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We investigate the structure and mobility of single self-interstitial atom and va-

cancy defects in body-centred cubic transition metals forming groups 5B (vana-

dium, niobium and tantalum) and 6B (chromium, molybdenum and tungsten) of

the Periodic Table. Density-functional calculations show that in all these metals

the axially-symmetric 〈111〉 self-interstitial atom configuration has the lowest for-

mation energy. In chromium the difference between the energies of the 〈111〉 and

the 〈110〉 self-interstitial configurations is very small, making the two structures

almost degenerate. Local densities of states for the atoms forming the core of crow-

dion configurations exhibit systematic widening of the ‘local’ d-band and an upward

shift of the anti-bonding peak. Using the information provided by electronic struc-

ture calculations, we derive a family of Finnis-Sinclair-type interatomic potentials

for vanadium, niobium, tantalum, molybdenum and tungsten. Using these poten-

tials, we investigate thermally activated migration of self-interstitial atom defects

in tungsten. We rationalize the results of simulations using analytical solutions of

the multi-string Frenkel-Kontorova model describing non-linear elastic interactions

between a defect and phonon excitations. We find that the discreteness of the crystal

lattice plays a dominant part in the picture of mobility of defects. We are also able

to explain the origin of the non-Arrhenius diffusion of crowdions observed at elevated

temperatures.

PACS numbers: 61.80.Az, 61.72.Bb, 63.20.Mt, 61.72.Ji, 66.30.-h
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INTRODUCTION

The fact that in the body-centred cubic (bcc) lattice the energetically favourable intersti-

tial position is not the geometrically obvious centre of a face of the cubic unit cell but rather

a position between the nearest neighbours, was first noted by Paneth [1] in connection with

the study of self-interstitial atom configurations in bcc alkali metals. Paneth introduced the

term “crowdion” to describe the extended distortion of the crystal lattice in the 111 direc-

tion resulting from the embedding of an extra atom in the lattice. Fig. 1 shows schematic

models of several defects, including a 111 crowdion, in the bcc lattice. The interstitial defect

structures shown in darker colour in Fig 1 result from the embedding of just one extra atom

in the lattice, followed by the elastic relaxation of positions of all the atoms in the region

surrounding the defect.

The crowdion concept proposed by Paneth [1] was further extended to the case of Wigner

electron lattices by de Wette [2], and to the case of face centred cubic (fcc) metals by Tewordt

[3]. Seeger and Chik [4] investigated the possible occurrence of an extended interstitial con-

figuration, stabilized by phonon entropy, in silicon. Their idea received further attention in

connection with the problem of self-diffusion in silicon [5, 6], where experimental observa-

tions showed that self-interstitial atoms were able to migrate at extremely low temperatures

of the order of several degrees Kelvin.

The fact that the axially-symmetric ‘one-dimensional’ structure of a crowdion config-

uration was intimately related to its high one-dimensional mobility was noted by Seeger

[7]. Schilling et al. [8] disagreed with the crowdion hypothesis and argued that the three-

dimensional model of diffusion of defects gave better agreement with experimental observa-

tions of defect migration in fcc copper. Frank [9] noted that the isochronal low-temperature

recovery experiments in niobium provided evidence for the formation of highly mobile crow-

dion configurations under irradiation. Extending this idea, Frank and Seeger [10] proposed

that low-temperature migration of self-interstitial atom defects in bcc metals could be ex-

plained in terms of diffusion of crowdions. Woo and Frank [11] used the crowdion diffusion

model to explain the origin of void lattices forming in some metals under irradiation. In-

denbom [12] examined the part played by crowdions in the picture of plastic deformation of

materials. His theoretical ideas were corroborated by experiments carried out in bcc tung-

sten [13, 14]. High mobility of self-interstitial atom defects in tungsten at low temperatures
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was observed experimentally in Ref. [15].

At the same time the accumulation of experimental information on thermally activated

mobility of defects in bcc metals did not explicitly address the question about the structure

of these defects. Some experimental evidence (for example the high mobility of defects at

temperatures below 40 K observed in all the non-magnetic bcc metals [16, 17]) pointed

to the possible role played by the highly mobile 〈111〉 crowdions, while other observations

[18] remained at variance with the crowdion model. Atomistic simulations based on semi-

empirical potentials appeared equally inconclusive, with some simulations predicting the

〈110〉 dumbbell while others predicting the 〈111〉 crowdion as the lowest energy configuration

of a self-interstitial atom defect [19–23].

Large-scale density functional calculations performed in the last several years provided

significantly more reliable and largely free from model assumptions information about the

energies of formation of stable, as well as metastable, configurations of self-interstitial atom

defects. These configurations, illustrated in Fig. 1, have different formation energies, and

the first question that one has to address before proceeding to the investigation of dynamical

properties of defects, for example their thermally activated migration or migration driven by

external stress fields, is the question about the relative energies of defect structures shown

in Fig. 1.

Density functional calculations [24–26] showed that in bcc Fe a self-interstitial atom

adopts the 〈110〉 configuration, while in vanadium and molybdenum the lowest energy con-

figuration of a defect has the 〈111〉 symmetry [27]. A recent study of point defects spanning

the entire group of bcc metals [28] confirmed that the 〈111〉 crowdion configuration does in-

deed have the lowest formation energy in all the non-magnetic bcc metals except chromium,

where the difference between the energies of the 〈111〉 and 〈110〉 configurations is very small.

An unusual feature of the crowdion configuration is that the displacements of atoms in

it are effectively one-dimensional, and that the strain field in the string containing a self-

interstitial atom can be accurately described by an analytically tractable Frenkel-Kontorova

model [29]. This model also applies to the treatment of the elastic field of the crowdion

defect [30], making it possible to derive equations of motion for crowdions in the lattice [31].

The multi-string Frenkel-Kontorova model describing clusters of interstitial atoms, shows

that there is a link between the soliton solutions for a crowdion and for an edge dislocation

[32]. Furthermore, the fact that in the continuum limit the strain field of a crowdion is well
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approximated by the sine-Gordon equation [33, 34] makes the latter a convenient model

for studying Brownian motion of defects at elevated temperatures. Migration of crowdion

defects in bcc vanadium was recently investigated using molecular dynamics [35]. Molec-

ular dynamics simulations also showed that small clusters of self-interstitial atom defects

have properties similar to those of crowdion configurations, including their high thermally

activated one-dimensional mobility [36–42].

The main objective of this paper is to perform a comprehensive multiscale investigation of

properties of crowdion defects in bcc metals. We start from giving a detailed account of elec-

tronic structure and energies of formation of self-interstitial and vacancy defects for the entire

group of bcc metals. On the basis of these calculations we derive a family of semi-empirical

potentials of the Finnis-Sinclair type for vanadium, niobium, tantalum, molybdenum and

tungsten. We test these potentials by simulating structures that were not included in the

fitting procedure, and find generally good agreement with density functional calculations.

We also find that the magnitude of the bonding part of the potential for each metal is

well correlated with the respective second moment of the density of d-states. Furthermore,

we observe that the concept of local variation of the width of the d-band underlying the

Finnis-Sinclair functional form of the potentials is well correlated with the results of elec-

tronic structure calculations that exhibit local broadening of the d-band near the core of the

defects.

Using the new potentials, we extend the treatment to longer time and larger spatial scales,

and investigate dynamical properties of the 〈111〉 crowdions and their migration at elevated

temperatures. Analysis of migration of crowdions in tungsten at temperatures higher than

the Debye temperature of the material shows, in agreement with a similar recent study of

defects in vanadium [35], that Brownian motion of crowdions does not follow the Arrhenius

law and that the diffusion coefficient of a defect varies approximately linearly as a function of

absolute temperature. We rationalize this observation using an analytically solvable Frenkel-

Kontorova model that describes a non-linear elastic interaction between a crowdion and the

field of phonon excitations in the lattice. We find that the linear variation of the diffusion

coefficient as a function of absolute temperature observed in simulations, is related to the fact

that the crystal lattice, where the crowdion migrates, is discrete. Analysis of the statistics of

the 〈111〉 to 〈110〉 transformations of the crowdion defect shows that longitudinal Brownian

motion of a crowdion is fairly stable, and that rotational 〈111〉 ↔ 〈110〉 transformations



5

have a significant effect on diffusion of crowdions only in the high temperature limit.

We conclude our study by reviewing the multiscale aspect of the problem, including the

pivotal role played by the analysis of the electronic structure of defects, the use of controlled

approximations in deriving the semi-empirical potentials, and the essential part played by

solvable analytical models in rationalizing the information provided by atomistic simulations.

ELECTRONIC STRUCTURE OF DEFECTS FROM DFT CALCULATIONS

The total-energy and electronic structure calculations for non-magnetic bcc transition

metals (TMs) described in this section were performed using density functional theory (DFT)

within the generalized gradient approximation (GGA) implemented in the package of linear

combination of atomic type orbitals (PLATO) [43]. This code has recently undergone major

development to allow modelling of defects [28] and ab-initio molecular dynamic simulations

[44]. Since our previous communication [28] provided only a brief decription of the method,

below we describe the significant technical aspects of our calculations.

PLATO uses strictly localized atomic-like basis functions. These are found by solving for

an atom in an external spherical potential well U(r), where the potential U(r) is assumed to

diverge for r > rc, where rc is a user-defined cutoff radius. This condition results in a set of

basis functions vanishing at r = rc, and retaining non-vanishing first and second derivatives

at that point. To ensure that these derivatives vanish at rc the functions are multiplied

by the factor 1− exp [−(r − rc)
2/(2σ2)], where σ is an adjustable parameter. Basis sets are

constructed by using functions from both an atom and a positively charged ion solved in this

way. Polarisation functions are also included in the basis set since they play an important

part in giving the basis set the required variational freedom. Basis functions having the same

angular form are orthogonalised since this improves the stability of calculations. Basis sets

consisting of two sets of functions corresponding to a neutral atom, and one set of functions

corresponding to a doubly ionized atom, referred to as the double numeric plus polarisation

(DNP) basis, are used in most cases described below.

To achieve a high accuracy in the DFT calculation of defect structures in transition met-

als, treating both valence and semicore electrons becomes equally important. Therefore,

these electrons have been included in the construction of the DNP basis set consisting of

18 atomic-like functions per atom. For the nd (n = 3, 4, 5) transition metal series we retain
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the ns, np, nd, (n + 1)s orbitals for the neutral atom, and the nd∗, (n + 1)s∗, (n + 1)p∗

orbitals for the doubly ionized atom. All the orbitals are cut off at the critical radius rc of

8.0 atomic units (a.u.), and their tails are smoothed over a distance σ of about 1.5 a.u. The

calculations were performed using the relativistic semicore separable pseudopotentials de-

veloped by Hartwigsen, Goedecker and Hutter [45] with the Perdew-Burke-Emzerhof (PBE)

[46] generalized gradient approximation (GGA) for the exchange and correlation functional.

The Fast Fourier Transform (FFT) mesh was used to evaluate numerical integrals with

atomic orbitals and to solve Poisson’s equation. The electron charge density was projected

onto a uniform FFT mesh of spacing 0.2 a.u. A denser grid of 0.15 a.u. was used to as-

sess the precision of the charge density calculations. This in turn was used to estimate

the systematic error of our defect structure total energy calculations, which we found to be

of the order of 0.01 eV. Both the volume and ionic relaxations were used in the PLATO

calculations, and the forces and stress components in relaxed configurations were smaller

than 0.025 eV/Å and 0.001 Mbars, respectively. All the calculations of defect structures

were performed using a reference bcc supercell containing 128 atoms, and the 3 × 3 × 3

shifted k-point grid. In the case of Cr we assumed the non-magnetic ground state, the total

energy of which is very close to the energy of the anti-ferromagnetic (AFM) state found in

recent full-potential FLAPW calculations [47]. For completeness, ab-initio calculations were

also performed for ferromagnetic α-Fe where we used a pseudo-potential generalized by the

projector augmented wave (PAW) approach and implemented in the Vienna Ab-initio Simu-

lation Package (VASP) [48–50]. This pseudo-potential, which includes the effect of semicore

electrons, was taken from the VASP library. Spin-polarized calculations were performed

using the GGA-PBE exchange-correlation (XC) functional. The plane-wave cutoff energy

of 300 eV and 27 k-points were used for the 128+1 atom supercells.

Table 1 gives the calculated formation energies of the vacancy and interstitial atom defects

[28, 51, 52]. These energies are used for fitting interatomic potentials described in the next

section of the paper. Our DFT study shows that the 〈111〉-type defect configurations have

the lowest formation energies in all the non-magnetic bcc metals. The energy difference

between the 〈110〉 and the 〈111〉 configurations is smaller in group 6B than in group 5B.

The pattern of ordering of self-interstitial atom (SIA) configurations in the non-magnetic

bcc metals is fundamentally different from that of ferromagnetic bcc Fe, where the 〈110〉
dumbbell has the lowest formation energy [25, 56] found in SIESTA (GGA-PBE) and VASP
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(GGA with Perdew-Wang (PW) XC functional [58]) calculations. This is also confirmed by

the present VASP (GGA-PBE) calculations. We also find that apart from the significant

differences between the energies of the 〈110〉 and 〈111〉 configurations, all the other SIA

configurations in Fe follow the same relative pattern of ordering of formation energies as the

SIA configurations in groups 5B and 6B, i.e. the formation energies increase from the 〈111〉
dumbbell to the 〈110〉, tetrahedral, the 〈100〉 dumbbell and to the octahedral configurations.

Defects follow a systematic pattern not only for the case of SIAs but also for the case of

mono-vacancy formation and migration energies [28, 51, 52]. These energies were calculated

using the nudged elastic band method [59], and results agree well with the available ex-

perimental data [17]. Experimentally measured values for the vacancy migration energy in

molybdenum were reported by several groups. Measurements performed by the Delft group,

where helium desorption was used for determining vacancy concentration, gave the value of

1.23±0.05 eV [60]. This value is similar to the value corresponding to stage III recovery of

electron irradiated molybdenum, where Yamakawa et al. found 1.30±0.02 eV [61]. The com-

parison of these two results suggests that the value of 1.28 eV found in our calculations for

the vacancy migration energy in Mo is in a good agreement with the available experimental

information.

Table I also gives the calculated formation and binding energies for di-vacancy defects

involving the first nearest neighbour (1NN) and the second nearest neighbour (2NN) lattice

sites for all the bcc transition metals. Again, we find a systematic group-specific trend

for the di-vacancy energies that correlates well with the position of a bcc metal in the

Periodic Table. Whereas the di-vacancy formation energies for the 2NN sites are lower than

the corresponding values for the 1NN sites for all the elements of group 5B (vanadium,

niobium and tantalum), for all the elements of group 6B the 1NN di-vacancy formation

energies are lower than the 2NN ones. For ferromagnetic bcc Fe, we find that the binding

energy between the two 2NN vacancies is favored in comparison with those for the 1NN

configuration, in agreement with earlier calculations performed using the SIESTA code [26].

Our DFT results are at variance with predictions made by the semi-empirical modified

embedded atom method (MEAM) [54] and by the tight-binding (TB) [55] potentials, where

it was found that the 1NN di-vacancy formation energies are smaller than the formation

energies of the 2NN di-vacancies for all the bcc transition metals. For the case of bcc Fe, by

using a pair-wise potential, Johnson [62] found that the 2NN di-vacancy configuration was
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more stable than the 1NN di-vacancy configuration. We also note an experimental study

of quenched high-purity tungsten carried out using a combination of field-ion microscopy

(FIM) and electrical resistivity measurements. The study showed that the quenched-in

defects observed by FIM were monovacancies and the nearest-neighbour di-vacancies [63].

The experiments give the value of Hf
v =3.6 eV for the vacancy formation enthalpy and

H2v
b (1NN) =0.7 eV for the the divacancy binding enthalpy. These values are in agreement

with our DFT predictions for the vacancy and di-vacancy energies in bcc-W. We also note

that the migration of di-vacancies in molybdenum is attributed to a resistivity recovery stage

situated between 100 and 150 C below stage III in electron irradiated molybdenum [64].

Atomic displacements found in our DFT calculations for the most stable 〈111〉 crowdion

SIA configuration for the six bcc transition metals of groups 5B and 6B of the Periodic

Table, as well the atomic displacements in a meta-stable 〈111〉 crowdion in ferromagnetic

Fe, are shown in Fig. 2. We find that the strongest (∼20%) compressive deformation occurs

in the core of a crowdion in the case of 3d metals (V, Cr and Fe), while in the case of 4d

and 5d metals the crowdions have a more extended core and the compressive strain in the

core of the defect is lower (∼15%). This finding suggests that the semi-core electrons play a

more significant part in determining the structure and the formation energy of SIA defects

in the 4d and 5d transition metals in comparison with the 3d metals.

The crowdion configuration can be described by the exactly solvable sine-Gordon model

[28, 32, 65, 66] that we also study in the last two sections of this paper. Fig. 2 shows the

field of atomic displacement calculated using the solution of the sine-Gordon model (see

equation (33) below) plotted for two different values of the effective dimensionless width

N of the crowdion configuration. We see that the extended core of the crowdion defect

in bcc tungsten has a relatively large width N = 1.9, while in the case of bcc iron the

solution of the sine-Gordon model provides the best fit to the DFT results if the width of

the solution is taken as N = 1.4. Although the 〈111〉 crowdion is not the most stable SIA

defect configuration in bcc Fe, a cluster of crowdions is the same as a small dislocation loop

similar to those observed by in-situ transmission electron microscopy in iron [67]. A cluster

of crowdions is approximately described by solutions of the multi-string Frenkel-Kontorova

model [32].

It is now well established that the group-specific dependence of properties of defects in

bcc transition metals is correlated with their electronic structure, and specifically with the
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TABLE I: The first four rows of this table give basic parameters of all the bcc transition metals

of groups 5B and 6B, and those for Fe (group 8) evaluated using DFT, and compare them with

the experimentally measured values taken from Refs. [53] and [17]. The remaining rows of the

table give defect formation (f), migration (m) and binding (b) energies (in eV units). Values

referring to the interstitial configurations (〈111〉 dumbbell etc.) give the formation energies of the

corresponding defect structures.

V Nb Ta Cr Mo W Fe

a (Å) 3.04a 3.32a 3.31a 2.85a 3.17a 3.18a 2.84b

3.03c 3.30c 3.30c 2.88c 3.15c 3.16c 2.87c

B (Mbar) 1.71a 1.73a 1.99a 1.92a 2.68a 3.05a 1.82b

1.62c 1.70c 2.00c 1.90c 2.72c 3.23c 1.68c

Hv
f 2.51a 2.99a 3.14a 2.64a 2.96a 3.56a 2.15b

2.1–2.2d 2.6–3.1d 2.8–3.1d 2.0–2.4d 2.6–3.2d 3.5–4.1d 1.6–2.2d

Hv
m 0.62a 0.91a 1.48a 0.91a 1.28a 1.78a 0.64b, 0.67l

0.5–1.2d 0.6–1.0d 0.7–1.9d 0.95d 1.3–1.6d 1.7–2.0d 0.55d

H2v
f (1NN) 4.94e 5.62e 6.01e 5.01e 5.60e 6.71e 4.08b

3.90–3.99f 5.11f 5.47f 3.34f 5.75f 7.32f 3.31f, 3.85 m

H2v
f (2NN) 4.80e 5.57e 5.89e 5.16e 5.78e 6.93e 4.01b

3.90–4.21f 5.11f 5.50f 3.35f 5.77f 7.36f 3.34f, 3.83 m

H2v
b (1NN) 0.08e 0.36e 0.27e 0.27e 0.32e 0.41e 0.22b

0.30–0.45f 0.39f 0.43f 0.26f 0.45f, 0.39g 0.58f, 0.45g 0.27f, 0.22g, 0.19m

H2v
b (2NN) 0.22e 0.41e 0.39e 0.12e 0.14e 0.19e 0.29b

0.30–0.23f 0.39f 0.41f 0.25f 0.43f, 0.25g 0.54f, 0.29g 0.24f, 0.15g, 0.30l, 0.21m

〈111〉 dumbbell 3.367a 5.253a 5.832a 5.685a 7.417a 9.548a 4.61b

3.14h 4.795i 7.157i, 5.858j 5.68k 7.34h 8.919i 4.72k, 4.34l

〈111〉 crowdion 3.371a 5.254a 5.836a 5.660a 7.419a 9.551a 4.64b

3.15h 4.857i 7.158i, 5.859j 7.34h 8.893i

〈110〉 3.652a 5.597a 6.382a 5.674a 7.581a 9.844a 3.93b

3.48h 4.482i 6.847i, 6.557j 5.66k 7.51h 9.641i 4.03k, 3.64l

tetrahedral 3.835a 5.758a 6.771a 6.189a 8.401a 11.05a 4.32b

3.69h 6.845j 8.20h 4.43k, 4.26l

〈100〉 3.918a 5.949a 7.003a 6.643a 9.004a 11.49a 5.05b

3.57h 4.821i 8.068i, 6.987j 6.78k 8.77h 9.815i 5.18k, 4.64l

octahedral 3.964a 6.060a 7.095a 6.723a 9.067a 11.68a 5.21b

3.62h 7.020j 8.86h 5.34k, 4.94l

aDFT result (PLATO) from Ref. 28.

bPresent work, VASP (PAW-GGA-PBE).

cExperimental data from Ref. 53.

dExperimental data from Ref. 17.

ePresent work, PLATO (GGA-PBE)

fModified embedded atom model calculation. 54.

gTB result from Ref. 55.

hDFT (PWSCF) result from Ref. 27.

iFinnis-Sinclair potential calculation. 19.

jDFT (VASP) result from Ref. 51.

kDFT (VASP) result from Ref. 56.

lDFT (SIESTA) result from Ref. 25, 26.

mDFT (VASP) result from Ref. 57.
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number of valence d-electrons per atom [28, 51, 52, 68]. We therefore performed a systematic

study of the local density of states (LDOS) obtained from self-consistent DFT total energy

calculations for the most stable SIA defect in bcc non-magnetic transition metals, i.e. for

the 111 crowdion configuration. Fig. 3 shows the LDOS calculated for atoms forming the

central 〈111〉 string of crowdion configurations for all the bcc transition metals of groups 5B

and 6B. For a fully relaxed supercell with 128+1 sites there are five non-equivalent atoms

in the central string containing the crowdion defect, starting with the atom in the centre

of the crowdion (in Fig. 3 it is denoted as atom 1) to the atom situated at end of the

string (denoted as atom 5). In each plot the position of the Fermi energy is shown by a

vertical solid line. A striking feature seen in Fig. 3 is the upward shift of the anti-bonding

peak in the LDOS spectra of atoms situated near the centre of crowdion configurations

(atoms 1, 2 and 3) in comparison with the bulk spectrum of DOS. The magnitude of this

shift is 1.1, 1.3, 1.4, 1.2, 1.4 and 1.7 eV for vanadium, niobium, tantalum, chromium,

molybdenum and tungsten, respectively. The scale of this shift is sufficiently large and

it should be possible to observe it using the high-energy resolution electron energy loss

spectroscopy (EELS) technique [69, 70]. For an atom located sufficiently far away from the

core of a crowdion (atom 5) the anti-bonding peak is shifted back to its bulk position. The

position of the bonding peak of LDOS also varies depending on how far an atom is from

the centre of the defect configuration. Because of the strong compressive strain in the core

of the crowdion defect the effective local width of the d-band increases and the pseudo-gap

practically vanishes for atoms 1, 2 and 3 that are near to the centre of the crowdion. The

latter explains why the second-moment-based interatomic potentials derived in the next

section of the paper are able to provide a good fit to the formation energies of crowdions, as

well as to other defect configurations investigated by DFT in the case of non-magnetic bcc

transition metals.

Fig. 4 shows LDOS plots for the three non-equivalent atoms belonging to one of the

six nearest neighbour (NN) strings running parallel to the central string of the crowdion

defect. Atom NN1 is located next to the centre of the crowdion, whereas atoms NN2 and

NN3 are situated further away along the same nearest neighbour string. For comparison,

at the top of the LDOS plots in Fig. 4 for each metal we also show the corresponding bulk

density of states. These bulk densities of states are dominated by the presence of the so-

called pseudo-gap between the peaks of LDOS corresponding to bonding (at the bottom of



11

the band) and anti-bonding (at the top of the band) states. Fig. 4 shows that the shape

of LDOS for atoms in the NN strings is different to that of LDOS for atoms forming the

crowdion itself, and is quite similar to the bulk LDOS. Indeed, apart from a minor variation

in the region just below the Fermi energy, we observe almost no change in the position of

the anti-bonding peak in comparison with the bulk LDOS. This observation shows that the

strong compressive deformations affecting the electronic structure of atoms in a crowdion

defect are localized entirely within the central 111 strings, and that the electronic structure

of neighbouring atomic strings is almost unaffected by the strain associated with the defect.

This illustrates the short-range character of the effective interaction between atoms in bcc

transition metals.

Fig. 5 shows the LDOS calculated for both magnetic and non-magnetic crowdion con-

figuration in bcc-Fe. The positions of atoms in the latter are assumed to be the same as

those found in a fully relaxed self-consistent spin-polarized calculation. LDOS plots for both

the central and the NN strings of the crowdion are given in Fig. 5. This figure shows that

d-orbitals give the dominant contribution to LDOS. The spin-polarized LDOS for the atom

in the centre of the defect shows why this atom has a negative magnetic moment (-0.44 µB)

in comparison with the DFT value (2.22 µB) corresponding to bulk crystalline bcc Fe. In

the LDOS plot describing the central atom of the crowdion configuration the Fermi energy

is located to the left of the peak in the spin-up DOS whereas the corresponding spin-down

contribution has a pronounced bonding peak situated at the bottom of the band. As in the

case of non-magnetic bcc transition metals, the spin-polarized LDOS for atoms forming the

NN strings of the crowdion are almost unchanged in comparison with the bulk one. Due to

the difference in the d-electron filling of Fe (group VIII in the Periodic Table of elements),

the Fermi energy moves closer to the anti-bonding peak of the non spin-polarized LDOS for

atoms forming the central and the NN crowdion strings.

Fig. 6 shows the LDOS evaluated for the 1NN and 2NN atoms surrounding a mono-

vacancy for all the bcc transition metals of groups 5B and 6B. For each element, we also

plot the total DOS averaged over all the 127 atoms in the supercell. We see that unlike

the crowdion configuration, the LDOS plots for atoms in the vicinity of a vacancy defect

show strong similarity to the bulk DOS. At the same time new features also emerge. For

example, a new peak forms in the pseudo-gap of the DOS just below the Fermi energy for

all the transition metals of group 6B. The same peak forms approximately 1 eV above the
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Fermi energy in metals of group 5B.

LDOS plots for the 1NN and 2NN atoms show that it is their contribution to this new

peak that differentiates the electronic contribution to the vacancy formation energy between

the elements of groups 5B and 6B. Other peaks associated with the presence of the single

vacancy defect can also be identified in Fig. 6 below the Fermi energy for all the bcc transition

metals. The total vacancy DOS calculated here for bcc Ta and W are in agreement with

earlier DFT (LDA) calculations performed using 53 atom supercells by Satta et al. [71].

Finally, both spin-polarized and non spin-polarized LDOS for the 1NN and 2NN atoms

around the mono vacancy in bcc-Fe are shown in Fig. 7. Again, the contribution of d-orbitals

dominates the distribution of LDOS. We see variation in the up spin contribution to the

LDOS in the vicinity of -2.0 eV for both the 1NN and 2NN atoms. In the case of the non

spin-polarized calculation, this variation is seen in the pseudogap which is now situated near

-1.0 eV.

SEMI-EMPIRICAL INTERATOMIC POTENTIALS

The group 5B and 6B non-magnetic bcc transition metals considered in the present

work span three d-state electron filling factors with orbitals of varying spatial extent. From

the previous section, changes in the fine structure of the local DOS at and around the

〈111〉 interstitial defect show the presence of explicit d-state bonding effects that probably

play some role in determining the absolute values of the corresponding defect energies.

On the other hand, the universal ordering of the interstitial defect energies exhibited by

all the non-magnetic bcc metals considered here, suggests that explicit angular dependent

interactions might not play the dominant role. Indeed inspection of the local DOSs at

and around an interstitial defect (see Fig.3) reveals a general widening of the entire local

DOS as one nears the core of the defect, suggesting that a simple scalar second-moment

(or equivalently, embedded atom model (EAM)) representation might suffice to capture the

relevant bonding mechanism responsible for the ordering of the defect energies. For these

reasons, in the present work we develop a new parameterisation of the Finnis-Sinclair-type

empirical potential [72, 73] that models the band energy through a scalar second-moment

representation. We take this simpler approach rather than develop, say, an empirical matrix

potential [74], which does model explicit d-state angular-dependent bonding.
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Within the Finnis-Sinclair formalism [72], the total energy for an N -atom system is given

by

Etot =
N∑

i

F (ρi) +
1

2

N∑

ij,i6=j

V (rij), (1)

where

ρi =
∑

j,j 6=i

f(rij). (2)

Here the (non-magnetic) embedding energy F (ρ) is given by

F (ρ) = −A
√

ρ. (3)

For this work, the pair-wise density and the repulsive potential radial functions will be

represented by a sum of cubic knot functions:

f(r) =
Nf∑

n=1

fn · (rf
n − r)3Θ(rf

n − r) (4)

and

V (r) =
NV∑

n=1

Vn · (rV
n − r)3Θ(rV

n − r), (5)

where Θ(r) is a Heaviside step function defined as Θ(x) = 1 for x > 0 and Θ(x) = 0 for

x < 0.

To obtain a useable empirical potential, the parameter A and the knot coefficients fn and

Vn are optimised to reproduce as close as possible a variety of physical properties for the

particular non-magnetic bcc metal. For the present work, this physical data base contains the

usual bulk equilibrium properties (cohesive energy, lattice constant and elastic constants),

the vacancy formation energy, and the interstitial defect energies listed in Table 2. In

addition to these bulk equilibrium properties, the potentials are also fitted to the metal’s

zero temperature isotropic thermal expansion coefficient defined via the thermodynamic

relation

β =
1

B

(
δP

δT

)

V

, (6)

where the thermodynamic pressure is determined from the constant temperature-volume

derivative of the free energy:

P (T ) = −
(

δF

δV

)

T

. (7)

Within the harmonic approximation the classical free energy, F , is given by

F = E0 − kBT
∑

λ

ln

(
h̄ωλ

kBT

)
, (8)
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where the summation is performed over the eigenmodes of the phonon spectrum of the

material. Here the first term represents the zero-Kelvin total energy and the second term

the free energy contribution from the 3N phonon degrees of freedom. Equation (8) is in fact

the high temperature limit of the quantum-mechanical equation for the phonon free energy

and thus contains Plank’s constant — an energy scale that does not exist within a molecular

dynamics simulation. Such a contribution is however a volume independent additive constant

to the free energy and therefore will drop out of equation (7) when calculating the pressure.

The simplest procedure to describe the volume dependence of equation (8) is via the

quasi-harmonic approximation in which both E0 and the phonon frequencies depend on

volume, and where the phonon frequencies are calculated in the usual way for the chosen

(non-equilibrium) volume [75, 76]. At T = 0 K equilibrium, the first order variation of

E0 with respect to volume is zero resulting in the pressure arising solely from the volume

dependence of the phonon frequencies:

P = −kBT
∑

i

1

ωi

δωi

δV
. (9)

From equation (6) the thermal expansion coefficient thus reduces to

β =
kB

BV

∑

i

γi, (10)

where the γi = (V/ωi)(δωi/δV ) are the so-called Grüneisen parameters [77].

Table II lists the physical data base values for the transition metals as well as the corre-

sponding values obtained for the optimal fits. For the knot points, a set of equally spaced

points was chosen with the outermost point being located at approximately the half way

distance between the second and third nearest neighbour shells for the repulsive potential,

and just beyond the second nearest neighbour shell for the pair-wise density function. This

was first done for vanadium and then scaled for the other elements according to their equi-

librium lattice constants. The bulk equilibrium bcc lattice constant, cohesive energy and

elastic constants where exactly reproduced using a linear matrix solution to determine the

values of A and the outermost four knot coefficients of the repulsive potential. The remain-

ing knot coefficients of the the repulsive potential and those of the pair-wise density term

were determined via the numerical minimisation of a weighted objective function, where

for each candidate parameterisation the vacancy and the interstitial defect structures were

relaxed to determine their formation energies. A periodic 5 × 5 × 5 unit cell was used to
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represent these defect structures. For the final interstitial defect optimisation, a number

of short range knot functions were added to obtain the required accuracy. In addition to

the above physical properties, the potentials where also optimised so that the bcc structure

was more stable against the fcc structure by at least 0.1 eV. The numerical minimisation

was performed via a combination of simulated annealing [78] and a non-linear downhill Sim-

plex algorithm [79], both of which do not employ derivative information. The weights for

each physical property were varied throughout the fitting procedure according to emergent

correlations between fitting variables and database values with the final weighting biasing

the interstitial energies, followed by the vacancy energy, the zero Kelvin thermal expansion

coefficient, and the fcc-bcc equilibrium cohesive energy difference. The optimal parameter

sets for all the metals can be found in the Appendix. No satisfactory fit could be found for

Cr that described well both its bulk equilibrium properties and its defect energies.

The inclusion of the thermal expansion coefficient within the physical database results

in higher than second order derivative information now being included within the fitting

procedure. This is arguably an essential requirement for the development of empirical po-

tentials based on a range of accurate DFT defect data, since such an approach begins to

include anharmonic information — phonon-phonon interactions — an increasingly impor-

tant aspect when thermal entropy effects of strongly distorted defect structures are to be

modelled. These considerations, along with the dynamical weight adjustments during the

fitting procedure constitute important new developments in the construction of modern

empirical potentials.

Figs. 8 a-e display the pair-wise density and the repulsive potential radial functions for

all the five metals considered here. We see that the corresponding functions are all qualita-

tively similar, where the pair-wise density function monotonically increases as a function of

decreasing distance and exhibits a plateau region between the first and the second nearest

neighbour shells. In the case of the repulsive potential, all the metals exhibit an outer most

attractive part. These qualitative features are also seen in a magnetic potential for bcc Fe

[80], which used a similar fitting procedure with a different embedding function that also

included a magnetic energy contribution. As one moves, within a group, down the periodic

table, both radial functions appear harder at shorter range. The exception to this trend

is Tantalum, whose optimal fit always converged to a “softer” shorter range functional de-

pendence. In the present work we consider only interstitial defect migration and therefore
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TABLE II: Database values and the optimal values (in parenthesis) evaluated using the empirical

potentials for the non-magnetic bcc metals considered in this work. The lattice constants, a0, are

in Angstrom units, the elastic constants are in GPa, and all the energies are given in eV. The bcc

bulk equilibrium properties are taken from [72] and the defect energies from Table I.

V Nb Ta Mo W

a0 3.0399 3.3008 3.3058 3.1472 3.1652

Ec -5.31 -7.57 -8.1 -6.82 -8.9

B 155.1 171.0 196.1 262.6 310.4

C ′ 42.6 28.1 82.4 108.9 160.6

C44 54.6 56.7 52.6 151.6 159.0

β(10−4) 0.252 (1.28) 0.219 (0.57) 0.189 (0.107) 0.144 (0.154) 0.135 (0.120)

Evac 2.51 (2.51) 2.99 (2.99) 3.14 (3.14) 2.96 (2.96) 3.56 (3.56)

Ed111 3.367 (3.375) 5.253 (5.203) 5.832 (5.775) 7.417 (7.406) 9.548 (9.550)

Ed110 3.652 (3.642) 5.597 (5.684) 6.382 (6.414) 7.581 (7.581) 9.844 (9.841)

Ed100 3.918 (3.921) 5.949 (6.005) 7.003 (6.955) 9.004 (9.004) 11.490 (11.513)

Ecrd 3.371 (3.379) 5.254 (5.255) 5.836 (5.873) 7.419 (7.431) 9.551 (9.557)

Etet 3.835 (3.819) 5.758 (5.733) 6.771 (6.631) 8.401 (8.400) 11.050 (10.999)

Eoct 3.964 (3.967) 6.060 (6.009) 7.095 (7.134) 9.067 (9.067) 11.680 (11.709)

presently do not include a short range correction to the potentials that is necessary for

studying high energy collision dynamics. Thus the potentials presented here are currently

not suitable for simulating high-energy collision cascades.

Fig. 8 f displays the square root of the second moment of the DFT derived d-band

density of states (shown in fig. 3) plotted for each metal as a function of the empirical fitting

parameter A multiplied by the square root of the equilibrium density ρ0, where the latter has

been chosen to equal unity for all elements. We remind the reader that within the Finnis-

Sinclair approximation, the latter quantity represents the electronic band contribution to

the cohesive energy and is assumed to be proportional to the square root of the second

moment of the DOS. In this context, the quantity A
√

ρ0 depends partly on the number of

d-electrons and partly on the shape of the density of states for each corresponding element.
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That a relatively good linear relationship is seen in Fig. 8 f indicates that the empirical fits

are to a certain degree systematic across the series of metals considered in this study. This

result also demonstrates that the much larger bandwidth associated with the long range s-

electrons can be well absorbed into the repulsive pair potential term, resulting in the longer

range attractive tail seen for all elements in Figs. 8 a to e.

Fig. 9a displays the predicted first and second nearest neighbour di-vacancy binding ener-

gies using the presently developed empirical potentials. For comparison the DFT calculated

values from table I are also shown. We also include similar data for bcc Fe using the magnetic

potential [80]. For the empirical potential calculations a 10 × 10 × 10 super-cell was used.

Inspection of this data reveals that for all empirical potentials the binding energy is positive

and in reasonable agreement with DFT. In particular, the group 6B elements, reproduce

the first and second nearest neighbour ordering as predicted by DFT. Fig. 9b now plots the

predicted mono-vacancy migration energy using the nudged elastic band method calculated

by the empirical potentials [81] as a function of the corresponding DFT values from table I.

We see good systematic agreement with all elements, where the empirical potential values

slightly overestimate the DFT values. The exception is Tantalum which slightly underes-

timates the corresponding DFT value. When comparing the predictions of such empirical

potential models with DFT, it must be remembered that the former constitutes a significant

simplification of the bonding physics between atoms and thus the accuracy of such models

cannot and should not be expected to be more than approximately 0.1 eV.

DYNAMICS OF DEFECTS AT ELEVATED TEMPERATURES

In the previous sections we described how density functional calculations provided a

foundation for constructing a family of semi-empirical many-body potentials for modelling

equilibrium properties and defect configurations in several non-magnetic bcc metals, includ-

ing tungsten. We now investigate the dynamics of single interstitial crowdion defects at

elevated temperatures, using tungsten as a case study. We choose tungsten because of its

relevance to applications in fusion as a plasma-facing material, and also because of its posi-

tion at the bottom of group 6B of the Periodic table. Since an extensive study of dynamical

behaviour of defects in vanadium was already performed in Ref. [35], by investigating the

dynamics of defects in tungsten we hope to be able to identify common generic features
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characterising thermally activated migration of defects in the two bcc metals. Since vana-

dium and tungsten are situated at the opposite ends of the ‘spectrum’ of non-magnetic bcc

metals, similarities between the types of dynamical behaviour of defects in vanadium and

tungsten found in simulations will likely apply to all the other non-magnetic bcc metals.

Figs. 10-13 show examples of trajectories of migration of a crowdion defect in tungsten

simulated using molecular dynamics. The position of the centre of a crowdion was fol-

lowed over intervals of time of the order of 1 nanosecond at a constant temperature using a

thermally equilibrated simulation cell containing approximately 60000 atoms.

In the case of a very low temperature (T = 100 K), illustrated in Fig. 10, the defect spends

most of its time in one of the shallow local minima of the Peierls potential, and performs

occasional hops between the adjacent minima in this potential. The Peierls potential models

the effect of discreteness of the lattice on the translational motion of defects in the [111]

direction. The fact that the curves describing the Cartesian coordinates of the centre of the

defect X(t), Y (t) and Z(t) in Fig. 10 are identical confirms that migration of the crowdion at

this temperature only involves translation of the defect along its axis in the [111] direction.

At a higher temperature T = 400 K the pattern of migration shown in Fig. 11 becomes

more random and the presence of the Peierls potential is no longer significant. Migration

of a crowdion at T = 400 K remains one-dimensional and the defect performs stochastic

longitudinal Brownian motion in the direction of its axis. At an even higher temperature

T = 800 K (see Fig. 12) we observe the infrequent occurrence of a new type of dynamical

event, namely, the transformation of the [111] crowdion into one of the three alternative

crystallographically equivalent configurations: [111], [111] or the [111] type. For example,

Fig. 12 shows that a crowdion that initially moves in the [111] direction then undergoes a

transition into a [111] configuration at t ≈ 320 picoseconds.

In the limit of very high temperatures illustrated in Fig. 13 the Brownian motion of

the defect becomes effectively three-dimensional with the axis of the crowdion changing its

orientation approximately once every 10 picoseconds.

Fig. 14 shows the frequency of events of virtual formation of the 〈110〉-type configurations

during migration of a crowdion in tungsten at elevated temperatures. Since a 〈110〉-type

configuration is an intermediate configuration for the event of rotation of the axis of a

crowdion between two crystallographically equivalent [111] directions, the frequency of oc-

currence of the 〈110〉 configurations is a convenient measure of the frequency of rotations
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of the axis of a migrating crowdion. We observed no virtual 〈110〉 configuration on the

timescale of molecular dynamics simulations performed in this work for temperatures below

500 K. However, by extrapolating the high-temperature data we find that even at room

temperature a crowdion defect changes the orientation of its axis approximately 1.35 · 106

times per second. Observing this in a molecular dynamics simulation at T = 300 K would

require extending the simulation time to several hundred nanoseconds (i.e. by more than

two orders of magnitude).

The effective activation energy ∆Er characterizing the temperature dependence of the

frequency of rotations found in simulations is ∆Er ≈ 0.38 eV. The 0.4 eV activation energy

for rotations, which is very similar to the energy found in molecular dynamics, was also

found using the nudged elastic band method for a pathway linking two crystallographically

equivalent ‘rotated’ crowdion configurations.

The prefactor ν0 in the Arrhenius formula for the frequency of rotations of the axis of

the crowdion

νr(T ) = ν0 exp
(
−∆Er

kBT

)
= 6.59 · 1012 exp

(
−0.385 eV

kBT

)

is approximately equal to 0.16 of the Debye frequency of tungsten ωD = 4.05 · 1013 1/s.

Similarly, the prefactor ν0 in the expression for the frequency of rotations of crowdions in

vanadium ν0 = 1.3·1013 1/s found in [35] also approximately equals one quarter of the Debye

frequency of vanadium ωD = 5.1 · 1013 1/s. Since the Debye frequency equals 2π divided by

the period τ of vibrations of atoms in the lattice, the attempt frequency ν0 = 1/τ in the

limit of high temperatures can be estimated as ν0 = ωD/2π ≈ 0.16ωD. This estimate agrees

with the attempt frequency factor found in our simulations.

To investigate the statistical properties of Brownian motion of crowdions we evaluated the

coefficient of diffusion of crowdions using trajectories of defects similar to the ones shown

in Figs. 10-13. Following Guinan et al. [82], for each temperature we used a single long

trajectory R(t), and divided it into smaller time intervals, which were treated as statistically

independent realizations of stochastic Brownian motion. To improve the convergence of the

algorithm, we ensured that the average position of the particle on any chosen time interval

satisfied the condition R(t) = 0. This was achieved by subtracting the local ‘drift’ term

Rdrift(t) = R(t0) +Vdrift(t− t0) from the actual time-dependent position of the defect R(t).

The magnitude of the drift velocity was determined by the condition that the stochastic

process R(t) − Rdrift(t) had zero mean. By following this approach we ensured that only
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local fluctuations of the position of the defect contributed to the coefficient of diffusion.

In the limit t → ∞ our treatment satisfies the condition that is implicit in any treatment

of Brownian motion, namely that on average the Brownian particle remains at the origin

R(t) = 0, see for example [83, 84].

To show the mathematical equivalence between our method and the conventional ap-

proach to evaluating the diffusion coefficient we consider the definition of D (see e.g. [82, 85])

D = lim
t→∞

R2(t)

6t
, (11)

where the bar denotes taking the statistical average over an ensemble of realizations of the

stochastic trajectory of the defect R(t). The definition (11) is subject to a condition that

Brownian motion is random, i.e. that for any t > 0

R(t) = 0. (12)

The latter condition implies that on average a Brownian particle does not drift away from its

initial position R(t = 0), which we take as the origin of the Cartesian system of coordinates.

In a typical molecular dynamics simulation the above condition (12) is not satisfied, and

on average (even if taking the average involves subdividing a trajectory of the defect into

independent segments) the defect drifts away from its initial position. The evaluation of

the diffusion coefficient involves taking the square of the coordinate of the defect (11), and

the occurrence of this drift contributes to the statistical error in the calculated value of D.

How to eliminate the effect of this systematic drift? Combining the ergodic hypothesis and

equation (12), we equate the ensemble and the time average coordinates of the defect

R = lim
t→∞

1

t

t∫

0

R(t′)dt′ = 0. (13)

This condition means that in the limit t →∞
t∫

0

R(t′)dt′ = o(t). (14)

Now, if instead of a real trajectory R(t) of a defect found in a molecular dynamics simulation

we construct a function

R(t)− 2t

τ 2

τ∫

0

R(t′)dt′, (15)
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which has zero mean on the interval 0 < t < τ , and substitute it into the definition (11), we

arrive at

lim
t→∞


R(t)− 2t

τ 2

τ∫

0

R(t′)dt′



2

6t
= lim

t→∞


R(t)− 2

t

t∫

0

R(t′)dt′



2

6t
= lim

t→∞

[
R(t)− o(t)

t

]2

6t
= D.

(16)

In other words, by subtracting the local drift motion from realizations of Brownian trajecto-

ries of a defect on finite intervals of time we do not alter the calculated value of the diffusion

coefficient in comparison with the original formula (11). Numerical simulations show that

the use of (15) reduces the statistical uncertainty of the calculated value of D and improves

the numerical convergence of the method.

The coefficient of diffusion of crowdions determined from trajectories of defects simulated

for several temperatures in the range 50 K < T < 1100 K is shown in Fig. 15. The diffusion

coefficient exhibits three different types of behaviour as a function of absolute temperature.

In the low temperature region T ≤ 200 K diffusion is thermally activated. The activation

energy is fairly small Ea ∼ 0.018 eV. In the region 200 K ≤ T ≤ 600 K crowdions migrate

one-dimensionally, and the character of diffusion resembles that of a free particle moving in

a viscous medium under the influence of a random thermal force. For temperatures higher

than approximately 600 K we start seeing the effect of rotations of the axis of the migrating

crowdion defect. This involves the formation of virtual saddle-point 〈110〉-like configurations

that effectively slow the diffusion down. For temperatures higher than 600 K diffusion of

crowdions is no longer one-dimensional, and the change of the slope of function D(T ) at

T ∼ 600 K, indicates the transition to the more three-dimensional diffusion of defects that

involves intervals of rapid one-dimensional migration in the 〈111〉 directions and occasional

re-orientations of the axis of crowdions occurring with a frequency that increases as a function

of temperature. Soneda and Diaz de la Rubia [86, 87] found a similar pattern of diffusion for

the case of clusters of interstitial defects in iron, but not for single interstitial atom defects.

The coefficient of diffusion as a function of temperature shown in Fig. 15 is entirely

different from that found by Guinan et al. [82] for tungsten, see e.g. Fig. 4 of Ref. [82]. The

origin of the difference is in that the semi-empirical potential used by Guinan et al. predicted

the 〈110〉 rather than the (correct) 〈111〉 configurations as the lowest energy structure of

a self-interstitial atom defect. Since the migration of a 〈110〉 dumbbell is characterized
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by a high activation energy barrier Ea ∼ 0.365 eV, the diffusion coefficient found in Ref.

[82] is many orders of magnitude smaller than that found in our simulations. Similarly, in

simulations of interstitial defects in tungsten performed by Carlberg et al. [88] the fact that

the semi-empirical potential predicted the 〈110〉 rather than the (correct) 〈111〉 configuration

as the lowest-energy defect structure makes it difficult to take the values found in Refs. [88]

as reliable estimates for the diffusion coefficient of a self-interstitial atom defect.

The Debye temperature of tungsten TD is 310 K and hence the statistics of thermal exci-

tations at temperatures significantly lower than TD is dominated by the quantum-mechanical

effects, which are not adequately reproduced in a classical molecular dynamics simulation.

The first of the three intervals of temperatures that we identified on the D(T ) curve shown

in Fig. 15 lies entirely below TD and hence the predicted behaviour of the diffusion coef-

ficient in this temperature range is unreliable. On the other hand, the part of the curve

corresponding to T ≥ TD is classical, and hence we can safely apply classical analysis to the

interpretation of simulations.

For T > TD we neglect the presence of the Peierls potential and assume that a defect

performs classical Brownian motion described by the one-dimensional Langevin equation

[89]

m∗dv

dt
= −γv(t) + f(t). (17)

Here we take that rotations of the axis of the defect can be neglected, and v(t) is the

projection of the velocity of the defect on the direction of its axis. m∗ is the effective mass

of the defect and γ is the coefficient of dissipative friction. The stochastic thermal force f(t)

in the right-hand side of equation (17) has zero mean f(t) = 0. The solution of equation

(17) has the form

v(t) =
1

m∗

t∫

−∞
dτ exp

[
− γ

m∗ (t− τ)
]
f(τ). (18)

Using this equation, we find the average kinetic energy of a migrating defect

m∗v2(t)

2
=

1

m∗

t∫

−∞
dτ

t∫

−∞
dτ ′ exp

[
− γ

m∗ (t− τ)
]
exp

[
− γ

m∗ (t− τ ′)
]
f(τ)f(τ ′). (19)

Since the correlation time of the stochastic thermal force is many times shorter than the

correlation time tmigr ∼ m∗/γ of velocity of the migrating crowdion, in equation (19) we

may assume that thermal force is delta-correlated

f(τ)f(τ ′) = f 2δ(τ − τ ′). (20)
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Applying the equipartition principle m∗v2(t)/2 = kBT/2, from equations (19) and (20) we

find that

m∗v2(t)/2 = kBT/2 =
f 2

m∗

t∫

−∞
dτ exp

[
− 2γ

m∗ (t− τ)
]

=
f 2

2γ
, (21)

and arrive at a condition relating the amplitude of stochastic fluctuations of thermal force

and the coefficient of dissipative friction γ, namely

f 2 = γkBT. (22)

This relation constitutes a general example of the Fluctuation-Dissipation Theorem (FDT).

Extending this approach to the treatment of the position of the defect x(t) =
∫ t
−∞ v(τ)dτ ,

and defining the coefficient of one-dimensional diffusion as

D = lim
t→∞x2(t)/2t

we find that the coefficient of dissipative friction γ and the diffusion coefficient are related

by

γ =
kBT

D
. (23)

Using formula (23) and the data shown in Fig. 15, we find how the coefficient of dissipative

friction of the crowdion defect varies as a function of absolute temperature. Fig. 16 shows the

friction coefficient γ(T ) plotted as a function of absolute temperature using the data for the

diffusion coefficient D(T ) taken from Fig. 15. Fig. 16 shows that in the range of relatively

high temperatures T ≥ TD (i.e. in the range of temperatures where Brownian motion

of crowdions can actually be approximated by the classical Langevin equation (17)) the

effective friction coefficient is almost independent of absolute temperature. This agrees with

molecular dynamics simulations performed by Zepeda-Ruiz et al. [35] who also found that

the diffusion coefficient was well approximated by a linear function of absolute temperature,

implying that the friction coefficient was independent of T .

The finding that the thermal friction coefficient is independent of temperature is not

obvious. Indeed, a single crowdion defect represents a limiting case of a small 〈111〉 prismatic

edge dislocation loop, see e.g. [32, 36, 39, 90], and hence it may seem that there should

be no conceptual difference between the meaning of the coefficient of dissipative friction γ

entering equation (17) and the meaning of the coefficient of phonon drag B describing the

resistive force acting on a moving edge dislocation. For example, if instead of a fluctuating
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random force we introduce a time-independent quantity (f(t) = f) in the right-hand side of

equation (17), the stationary solution will take the form

v(t) = f/γ

similar to a solution for a uniformly moving dislocation.

In the interval of temperatures T ≥ TD the phonon drag coefficient Bph characterizing

the motion of an edge dislocation in a material, according to calculations, varies linearly

as a function of absolute temperature [91, 92]. The fact that the temperature dependence

of the friction coefficient found in our simulations (γ ≈ const) differs from that found in

simulations of a moving edge dislocation [91, 92], is interesting and requires further analysis.

One possible line of reasoning that may explain the observed differences uses the fact that

a linear edge dislocation forms a part an infinitely large dislocation loop, and hence has

infinitely large effective mass [93]. We will not investigate this issue further in this paper.

Instead, we develop a microscopic analytically tractable model that rationalizes the be-

haviour of the thermal friction coefficient of migrating crowdions found in our simulations

THE FRENKEL-KONTOROVA MODEL FOR DISSIPATIVE FRICTION

How do we evaluate the coefficient of dissipative friction for Brownian motion of a crow-

dion in a crystal lattice at a finite temperature? To answer this question we first define

the notion of a crowdion as an object, characterised by its position in the crystal lattice.

We then derive an equation of motion for the crowdion, taking into account the interaction

between the defect and its thermal environment, and investigate solutions of this equation.

We address the problem using the multi-string Frenkel-Kontorova model [32]. In this model

the defect is treated as a linear structure characterized by the orientation of its axis. The

entire crystal lattice of atoms is described as an ensemble of linear strings of atoms running

in the direction parallel to the axis of the crowdion. For example, the bcc lattice can be rep-

resented exactly as an ensemble of atomic strings running parallel to the [111] direction. The

distance between neighbouring atoms in each string is a =
√

3a0/2, where a0 is the lattice

constant, and in a plane normal to the [111] direction the atomic strings form a staggered

hexagonal lattice. The position of an atom in the lattice is defined by two indices, namely

a two-dimensional vector index of a string j and the index of an atom in the string n. The
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Lagrangian of the model defined in terms of displacements uj,n(t) of atoms in the direction

of the strings has the form

L =
∑

j

∞∑

n=−∞

{
mu̇j,n(t)

2
− α

2
[uj,n+1(t)− uj,n(t)]2

}
−mω2a2

2π2

∑

j,h

∞∑

n=−∞
sin2

[
π(uj,n − uj+h,n)

a

]
,

(24)

where m is the mass of an atom, α is the parameter of elastic interaction between nearest

neighbour atoms belonging to the same string, and ω2 characterizes the strength of interac-

tion between atoms belonging to adjacent strings. In other words, α gives the strength of

the bond stretching term while ω2 is a parameter characterizing the magnitude of the bond

bending term, i.e. the term associated with the displacement of adjacent atomic strings

relative to each other. The Lagrangian equations of motion

d

dt

∂L
∂u̇j,n(t)

=
∂L

∂uj,n(t)

have the form

m
d2uj,n

dt2
= α(uj,n+1 + uj,n−1 − 2uj,n)− mω2a

π

∑

h

sin

[
2π(uj,n − uj+h,n)

a

]
. (25)

The field of atomic displacements uj,n(t) entering this equation consists of two terms: a

regular term describing the field of a defect migrating in the lattice, and the random field

of phonon excitations. Since the defect migrates in the direction of its axis and remains in

the same atomic string, we represent the field of displacements as

uj,n(t) = Uj [n−Z(t)/a] + Φj,n(t), (26)

where Z(t) is the time-dependent position of the centre of the defect in the lattice. Here we

assume that the strain field of the defect is translated coherently together with the core of

the defect. The motion of the defect is assumed to be non-relativistic, i.e. the velocity of

the centre of the defect Ż(t) is small in comparison with the speed of sound in the material.

Φj,n(t) denotes the field of phonon excitations.

The time derivatives of the displacement field of the defect have the form

d

dt
Uj [n−Z(t)/a] = U ′j [n−Z(t)/a]

(
−1

a

dZ(t)

dt

)

d2

dt2
Uj [n−Z(t)/a] = −U ′j [n−Z(t)/a]

1

a

d2Z(t)

dt2
+ U ′′j [n−Z(t)/a]

1

a2

(
dZ(t)

dt

)2

. (27)



26

Substituting these expressions into (25) we find

m

a2
[Z ′(t)]2U ′′j [n−Z(t)/a]− m

a
[Z ′′(t)]U ′j [n−Z(t)/a] + m

d2

dt2
Φj,n(t) =

αU ′′j [n−Z(t)/a]) + α
(
Φj,n+1(t) + Φj,n−1(t)− 2Φj,n(t)

)

−mω2a

π

∑

h

sin
{

2π

a

[
Uj [n−Z(t)/a] + Φj,n(t)− Uj+h [n−Z(t)/a]− Φj+h,n(t)

]}
. (28)

In the absence of the defect, the phonon displacements satisfy the equations

m
d2Φj,n

dt2
= α(Φj,n+1 + Φj,n−1 − 2Φj,n)− 2mω2

∑

h

[Φj,n − Φj+h,n]. (29)

On the other hand, in the absence of phonons the field of displacements of the defect satisfies

equation

αU ′′j [n−Z(t)/a] =
mω2a

π

∑

h

sin
{

2π

a

[
Uj [n−Z(t)/a]− Uj+h[n−Z(t)/a]

]}
. (30)

Equation (30) is valid for an arbitrary position of the centre of the defect Z(t). Expanding

the last term in equation (28) in the Taylor series, performing the summation over n and

taking into account the sum rules

∞∑

n=−∞
U ′′j [n−Z(t)/a] =

∞∫

−∞
U ′′j [n−Z(t)/a]dn = U ′j(∞)− U ′j(−∞) = 0

∞∑

n=−∞
U ′j [n−Z(t)/a] =

∞∫

−∞
U ′j [n−Z(t)/a]dn = Uj(∞)− Uj(−∞) = −aδj,0, (31)

we arrive at the equation of motion for the crowdion defect

m
d2Z
dt2

= 4mω2
∑

n,h

[Φn,0(t)− Φn,h(t)] sin2
{

π

a
U0[n−Z(t)/a]

}
. (32)

Since U0(n−Z(t)/a) describes the field of displacements in the central string of the crowdion

defect, we approximate it by the soliton solution of the single-string Frenkel-Kontorova model

[32]

U0[n−Z(t)/a] =
2a

π
arctan

[
exp

(
na−Z(t)

Na

)]
, (33)

where N is the dimensionless width of the crowdion solution. Formula (33) approximates

the field of atomic displacements in the crowdion defect very well, compared to the DFT

and empirical potential values [32].
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By substituting equation (33) into (32), we arrive at

d2Z
dt2

= 4ω2
∑

n,h

Φn,0(t)− Φn,h(t)

cosh2

[(
n− Z(t)

a

)
/N

] . (34)

This simple and compact equation describes the effect of stochastic thermal displacements

of atoms on the one-dimensional motion of a crowdion in the lattice.

Equation (34) does not include the effect of rotations of the axis of the crowdion on its

migration in the lattice. The mathematical formalism that makes it possible to include the

effect of rotation of the direction of migration of a crowdion in the treatment of diffusion of

defects was developed in Ref. [94].

The right-hand side of equation (34), multiplied by the effective mass of the defect, gives

the stochastic force acting on the crowdion

f(t) = 4m∗ω2
∑

n,h

Φn,0(t)− Φn,h(t)

cosh2

[(
n− Z(t)

a

)
/N

] . (35)

This equation shows that it is the difference between phonon displacements of atoms in

adjacent strings that gives rise to the force randomly accelerating or decelerating the defect.

Phonon displacements of atoms in the same string have much weaker effect on the motion

of the crowdion than the relative displacements of two neighbouring strings. Also, equation

(35) shows that only phonon displacements of atoms near the core of the defect make a

significant contribution to the stochastic force driving Brownian motion of the defect.

The mean value of f(t) given by equation (35) is zero f(t) = 0, and the correlation

function of fluctuations of this force is approximately given by

f(t)f(t′) = 16(m∗)2ω4
∑

n,h

Φn,0(t)Φn,0(t′) + Φn,h(t)Φn,h(t′)

cosh4

[(
n− Z(t)

a

)
/N

] . (36)

In this equation we neglected correlations of thermal displacements of different atoms in

the lattice. This approximation works well in the high temperature limit T ≥ TD, and

is equivalent to the Einstein model of thermal displacements. Since in the bcc lattice the

statistics of thermal displacements of atoms is independent of the lattice site, equation (36)

can be further simplified as

f(t)f(t′) = 256(m∗)2ω4NΦ(t)Φ(t′). (37)
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Here we used the formula ∞∫

−∞

dn

cosh4 (n/N )
= 4N /3

and the fact that each 〈111〉 string of atoms is surrounded by 6 neighbouring strings. The

correlation function of thermal displacements of atoms in the limit of high temperatures has

the form

Φ(t)Φ(t′) =
kBT

mω2
D

cos[ωD(t− t′)] ≈ kBT

mω3
D

δ(t− t′). (38)

Comparing (37) and (38) with (22) we arrive at an analytical estimate for the coefficient of

thermal friction

γ = 256
(m∗)2ω4N

mω3
D

. (39)

Substituting numerical values of parameters in this formula we find that the magnitude of

the friction coefficient is of the order of 10−12 kg/s. This estimate is close to the values

found using molecular dynamics simulations in the limit T ≥ TD. What is even more

significant is that, according to equation (39), in the classical limit T ≥ TD the coefficient

of thermal friction is independent of absolute temperature. This conclusion agrees with

molecular dynamics simulations of Brownian motion of crowdions described in this paper,

and it also agrees with the earlier study of migration of crowdions in vanadium carried out

in Ref. [35].

SUMMARY

In this paper we presented a density-functional theory study of the electronic struc-

ture of self-interstitial atom and vacancy defects in all the bcc transition metals, developed

new parameterized forms of the Finnis-Sinclair many-body potentials for the five of those

metals, and investigated the statistics of thermally activated migration of self-interstitial

atom crowdion defects in tungsten. By investigating the logical connection between the

electronic, atomistic, and mesoscopic aspects of the problem we highlighted the pivotal role

played by the electronic structure of defects, the use of controlled approximations in deriving

the semi-empirical potentials, and the essential part played by solvable analytical models

in rationalizing the information provided by atomistic simulations. In all the bcc metals

except Fe a self-interstitial atom defect adopts a linear 〈111〉 crowdion configuration, which

at a finite temperature migrates in the direction of its axis, occasionally switching between
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equivalent crystallographic orientations. The diffusion coefficient of crowdions found in our

simulations for tungsten is many orders of magnitude higher than the diffusion coefficient

found for the same metal in earlier simulations, where the semi-empirical interatomic poten-

tial did not agree with the formation energies of point defects predicted by density functional

theory. This highlights the significance of the new parameterisation of the semi-empirical

potentials given in this paper. We expect that the new potentials, constructed in such a way

as to be able to retain sufficiently high accuracy over a range of strongly distorted atomistic

configurations, will help understand the nature of atomistic processes responsible for the

changes in microstructure occurring in materials under irradiation.
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APPENDIX: EMPIRICAL POTENTIAL PARAMETERISATIONS

Tables (III) and (IV) contain the complete parameterisation of the semi-empirical inter-

atomic potential for the five bcc non-magnetic metals considered in this study. For accuracy,

all digits printed in the tables should be employed. We remind the reader that these po-

tentials are currently unsuitable for modelling high energy collision dynamics involving, for

example, the early stages of cascade simulation evolution.
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TABLE III: Group V Empirical Potentials

Vanadium Niobium Tantalum

A 5.439922189462638 A 9.292960445740691 A 10.01248520934047

rf
n fn rf

n fn rf
n fn

3.190000000000000 1.890275993289541 3.463800000000000 1.315820563897800 3.469100000000000 1.411466249903413

3.040000000000000 -2.575125966545582 3.300933333333333 -1.553583145488597 3.305966666666666 -1.742457130439156

2.890000000000000 -2.333619727690528 3.138066666666667 -1.863852095850426 3.142833333333333 -2.163310282516732

2.740000000000000 5.468040512088823 2.975200000000000 2.642548215724037 2.979700000000000 3.122206593519948

2.632600000000000 -0.9366477843821801 2.858500000000000 -0.1538514822429389 2.862900000000000 7.8873075878678840 10−2

2.500970000000000 1.880297597456256 2.719755000000000 -1.088525289528290 2.719755000000000 -0.2086354380181568

2.369340000000000 0.6100939173059921 2.572650000000000 8.448251111154777 2.576610000000000 0.6939195820784342

rV
n Vn rV

n Vn rV
n Vn

4.100000000000000 -0.9989201728470961 4.451900000000000 -0.9712655459247255 4.458600000000000 -1.010535357881566

3.828000000000000 2.508315506019401 4.156560000000000 2.546718802733285 4.162820000000000 2.905987065650308

3.556000000000000 -3.762034795839844 3.861220000000000 -3.877555625741159 3.867040000000000 -5.053535078225670

3.284000000000000 11.30374353457620 3.565880000000000 12.49074179239876 3.571260000000000 15.11704171653469

3.012000000000000 -19.12920476121472 3.270540000000000 -21.25877974460241 3.275480000000000 -26.10466457022816

2.740000000000000 18.33316600617811 2.975200000000000 10.47543658678679 2.979700000000000 15.45408459383589

2.632600000000000 4.485535455224519 2.858500000000000 17.73776069701092 2.862900000000000 12.48335338054882

2.500970000000000 -0.3765517276879735 2.719755000000000 -36.10313653693880 2.719755000000000 -8.751933980136855

2.369340000000000 1.148339795860195 2.572650000000000 90.15287081731522 2.576610000000000 4.580222062018542

TABLE IV: Group VI Empirical Potentials

Molybdenum Tungsten

A 7.709236888883772 A 10.84238200368439

rf
n fn rf

n fn

3.302700000000000 1.601365370271091 3.321600000000000 1.677334871575606

3.147366666666667 -1.627314671935321 3.165333333333333 -1.673137509507131

2.992033333333334 -3.873039838840650 3.009066666666667 -4.737051994974169

2.836700000000000 5.863098272130567 2.852800000000000 7.870789420780674

2.725500000000000 1.062058443655675 2.741100000000000 -3.7924230525563378 10−4

2.589225000000000 2.690089456866705 2.604045000000000 6.190816158916646

2.466990000000000 -0.9565713891199151

rV
n Vn rV

n Vn

4.244700000000000 -0.6022171729570738 4.268900000000000 -0.1036435865158945

3.963100000000000 1.637778152210674 3.985680000000000 -0.2912948318493851

3.681500000000000 -4.443742707968704 3.702460000000000 -2.096765499656263

3.399900000000000 16.37678840233729 3.419240000000000 19.16045452701010

3.118300000000000 -28.09191863719095 3.136020000000000 -41.01619862085917

2.836700000000000 22.82129576675600 2.852800000000000 46.05205617244703

2.725500000000000 21.13598549564144 2.741100000000000 26.42203930654883

2.589225000000000 9.417069069515332 2.604045000000000 15.35211507804088

2.466990000000000 14.12806259323987
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[21] M. H. Carlberg, E. P. Münger, and L. Hultman, Journ. Phys. Cond. Mat. 11 (1999) 6509;

ibid. 12 (2000) 79

[22] G. Simonelli, R. Pasianot and E. J. Savino, phys. stat. sol. b 217 (2000) 747

[23] J. A. Moriarty, J. F. Belak, R. E. Rudd, P. Söderlind, F. H. Streitz and L. H. Yang, J. Phys.:
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vacancy tetrahedral

111 100

octahedral110

FIG. 1: Schematic view of the vacancy and the five high-symmetry self-interstitial atom configu-

rations in a bcc metal. A 111 crowdion configuration shown in this figure is formed by inserting

an extra atom half way between the nearest neighbours and by relaxing the resulting configuration

at T = 0. A tetrahedral configuration is formed if an interstitial atom is placed at (a/4, a/2, 0),

where a is the parameter of the crystal lattice. An octahedral configuration is formed if an extra

atom is placed at the centre of the face of the cell, for example at (a/2, a/2, 0).
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FIG. 2: Atomic displacement fields in the central string of the 〈111〉 crowdion self-interstitial atom

configuration evaluated using density functional theory for all the bcc transition metals. The solid

and the dashed lines show the analytical soliton solutions of the sine-Gordon model (33) plotted

for N = 1.4 and N = 1.9.
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FIG. 3: The local electronic density of states (LDOS) evaluated for the five atoms located in the

central 〈111〉 string of the crowdion configuration for each of the bcc metals forming groups V and

IV of the Periodic Table. Calculations were performed using a 4 × 4 × 4 128+1 atom supercell.

Atom 1 is situated in the centre of crowdion, and atom 5 is the furthest away from the centre of

crowdion along the 〈111〉 string.
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FIG. 4: The local electronic density of states (LDOS) evaluated for the three atoms situated in

one of the six nearest neighbour strings (adjacent to the central 〈111〉 string) of the crowdion

configuration for each of the bcc metals forming groups V and IV of the Periodic Table. Atom

labeled NN-1 is the closest to the centre of crowdion.
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FIG. 5: The local electronic density of states (LDOS) evaluated for the five atoms forming the

central 〈111〉 string of the crowdion defect in bcc iron, and the three atoms in one of the NN

strings of the defect’s configuration. Calculations were performed both for the spin-polarized, and

for the non-magnetic electronic configurations. The fixed atomic positions used in the non-magnetic

calculation are taken from the relaxed magnetic calculation. Contributions of s-, p- and d-orbitals

are shown, with d-orbitals giving the dominant contribution to the total LDOS.
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FIG. 6: The local density of states for the 1NN and 2NN atom of a vacancy evaluated for the six

non-magnetic bcc metals. Calculations were performed using a 4 × 4 × 4 128-1 atom supercell.

The uppermost figure for each element shows the total density of states averaged over all the 127

atoms in the cell.
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FIG. 7: Same as in Fig. 6 but for bcc Fe. The figure shows results of both magnetic and non-

magnetic calculations of the LDOS for a mono-vacancy. The fixed atomic positions used in the

non-magnetic calculations are taken from the relaxed magnetic calculations.
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FIG. 8: a) - e) Plot of pair-wise density and repulsive potential radial functions of optimised fits.

Note that the pair wise density is multiplied by a factor of 10. f) Plots the DFT-derived second

moments of the density of states as a function of the product of the empirical potential parameter

A and the square root of the effective density ρ0(= 1) corresponding to the equilibrium lattice

constant for bcc crystal lattice.
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FIG. 9: a) Plot of predicted first nearest and second nearest di-vacancy binding energies and b)

vacancy migration energies using the current empirical potentials and DFT data obtained from

table I.
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FIG. 10: The trajectory of the centre of a 〈111〉 crowdion in tungsten at T = 100 K simulated

using the semi-empirical many-body potential described in the Appendix.
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FIG. 11: Same as in Fig. 10 but for T = 400 K.
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FIG. 12: Same as in Fig. 10 but for T = 800 K.
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FIG. 13: Same as in Fig. 10 but for T = 1100 K.



49

5 10 15 20 25

1/kBT [eV
-1

]

0.001

0.010

0.100

fr
eq

ue
nc

y 
of

 1
11

/1
10

 tr
an

sf
or

m
at

io
ns

 [1
012

 s
-1

]

FIG. 14: The frequency of the 〈111〉 ↔ 〈110〉 transformation observed in molecular dynamics

simulations and plotted as a function of absolute temperature T . The dashed line corresponds to

νr(T ) = 6.59 ·1012 exp (−[0.385 eV]/kBT ) 1/s. The Debye temperature TD of tungsten is TD = 310

K. This corresponds to 1/kBTD = 37.43 eV−1.
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FIG. 15: Coefficient of diffusion of crowdions found using molecular dynamics simulations and

plotted as a function of the absolute temperature T . The dashed line is given by an analytical

formula D(T ) = 8.8 · 10−4 · T · exp (−[0.018 eV]/kBT ) m2/s. This formula approximates the

behaviour of the diffusion coefficient in the interval of low and intermediate temperatures but

does not take into account the effect of rotations of the axis of the defect in the limit of high

temperatures. The Debye temperature TD of tungsten is TD = 310 K.



51

0 200 400 600 800 1000 1200
Temperature (K)

0.0

5.0×10
-12

1.0×10
-11

1.5×10
-11

2.0×10
-11

fr
ic

tio
n 

co
ef

fic
ie

nt
 (

kg
/s

)

FIG. 16: The coefficient of dissipative thermal friction of a crowdion γ = kBT/D plotted as a

function of absolute temperature. The dashed curve corresponds to the analytical formula for the

diffusion coefficient shown by the dashed line in Fig. 15. The coefficient of thermal friction is almost

independent of temperature for T ≥ TD where thermal displacements of atoms in the lattice can

be approximately treated as uncorrelated.
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