (R?/R2 — 1)? + cZ?, where
c=R2/E? = (R}+R3)/(222%). This expression for c enters Egs.(18-21) for class 4 equilibria.

3.4 Flux surface profiles

The flux surface profiles are functions of = only. The first profile we show is the Shafranov
shift function. It is expressed in terms of the dimensionless flux surface label z in Eq.(5)

Az) = /2R, [1+2)? + (1—a)Y?] = 1/2(R; + Ry) (28)

where the first bracketed term is the centre of flux surface z and the second term is the
centre of the boundary flux surface zp. The maximum value occurs on axis z = 0

A(0) = 1/2(R?+ R)Y? — 1/2(R; + Ry) (29)

The f function of Eq.(19) can be integrated
4
f@) = RBy = (R} Bgo+ g e Yo ¥)'"* (30)

As already noted fo = RoByo needs to be specified. The pressure derivative (Eq.19) can also
be integrated. The integration is made w.r.t. the flux surface label x

o 2.4 .4
P (8 + ﬁ)(% —E )P (31)

in which p, denotes an edge (or pedestal) pressure which also needs to be specified. Notice
that it is possible to normalise x in Eq.(5) such that the boundary value becomes z; = 1
instead of that given by Eq.(23).

p(z) =

3.5 1,z and y curves

The flux surfaces for all seven classes are expressed by the equation

4 _ 2/ p2 _ 13271/2
Z(Rz) = + |E?RAC R(zR /RR;J 1 (32)
L. §
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The =+ in Eq.(32) imply symmetry w.r.t. the Z = 0 axis (up-down symmetry). The gradients
are found from Eq.(18)

4R 2 2
4 __ e o) 2 2 2 _ p2
Vz® = [Rg (R°/R;—1)+ —RgEzz R, 0 ’—RgEZZ(R R2)]
= £1 2 2_ p2? 4_R 2/p2 2 s

where {(R, Z) can be any continuous function (see Eq.3). Equation(4) can now be written
as a highly non-linear differential equation

P _ Z(R? - R?)
R’ ~ T2E’R(R2—R2) + Z°R

We have not found the general solution x(R, Z) to Eqgs.(3,33) with 7 given by Eq.(18). We
have only found a solution for the special case of class 2 with R, = 0

(Z/R0)4E2
(R/Ro)? — 1+ (Z/Ro)? (2B — 1)1 (35)

The constant x curves for the special case of class 2 equilibria are given by

(34)

tan x =

1/2
RZX) = BZX) = Ro [1+ () oot - (2P@E -7 (@9

i.e. these curves also have up-down symmetry w.r.t. Z = 0. We notice from Eq.(36) that
R(Z =0,x) = Ry and OR/Z(Z = 0,x) = 0. This shows that all y curves join the vertical
line B = Ry at the magnetic axis (Ry,0), i.e. a cusp geometry. The function £ in Eq.(33)
corresponding to the solution (35) is

75 2
R [(R? - R + Z?/(2E% — 1)) + Z*F"]

l.e. £ is a non-trivial function. We notice from Eq.(37) that £ cannot be factorized in to
separate functions of R and Z as assumed in [13]. The dashed curves in Figures 1-7 are those
of constant x and show the same cusp geometry as the solution Eq.(36). For the class 1
equilibrium of Figure 1 the origin (R, Z) = (0,0) shows a second cusp geometry. For classes
1, 2 and 5-7 the x curves feature an x-point which coincides with the x-point (R, Z,) (see
Eq.26), since at the x-point both gradients vanish (V1 = Vx = 0). The two curves which we
can label x, go through the x-point and separate (R, Z) space into four regions, just as the
separatrix curves separate the 1) curves into four regions. The two x, curves are not shown
in Figures 1,2 and 5-7 as they are difficult to compute by our y tracking algorithm. This
algorithm starts from Eq.(33) with the unknown function £ being equal to 1 on a selected
surface z = z; (see Eq.(23)). We refer to z; as the plasma boundary; in the case of JET this
surface would be the boundary in a L-mode limiter plasma, the limiter being at R=4 [m]|. A
discrete set of points on z, with a uniform distribution in the geometric angle 8 is selected.
A standard predictor-corrector scheme is used first to integrate Eq.(33) from the boundary
zp to the axis = 0; secondly we start again from the boundary z; and integrate outwards
towards the edge of the calculation region. Such a computational procedure is necessary
because of the cusp geometry of the magnetic axis. Some y contours in Figures 1, 2, 6 and
7 have not been computed.

(R, Z) = (37)
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4 Topology of 1y and x curves

In the previous sections we were looking at specific equilibrium solutions. In this section we
shall examine some topological properties of general equilibria. This work is a continuation
of the work in [4]. It has been motivated by attempts to reconstruct equilibria with the
minimum amount of information and assumptions.

4.1 Coordinate transformations and metrics

In this section we shall be concerned with the transformations from the axi-symmetric
(R, ¢, Z) geometry to that of (1, ¢, x), ¢ being the ignorable coordinate. The metrics and
the Jacobian of the transformation are given by textbook expressions

hyt = |VY P, b = |VxI*, ki =R,+Z,, h3=R*, h =R, +Z;

h
'r:h,phx,{:ﬁ:-,\/g=h¢h¢hx=R(R¢Zx—RxZ¢) (38)

Subscripts ¢ imply differentiation w.r.t. 1 etc. The derivatives are linked via the two
dimensional Jacobian 7 or via the ratio of metrics £ as

Ry=7Xz,2Zpy=-TXR, Ry=—T%Yz, Zy=7Yr
Ry=8'2,,Zy=—E"Ry, Yyp=E Xz, Yz =—€ xr (39)

Various other relations can be worked out. By differentiation of the derivatives above we
can derive two elliptic equations

a . 0x g, 0x, d, 100 9 .10¢, _
sr¢ar taz%a) ~ V@ @ Tzt =0 W
Equation(40) has been used in the work by Vabishchevich et al. [47] on the variable-inversion

formulation of MHD equilibria. The Grad-Shafranov equation can now be expressed in terms
of either the metrics (hy, R, hy) or the function & of Eq.(3)

R 8, h

R0 By RO &
hwhx Bw Rhw

£ 59 = —poR*p — ff (41)

)= Vo |*

Our work has involved examining the variations with y of this equation on a curve of constant
7). In particular we have attempted to establish a link between the extrema for V), Vx and
the extrema for the curvatures of the 1 and y curves.

4.2 Curvature

The curvature of one single curve 1 = 1;(x), i.e. a flux surface, is expressed from either
the parametric curve representation R = R(1,%),Z = Z (3, x) or from Z = Z(yy, R) by

13



textbook expressions which involve first and second derivatives w.r.t x or R

— Rxex — ZxRxx _ OR
= mprzgpn 0 gy el
ZRrr YA

Ky = (—1+Z—EE)3/2, [ZR = (ﬁ),j,l etc.] (42)

where the subscript ¢ implies that the derivative is at constant 1. The curvature of

one single curve x = xi(¢) is similarly derived from either the curve representation
R = R(¢1X1) ) Z = Z('gb,Xl) or from R = R(XI,Z)
_ ByZyy— ZyRyy _9R
Ky = (RE + 2P [R"’_% ete.]
Rzz dR
kx = T [Bz=(3;)u etc] (43)

(1 + RZ)32° PY4

The x curves are the streamlines for the guiding centre drift flow orthogonal to the flux
surfaces (see next section).

4.3 Formulae for Solovev class 2 equilibria

The derivatives required to calculate Egs.(50-51) can be derived from Egs.(32,36). By
straightforward differentiation we get some rather lengthy expressions so we introduce the
normalised variables y = R/Ry),z = Z/Rp and e = (2E? — 1)~ in order to compress these
expressions. We then get

(R, = QF2 4B -1 coty; — ez
4 1+ 2452 cot x; — ez?
4 .4
T -1
(Zr)y, = . (44)

[z — (12 — 1))1/2 2
where from Eq.(18) z{ = 9);. The second derivatives involve lengthier expressions

_ [2B*(4E® — 1)2*7 2 coty; — e][1 + 2*®° coty; — ez?|[2E22E* ! coty, — ez)?

(Rzz)x [L+ 2 coty; — ez?]*/2
44584— 2_12 ) 2_1 22_1_ A d _ .4 il
(ZRR)wJ = - z [ . (y ) ] ;3[:7[?— (y2)£ ?)2]3/2) -'171][% V.r ] (45)

Insertion of Eqs.(44-45) into Eqs.(42-43) yield very lengthy expressions from which the
curvatures can be computed.

5 The Cauchy problem

The starting point in our study is as follows: we assume that some curve I'y, e.g. the plasma
boundary, but not necessarily so, is specified either as an analytic function I'y(x) = I['s(R, Z)
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or as a set of N, discrete coordinates I'y(R;, Z;), 7 = 1, Ny. On T, we assume that both ¢ and
V1) are given, i.e. we are given both Dirichlet and Neuman boundary conditions for ¢». Both
1 and V1) may be given either as analytic functions or as a set of discrete numerical values.
The discrete case corresponds to the result from the fast plasma boundary identification of
the intershot analysis as described in section 1.4 and in references [34]-[37]. Furthermore the
plasma current density J; = 0 outside the boundary. The problem to be solved is known
as the Cauchy problem: can two one-dimensional functions (p(%), f(1)) (see Egs.(6-8)) be
determined from the knowledge of two different one-dimensional functions ¥(x) and Vi (x)
as well as the geometric shape of the curve I'y external to the plasma. In the next three
subsections we outline the three step procedure which was originally intended as the method
of solution.

5.1 Step 1: advance geometry (R, Z) to surfaces 1 £ d1)g

We start by inwards-outwards integration from ), to 1 £ 1)), where 1)y is subscripted 0 to
indicate that it is an infinitesimally small constant; this integration immediately yields two
new 1) surfaces known either analytically or from the coordinates of IV, discrete points. The
infinitesimal spatial displacements d+ = (6R,5Z)+ to the inside (subscript -) and outside
(subscript +) v surfaces from an arbitrary point (1, x) on I'y are found from the equation

(6Rs,0Zs) = lim +-%o_ (¥ O

§4p—0 l Vi 12 (%7 '3""2“) (46)

By applying this equation to all points on I', we have made use of all the given data. The
above equation expresses the gradients on the + and - sides of ['; and it is the result of the
limiting process (Taylor expansion)

. 0o
| VY |2= &ilofﬁom (47)
The displacements are parallel to the vector Vi , ie. along curves of constant .
Equation(46) can always be solved except for the special case of an x-point on a separatrix
at which Vi = 0; in this case the Taylor expansion must be made to second order, but
that requires specification of V21) which is not included in the data. In all other cases
the Taylor expansion has yielded the (R, Z) geometry of three 1 surfaces with values

Y = (v — 6vo, Y, Yy + 090)-

5.2 Step 2: test functional form of A,

We now know the geometry of three 1 surfaces ¥ = (1, — 6o, ¥p, ¥+ d1p) and the variation
of V) on one surface. This knowledge could possibly enable us to test whether Eq.(1) holds
for the given data on the boundary ¥ = . This test is similar, but not identical to that
used in reference [4] in which it was assumed that (R, Z) geometries of all ¢ surfaces are
given. The operation on the three surfaces must yield results which are expressed in the
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following three forms, of which it is the second we shall have to solve for

A = thy — 0¢ho) = 7(thy — Stbo) R? + @(4by — dtbo)
Ah(th = ) = () B® + d(th)
Aup(yp = 9+ %) = 0 (48)

where 7 and ¢ have been used to represent the values of p’ and ff’ on the surfaces ¥ = 1,
and 1 = 95, — 1)y as indicated, i.e. m and ¢ are constant on each 7 surface. The surface
just outside the plasma boundary I'y has zero current density. The determination of the two
constants 7 and ¢ on I'y can be made from just two points, i.e. only two values of y on I, are
required. The test on the data thus becomes: can Eq.(48) be satisfied at all points on I'y?
Only if this is the case will the data represent an equilibrium solution to Eq.(1). In practice
and with inexact (experimental) boundary data, m(1;) and ¢(1/) must be determined from
the average < A,1p(1) = ) > over the surface T, either analytically or from N, discrete
points. Our work on the test of Eq.(48) has involved relating A, to the curvatures given
by Eqgs.(42-43). We emphasize that this work is incomplete.

5.3 Step 3: advance V% to surfaces 1 & di)g

Once the two numbers (1)) and ¢(1s) have been determined we know the rate of change of
Vi on Iy as it is expressed by Eq.(48). This should allow us to calculate V) on the surfaces
1 = §1py from the Taylor expansion

V(i =th £00) = Vi =1h) £ A |0z | (49)

By repeating the sequence of Egs.(46-49) we could advance the solution to the surfaces
¥ = 269y and so on until the magnetic axis would have been reached. The end point of our
study would thus have been to determine not only the solution ¥(R, Z) to Eq.(1), but in
the process the components p'(1) and f(v)f'(1)) of Eq.(1) would also have been determined,
without the specification of their particular functional form, such as the examples of Egs.(6-
8).

6 Guiding centre velocities

The guiding centre drift velocity u is described in the article by Sivukhin [48]. The equations
derived in that article are based upon the standard guiding centre formalism, also outlined
in the article, which puts constraints on the spatial and temporal variations of the magnetic
field. The guiding centre drift velocity includes four components

u=u+uy+u,+ug (50)

These four components are known to represent respectively the parallel, the VB, the
curvature and E x B drifts. The drift motions are expressed in terms of the parallel particle
velocity v), the particle parallel and perpendicular energies £ and E,, the particle charge
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Ze, the unit vector b = B/B, the curvature vector & = (b- V)b and the electric field
vector E. The latter should not be confused with the particle energy E = mv?/2. The drift
components are expressed to first order in Vb following the general expansion in [48]

u = ['U" + (EJ_/(ZGB)) bV x b] b (51)
uy = (E./(ZeB)) (b x VB)/B (52)
u, = (QE”/(ZGB)) b xk (53)

ug =Ex B/ B? (54)

In order to see how the first three components compare we insert the equilibrium field Eq.(20)
and its derivatives (not presented here) into Egs.(38-41). Lengthy expressions arise and to
shorten these we retain only the leading terms by assuming that By/B = 1, ie By > B, B..
One term is O(1) (vertical drift) and the other terms are O(p;/R). The Larmor radius is
p;i = mu, [eB as Z=1 is assumed; the cosine of the pitch angle is { = v/v. We then get

3 B 1B R
ur = of§ + 22 € +%§“§§ (1 - g 22

up v~ 0201 36%) ¢

uz =~ v[f:-B— +Ba+ey) (55)

From these useful, but approximate, expressions we can evaluate the drift velocity component
orthogonal to the flux surfaces which is given by

Uy = UV?P/[V'N (56)
We insert Eq.(50) and get
; Br B2
wlR,2) = v ppt-(1+€) + 22g) (57)

where B, is the poloidal field. The equation shows us that u, is far from being constant
on a flux surface z and that u, > 0 for Z > 0 and u, < 0 for Z < 0, i.e. the dominant
drift is the vertical drift. Both terms in the square bracket will contribute to the ion thermal
flux as evaluated in reference [45], since they contain £ to even powers, assuming that the
particle (ion) distribution function f;(€) is roughly independent of §; because By < B
the second term is negligible compared with the first term. In Figures 8 and 9 we show
contours of constant u, in the (R, Z) plane for a class 1 equilibrium (Figure 8) and a class
2 equilibrium (Figure 9). For both figures we have set £ = 0.5,E = E, + E| = 1[keV] as
an example. Only the upper half-plane is shown as u,(R, Z) = —u,(R, —Z) for an up-down
symmetric equilibrium. The contours, which qualitatively look the same for all values of
(¢, E), are superimposed on the separatrix curves which are shown as dash-dot curves. For
both Figures 8 and 9 the u, contours show a banana shaped region, the dashed curve, in
which u, is at maximum; this banana shaped region is tilted inwards for D-shaped equilibria;
for the inverse D-shapes shown in Figures 5-7 the banana shaped region will tilt outwards.
On each plasma surface z the ion heat flux g; due to collisions and guiding centre drifts, as
described in [45, 46], is therefore peaked where the surface = intersects this banana shaped
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regions, since g; ~ u,. The banana shaped region thus represents a ”guiding centre drift
loss cone” through which the neoclassical heat loss is at maximum. This loss cone surrounds
the locus of inflexion points for the x curves, i.e. those points where x, = 0 (Eq.43). The
maximum cross field drift thus occurs where the streamlines (the x curves) are straight rather
than curved.

7 Conclusion

We have described the nature of a problem in equilibrium reconstruction which we have
regarded as a natural progression from the early work [4]. We have emphasized in the
introduction that this problem remains unresolved.
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Class | Ryrange Rz [m?] | RZ | E? 1) | Separatrix
1 |RI<R:<RR, T 2.5 | 051 + | Ellipse
2 RiR, = R?, 8 0 0.7656 | + | Ellipse
3 RiR, < R,?n < Rg 9 = 1.53 + | None
4 | B =R 10 00 | o0 + | None
5 |Rj<R:<R:+R:—RR, 11 28.5 | -1.53 | £ | Hyperbola
6 R:L=R:+R:—R\R; 12 2R5 | -0.7656 | &+ | Triangle
7 |RI+RE-—RR<R:<R: 14 16.5 | -0.3828 | + | Hyperbola

Table I. The seven classes of topologically different equilibria of the Solovev type [3]. The
chosen values of R, have been chosen for Figures 1-7 and correspond to R; = 2 [m], R, =
4 [m], Z, = 1.75 [m] and w4 = 0.76225 [Vs], By = 1.0 [T]. These values are typical for
IMA JET equilibria, whose edge safety factor is in the range 3 < gy(z = z;) < 4. The
configuration parameters for the class 1 equilibrium used in the Monte Carlo calculations
[45, 46] are as follows. The maximum Shafranov shift (see Eq.(29)) becomes A(0) =
102 — 3 = 0.16 [m]. The plasma cross section is A = 5.46 [m?, the plasma surface is
S = 161 [m?] and the plasma volume is V = 99.7 [m®. The plasma beta poloidal is
Br = 0.91 and corresponds to a plasma energy W = 1.5 10° [J].
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Figure 1: Flux surfaces of the Solovev equilibrium (3] of class 1 (see Table I). It shows a
separatrix comprising a straight line at R = R, < R and an ellipse (dot-dash curves) forming
a D-shape. The surfaces with constant values of ¢ are shown in real (R, Z) space together
with the orthogonal contours of constant x (see Eqs.3,33). The equilibrium configuration
corresponds to JET geometry as explained in Table I. Figures 2-7 show contours of constant
) and x for the remaining equilibrium classes.
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Figure 2: The Solovev equilibrium of class 2 with the separatrix coinciding with Z axis

R; = 0, i.e. an approximation to a spherical tokamak. This equilibrium configuration is
however degenerate, as it has no poloidal current density Jrp = Jz = 0 and the toroidal field

is a vacuum field By = Ro/RBgyo.
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Figure 3: The Solovev equilibrium of class 3 has no separatrix.

23



ZIml |

0

0 R [m] >

Figure 4: The Solovev equilibrium of class 4 with the separatrix location at R, — oo.
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Figure 5: The Solovev equilibrium of class 5 has a separatrix (dot-dash curves) consisting
of a straight line R, > Ry which is not shown as it lies beyond R = 5m. The ”vertical”
hyperbola is shown a the dot-dash curve.
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Figure 6: The Solovev equilibrium of class 6 has a separatrix (dot-dash lines) consisting of
two intersecting lines. This triangular plasma equilibrium is of academic interest only.
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Figure 7: The Solovev equilibrium of class 7 has a separatrix consisting of a straight line
R, > Ry and a "horizontal” hyperbola both shown as dot-dash curves. It is of the inverse
D-shape type equilibrium.
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Figure 8: Contours of the guiding centre drift velocity u, orthogonal to the flux surfaces for
class 1 equilibria. The contours reveal a banana shaped ”loss cone” like region where u, is
at maximum. This region is shown by the dashed curve.
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Figure 9: Contours of the guiding centre drift velocity u, orthogonal to the flux surfaces for

class 2 equilibria. The region shown by the dashed curve represents, as in Figure 8, a banana
shaped "loss cone” like region where u, is at maximum.
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